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1. Quickly recalling some notions

Recall the following definitions: an alphabet A is a finite set,

whose elements are called letters. The set of all words (i.e., finite

sequences) on A, denoted A∗, and equipped with concatenation

of words has a structure of (free) monoid. The length of a word

is the total number of its letters (the empty word has length 0).

A morphism from monoid A∗ to monoid B∗ is a map that pre-

serves concatenation. It is determined by its values on A. It

is called uniform or of constant length (`) if all the images of

letters have the same length (`).



If A = B, let ϕ be a morphism from A∗ to itself. If there exists

a letter a ∈ A such that ϕ(a) begins with a and the length

of the iterates of ϕ on a, ϕk(a), tends to infinity with k, the

sequence ϕk(a) tends to an infinite sequence that is its limit for

a natural topology (the topology of simple convergence) and is

an (iterative) fixed point of ϕ for the extension (by continuity)

of ϕ to infinite sequences on A.

This iterative fixed point is called a purely morphic sequence.



Example 1:

Thue-Morse sequence:

A = {0,1}.

Morphism 0→ 01, 1→ 10. Can be iterated on, say, 0:

0
0 1
0 1 1 0
0 1 1 0 1 0 0 1
...



Example 2:

(Binary) Fibonacci sequence:

A = {0,1}.

Morphism 0→ 01, 1→ 0. Can be iterated on 0:

0
0 1
0 1 0
0 1 0 0 1
...



Morphic and automatic sequences

A sequence (an)n≥0 with values in some alphabet A is called

morphic if there exists an alphabet B, a morphism ϕ : B∗ → B∗

admitting an iterative fixed point say the sequence (bn)n≥0 on B,

and a map f : B → A such that for all n ≥ 0, one has an = f(bn).

If, furthermore, the morphism ' has constant length (`), then

the sequence (a

n

)

n�0

is called (`-)automatic.
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Example 3

The Golay-Shapiro sequence (or the Rudin-Shapiro sequence∗)
is the 2-automatic sequence defined as follows.

Alphabet {0,1}. “Auxiliary” alphabet B := {a, b, c, d}.

Morphism on B, ϕ : a→ ab, b→ ac, c→ db, d→ dc,

Fixed point of ϕ: limϕn(a) = a b a c a b d b . . ..

f is the map: a→ 0, b→ 0, c→ 1, d→ 1.

Golay-Shapiro sequence: f(limϕn(a)) = 0 0 0 1 0 0 1 0 . . .

(�) GS versus RS: : :
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Remark

A general morphic sequence is not `-automatic for any ` ≥ 2.

For example, it is easy to prove that the binary Fibonacci se-

quence is not `-automatic for any ` � 2.

(Why?)
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2. Beginning(s) of the story

In an unpublished 2011 note1, M. Queffélec and JPA proved that
the fixed point of the Lysënok morphism2

a→ aca, b→ d, c→ b, d→ c

is also 2-automatic, actually the �xed point of

a! ac; b! ad c! ab; d! ac:

1

This result was obtained again in 2017 by Grigorchuk, Lenz,

and Nagnibeda.

2

The Lys�enok morphism provides a presentation by generators

and (in�nitely many) de�ning relations of the �rst Grigorchuk

group.
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a→ aca, b→ d, c→ b, d→ c

is also 2-automatic, actually the fixed point of

a→ ac, b→ ad c→ ab, d→ ac.

1This result was obtained again in 2017 by Grigorchuk, Lenz,
and Nagnibeda.
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Were there previous examples in the literature of fixed points of
non-uniform morphisms that are actually `-automatic?

Yes! For example Berstel proved back in 1978{1979 that the

Istrail squarefree sequence, �xed point of the morphism given by

0! 12; 1! 102; 2! 0

is also 2-automatic: it is the image by reduction modulo 3 of

the �xed point beginning with 1 of the 2-uniform morphism

0! 12; 1! 13; 2! 20; 3! 21:

Other examples were given by Dekking in 1978 (see below).
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2. A first idea: the Anagram theorem

We played with some examples of morphic sequences given in
(or inspired by) the OEIS. For example let ψ be the morphism

ψ(0) = 011010, ψ(1) = 01.

Note that  (01) = 01101001 and  (10) = 01011010, so that

de�ning w

1

:= 01 and w

2

:= 10, we have

 (w

1

) = w

1

w

2

w

2

w

1

;  (w

2

) = w

1

w

1

w

2

w

2

:

De�ning a new alphabet fw

0

1

; w

0

2

g and a new morphism  

0

by:

 

0

(w

0

1

) = w

0

1

w

0

2

w

0

2

w

0

1

,  

0

(w

0

2

) = w

0

1

w

0

1

w

0

2

w

0

2

, it is clear that the

�xed point of  is the image of the �xed point of  

0

beginning

with w
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by the map w
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! 01, w

0

2

! 10. Hence the �xed point

of  is 4-automatic (hence 2-automatic).
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defining w1 := 01 and w2 := 10, we have
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′
2} and a new morphism ψ′ by:

ψ′(w′1) = w′1w
′
2w
′
2w
′
1, ψ′(w′2) = w′1w

′
1w
′
2w
′
2, it is clear that the

fixed point of ψ is the image of the fixed point of ψ′ beginning
with w′1 by the map w′1 → 01, w′2 → 10. Hence the fixed point
of ψ is 4-automatic (hence 2-automatic).



What was so special with the (non-uniform) morphism ψ?

ψ(0) = 011010, ψ(1) = 01.

Actually

 (0) = 01 10 10 and  (1) = 01:

Anagram Theorem. Let W be a �nite set of anagrams on

the alphabet A. Let  a morphism on A, admitting an in�nite

iterative �xed point, and such that the image by  of any letter

in A is a concatenation of words in W . Then the �xed point

is d-automatic, where d = length( (w))=length(w) for any/all

w 2W .
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ψ(0) = 011010, ψ(1) = 01.

Actually

ψ(0) = 01 10 10 and ψ(1) = 01.

Anagram Theorem. Let W be a finite set of anagrams on
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Before going to a more ancient and more general theorem, we will

show that the anagram theorem gives rather quickly (“visually”)

the automaticity of some sequences in the OEIS.

A284878 is the �xed point of the morphism 0! 01; 1! 0110.

Hence it is 3-automatic. (Take W := f01;10g.)

(Idem for A284905, A285305, A284912.)

A285249 is the 0-limiting word of the morphism 0 ! 10;1 !

0101, hence the �xed point beginning with 0 of the square of

this morphism: 0 ! 010110; 1 ! 100101100101. Hence it is

9-automatic (hence 3-automatic).

(Idem for A285252, A285255, A285258.)
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3. A theorem of Dekking

It happens that the anagram theorem is superseded by an “old”
theorem of Dekking, 1978 (Zeitschrift für Wahrscheinlichkeits-
theorie und verwandte Gebiete / Probability Theory and Related
Fields).

Theorem (Dekking). Let ' be a morphism on the alphabet

[0; r � 1], non-erasing, and admitting an iterative �xed point

(a

n

)

n�0

. For all i 2 [0; r � 1] let `

i

be the length of the word

'(i). If the vector (`

0

; `

1

; : : : `

r�1

) is a left eigenvector of the

incidence matrix (transition matrix) M of ', then the sequence

(a

n

)

n�0

is q-automatic, where q is the spectral radius of M .

Exercise. Prove that the anagram theorem is implied by the

theorem of Dekking above.
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(Prove that the �xed point of 0! 10; 1! 1100 is 3-automatic.)
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4. Morphisms of self-similar groups

From the book Self-Similar Groups (V. Nekrashevych, 2005):

Self-similar groups (groups generated by automata) appeared

in the early eighties as interesting examples. It was discovered

that very simple automata generate groups with complicated

structure and exotic properties which are hard to �nd among

groups de�ned by more \classical" methods.

For example, the Grigorchuk group can be de�ned as a group

generated by an automaton with �ve states over an alphabet of

two letters. This group is a particularly simple example of an

in�nite �nitely generated torsion group and is the �rst example

of a group whose growth is intermediate between polynomial and

exponential.
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Some fixed points of non-constant length morphisms used to

construct self-similar groups happen to be automatic.

We have seen that the �xed point of the Lys�enok morphism

a ! aca; b ! d; c ! b; d ! c related to the the �rst Grigorchuk

group is 2-automatic.

It can be proved, for example, that

the �xed point of a! aba; b! d; c! b; d! c (de�ning a group

studied by Bartholdi and Grigorchuk) is 2-automatic;

the �xed point of the morphism a ! aba; b ! c; c ! b (studied

by Muntyan) is 2-automatic.
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5. Two natural questions

At this point at least two natural questions arise:

Question I. Are there self-similar groups de�ned by morphisms

whose �xed points are not-automatic?

Question II. Some �xed points of non-constant length morphisms

are automatic. If we look at all these non-constant length mor-

phisms, which subclass of automatic sequences do we obtain?

Actually we will twist Question II in a possibly more natural

question, and ask

Question II'. Some non-uniformly morphic sequences are auto-

matic. If we look at all these morphic sequences, which subclass

of automatic sequences do we obtain?
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Any automatic sequence is also non-uniformly morphic∗∗.

Example. The Thue-Morse sequence is non-uniformly morphic.

��

Caveat. Nothing like 0! 01; 1! 10; 2! 1101.

Idea. (i) Start from (0) = 01101001; (1) = 10010110.

Idea. (i) Note that TM = lim 

k

(0).

Idea. (ii) Take z; t such that (01) = 0110100110010110 = zt

Idea. (ii) e.g., z = 0; t = 110100110010110.

Idea. (iii) De�ne � on f0;1; b; cg by

Idea. (iii) �(0) = 011bc001; �(1) = (1); �(b) = z; �(c) = t.

Idea. (iv) Check: TM = D(lim �

k

(0)), with D(0;1; b; c) = (0;1;0;1).

Idea. (v) Generalize.
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Proving that a sequence is not automatic (in preparation, JPA-J. Shallit)

{ In�nite q-kernels and many variations: Ex.: a! aab; b! b
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).

{ Irrationality of frequencies. Ex.: 0! 01; 1! 0.

{ Block complexity. Ex.: Pascal triangle modulo d, with d 6= p

�

.

{ Growth, gaps, etc. Ex.: Characteristic function of primes.

{ Dirichlet series.

{ Orbit properties.

{ Last but not least: generalization of Cobham by F. Durand.
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