(Trying to do a) Counting of distinct repetitions in words¹ One World Combinatorics

Robert Mercaș

08.02.2021

¹Szilárd Zsolt Fazekas and RM

Dasies		
•0000000 0000000 (0000000000	0000000

1 Preliminaries

2 Basics

3 Results

4 Final Remarks

Preliminaries ○●○○○○○		
Basics		

 $^{2} https://cs.uwaterloo.ca/\sim shallit/repetitions.html$

Preliminaries	Basics 00000000	Results 0000000000	Final Remarks
Basics			

$hotshots^2$

²https://cs.uwaterloo.ca/~shallit/repetitions.html

•	Loughborough
TV.	University

Preliminaries ○●○○○○○		
Basics		

hotshots² shshsh

²https://cs.uwaterloo.ca/~shallit/repetitions.html

Preliminaries ○●○○○○○		
Basics		

hotshots² shshsh tratratratra

²https://cs.uwaterloo.ca/~shallit/repetitions.html

•	Loughborough
ŤΖ	University

Preliminaries		
000000		
Basics		

hotshots² shshsh tratratratra

*k*th power: $x^k = x \cdot x \cdots x$, where x is some word

²https://cs.uwaterloo.ca/~shallit/repetitions.html

E Loughborough	Mercaș	Counting Squares
----------------	--------	------------------

Preliminaries	Basics	Results	Final Remarks
Counting squares			

Number of *k*th powers

Preliminaries			
000000	0000000	0000000000	0000000
Counting squares			

aaa···a

Preliminaries ○○●○○○○		
Counting squares		

aaa···a

Number of *k*th powers with primitive root

Preliminaries ○○●0000		
Counting squares		

aaa···a

Number of *k*th powers with primitive root: $< n \log n$ [Bannai et al., 2020]

Fibonacci word: 0110100110010110...

Preliminaries ○○●○○○○		
Counting squares		

 $aaa \cdots a$

Number of *k*th powers with primitive root: $< n \log n$ [Bannai et al., 2020]

```
Fibonacci word: 0110100110010110...
```

Distinct powers: if the root is the same do not count it again

Preliminaries ○○●○○○○		
Counting squares		

 $aaa \cdots a$

Number of *k*th powers with primitive root: $< n \log n$ [Bannai et al., 2020]

Fibonacci word: 0110100110010110...

A word with 7 distinct squares: a^2 , $(aa)^2$, $(aaba)^2$, $(aba)^2$, $(abaa)^2$ $(baa)^2$, $(baaa)^2$ and their rightmost occurrences abaabaaabaaaabaaaabaaaabaaaaa

Distinct powers: if the root is the same do not count it again

Preliminaries			
000000	0000000	0000000000	0000000
Words rich in distinct sq	uares		

abaabaaabaaabaaabaaab · · · [Fraenkel and Simpson, 1998]

Preliminaries ○○○●○○○		
Words rich in distinct squ	Jares	

Preliminaries 0000000		
Words rich in distinct sq	uares	

squares: unary, $a^k ba^j a^k ba^j$, $a^k ba^{k+1} b a^k ba^{k+1} b$

Preliminaries		
Words rich in distinct sq	uares	

squares: unary, $a^k ba^j a^k ba^j$, $a^k ba^{k+1} b a^k ba^{k+1} b$

abaabaaabaaab... [Jonoska et al., 2014]

Preliminaries 0000000		
Words rich in distinct sq	uares	

squares: unary, $a^k b a^j a^k b a^j$, $a^k b a^{k+1} b a^k b a^{k+1} b$

 $abaabaaabaaaab \cdots [Jonoska et al., 2014]$ $ab a^2b a^3b a^4b a^5b \cdots$

Preliminaries 000000		
Words rich in distinct sq	uares	

squares: unary, $a^k b a^j a^k b a^j$, $a^k b a^{k+1} b a^k b a^{k+1} b$

 $abaabaaabaaaab \cdots$ [Jonoska et al., 2014] $ab a^2b a^3b a^4b a^5b \cdots$

squares: unary, a^k ba^j a^k ba^j

Preliminaries 000000		
Words rich in distinct sq	uares	

squares: unary, $a^k ba^j a^k ba^j$, $a^k ba^{k+1} b a^k ba^{k+1} b$

 $abaabaaabaaaab \cdots$ [Jonoska et al., 2014] $ab a^2b a^3b a^4b a^5b \cdots$

squares: unary, $a^k b a^j a^k b a^j$

lower bound: $\frac{2k-1}{2k+2}n$, k=number of b's

Preliminaries		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

Preliminaries		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]

Preliminaries		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

- Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]
- Direct proofs [Hickerson, 2003],[Ilie, 2005],[Lam, 2013]

Preliminaries		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

- Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]
- Direct proofs [Hickerson, 2003],[Ilie, 2005],[Lam, 2013]
- Best bound: $\frac{11n}{6}$ [Deza et al., 2015]

Preliminaries ○○○○●○○		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]

Direct proofs [Hickerson, 2003],[Ilie, 2005],[Lam, 2013]

Best bound: $\frac{11n}{6}$ [Deza et al., 2015] Potential: $\frac{3n}{2}$ [Thierry, 2020]

Preliminaries		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]

Direct proofs [Hickerson, 2003],[Ilie, 2005],[Lam, 2013]

```
Best bound: \frac{11n}{6} [Deza et al., 2015]
Potential: \frac{3n}{2} [Thierry, 2020]
```

Bounds for binary alphabet suffice [Manea and Seki, 2015]

Preliminaries		
Upper bounds		

If u^2 prefix of v^2 , v^2 prefix of w^2 , and u primitive then $|u| + |v| \le |w|$.

Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]

Direct proofs [Hickerson, 2003],[Ilie, 2005],[Lam, 2013]

```
Best bound: \frac{11n}{6} [Deza et al., 2015]
Potential: \frac{3n}{2} [Thierry, 2020]
```

Bounds for binary alphabet suffice [Manea and Seki, 2015]

Circular squares [Amit and Gawrychowski, 2017]: >1.25n and <3.14n

Preliminaries ○○○○○●○		
Runs		

In abaabaaabaaaa we have $(aba)^{7/3}$ and $(aaba)^{10/4}$

Preliminaries ○○○○○●○		
Runs		

```
In abaabaaabaaaa we have (aba)^{7/3} and (aaba)^{10/4}
```

Introduced [Kolpakov and Kucherov, 1999]

Preliminaries ○○○○○●○		
Runs		

```
In abaabaaabaaaa we have (aba)^{7/3} and (aaba)^{10/4}
```

Introduced [Kolpakov and Kucherov, 1999]

Best known upper bound $183/193 \approx 0.9482n$ [Bannai et al., 2014],[Fischer et al., 2015],[Holub, 2017]

Preliminaries ○○○○○●○		
Runs		

```
In abaabaaabaaaa we have (aba)^{7/3} and (aaba)^{10/4}
```

Introduced [Kolpakov and Kucherov, 1999]

Best known upper bound $183/193 \approx 0.9482 n$ [Bannai et al., 2014],[Fischer et al., 2015],[Holub, 2017]

Best known lower bound is 0.944575712n [Simpson, 2010]

Preliminaries ○○○○○●○		
Runs		

```
In abaabaaabaaaa we have (aba)^{7/3} and (aaba)^{10/4}
```

Introduced [Kolpakov and Kucherov, 1999]

Best known upper bound $183/193 \approx 0.9482 n$ [Bannai et al., 2014],[Fischer et al., 2015],[Holub, 2017]

Best known lower bound is 0.944575712n [Simpson, 2010]

Strategy: Lyndon roots (of sorts)

Preliminaries		
000000		

Existing results on higher powers (k > 2) and strategies

Preliminaries		
000000		

Existing results on higher powers (k > 2) and strategies

Less than $\frac{n}{k-2}$ [Crochemore et al., 2010] Between $\frac{n}{2} - 2\sqrt{n}$ and $\frac{4n}{5}$ [Kubica et al., 2009]

Preliminaries		
000000		

Existing results on higher powers (k > 2) and strategies

Less than $\frac{n}{k-2}$ [Crochemore et al., 2010] Between $\frac{n}{2} - 2\sqrt{n}$ and $\frac{4n}{5}$ [Kubica et al., 2009]

Strategy: (primitive) roots, or very techical

Preliminaries Basics		Final Remarks
000000 000000	000000000000000000000000000000000000000	0000000

Preliminaries

3 Results

4 Final Remarks
	Basics ●●000000	
Suffix mountains		

÷	Loughborough
NV.	University

	Basics ○●000000	
Suffix mountains		

	Basics ○●000000	
Suffix mountains		

Squares in one group share a common prefix

	Basics ○●000000	
Suffix mountains		

Squares in one group share a common prefix

Show that the number of squares in a group is no more than the number of occurrences of the common prefix

	Basics ○●000000	
Suffix mountains		

Squares in one group share a common prefix

Show that the number of squares in a group is no more than the number of occurrences of the common prefix

Lemma (Synchronization)

There are only 2 occurrences of a primitive word u in u^2 .

	Basics ○●000000	
Suffix mountains		

Squares in one group share a common prefix

Show that the number of squares in a group is no more than the number of occurrences of the common prefix

Lemma (Synchronization)

There are only 2 occurrences of a primitive word u in u^2 .

Lemma (Fine and Wil

If p and q are periods of a word with length at least p + q - gcd(p,q), then gcd(p,q) is also a period.

Loughborough

Mercaș

	Basics 00●00000	
Suffix Array		

a a b a b a 1 2 3 4 5 6

	Basics 00●00000	
Suffix Array		

a a b a b a 1 2 3 4 5 6

(a < b)

	Basics 00●00000	
Suffix Array		

а	а	Ь	а	Ь	а
1	2	3	4	5	6

(a < b) a, aababa, aba, ababa, ba, baba

E Loughborough	Mercaș
----------------	--------

	Basics ○0●00000	
Suffix Array		

a a b a b a 1 2 3 4 5 6

(a < b) a, aababa, aba, ababa, ba, baba

put the starting positions into an array

 ${\bf 6}, {\bf 1}, {\bf 4}, {\bf 2}, {\bf 5}, {\bf 3}$

	Basics ○0●00000	
Suffix Array		

a a b a b a 1 2 3 4 5 6

(a < b) a, aababa, aba, ababa, ba, baba

put the starting positions into an array

 ${\bf 6}, {\bf 1}, {\bf 4}, {\bf 2}, {\bf 5}, {\bf 3}$

useful for indexing text

	Basics ○00●0000	
Why 'suffix mountains'		

	Basics 0000000	
Why 'suffix mountains'		

	Basics 000●0000	
Why 'suffix mountains'		

$$SA(w) = [8,7,1,5,2,6,4,3]$$

$$clust(a) = [8,7,1,5,2]$$

$$clust(ab) = [5,2]$$

$$clust(aa) = [7,1]$$

	Basics 000●0000	
Why 'suffix mountains'		

$$SA(w) = [8,7,1,5,2,6,4,3]$$

$$clust(a) = [8,7,1,5,2]$$

$$clust(ab) = [5,2]$$

$$clust(aa) = [7,1]$$

$$[8, 7, 1, 5, 2, 6, 4, 3]$$

	Basics 0000000	
Why 'suffix mountains'		

$$SA(w) = [8,7,1,5,2,6,4,3]$$

$$clust(a) = [8,7,1,5,2]$$

$$clust(ab) = [5,2]$$

$$clust(aa) = [7,1]$$

$$\begin{bmatrix} 8, & 7, & 1 & , & 5, & 2 \end{bmatrix} \\ \begin{bmatrix} 8, & 7, & 1 & , & 5, & 2 & , & 6, & 4, & 3 \end{bmatrix}$$

Loughborough

	Basics 000●0000	
Why 'suffix mountains'		

$$SA(w) = [8, 7, 1, 5, 2, 6, 4, 3]$$

$$clust(a) = [8, 7, 1, 5, 2]$$

$$clust(ab) = [5, 2]$$

$$clust(aa) = [7, 1]$$

$$\begin{bmatrix} 7, & 1 \\ 8, & 7, & 1 \\ 8, & 7, & 1 \\ 8, & 7, & 1 \\ 5, & 2 \\ 8, & 6, & 4, & 3 \end{bmatrix}$$

Loughborough

	Basics 000●0000	
Why 'suffix mountains'		

$$SA(w) = [8, 7, 1, 5, 2, 6, 4, 3]$$

$$clust(a) = [8, 7, 1, 5, 2]$$

$$clust(ab) = [5, 2]$$

$$clust(aa) = [7, 1]$$

$$\begin{bmatrix} 7, & 1 \end{bmatrix} \begin{bmatrix} 5, & 2 \end{bmatrix} \\ \begin{bmatrix} 8, & 7, & 1 \\ , & 5, & 2 \end{bmatrix} \\ \begin{bmatrix} 8, & 7, & 1 \\ , & 5, & 2 \\ , & 6, & 4, & 3 \end{bmatrix}$$

Loughborough

	Basics 0000●000	
Mountain example		

	Basics		
0000000	00000000	0000000000	0000000
Suffix mountains			

	Basics		
0000000	00000000	0000000000	0000000
Suffix mountains			

	Basics ○0000●00	
Suffix mountains		

We want to show that a cluster is at least as large as the number of clusters on top of it

	Basics 00000●00	
Suffix mountains		

We want to show that a cluster is at least as large as the number of clusters on top of it

block - consecutive clusters of same size

	Basics 00000●00	
Suffix mountains		

We want to show that a cluster is at least as large as the number of clusters on top of it

block - consecutive clusters of same size chain - consecutive clusters

	Basics 00000●00	
Suffix mountains		

We want to show that a cluster is at least as large as the number of clusters on top of it

block - consecutive clusters of same size chain - consecutive clusters

	Basics ○00000●0	
Suffix mountains		

Preliminaries	Basics	Results	Final Remarks
0000000	○00000●0	0000000000	
Suffix mountains			

- Formed of roots of squares
- ▶ Show: a cluster is bigger than the number of clusters on top of it

	Basics ○00000●0	
Suffix mountains		

- ► Formed of roots of squares
- ▶ Show: a cluster is bigger than the number of clusters on top of it
- ► If true, then there are less squares in a suffix mountain than the size of the base cluster ⇒ bound n

	Basics ○00000●0	
Suffix mountains		

- ► Formed of roots of squares
- ▶ Show: a cluster is bigger than the number of clusters on top of it
- ► If true, then there are less squares in a suffix mountain than the size of the base cluster ⇒ bound n

The set of suffixes with a common prefix are contiguous in the suffix array

- The set of suffixes with a common prefix are contiguous in the suffix array
- ▶ If a *k*th power u^k is a factor of a word, then **clust**(u) ≥ k

- The set of suffixes with a common prefix are contiguous in the suffix array
- ▶ If a *k*th power u^k is a factor of a word, then $clust(u) \ge k$

- The set of suffixes with a common prefix are contiguous in the suffix array
- ▶ If a *k*th power u^k is a factor of a word, then $clust(u) \ge k$

▶ if *u* is a prefix of *v*, then $clust(v) \subseteq clust(u)$, and vice versa;

- The set of suffixes with a common prefix are contiguous in the suffix array
- ▶ If a *k*th power u^k is a factor of a word, then $clust(u) \ge k$

- ▶ if *u* is a prefix of *v*, then $clust(v) \subseteq clust(u)$, and vice versa;
- ▶ if u and v are incomparable with respect to the prefix order, then j₁ < i₂ or j₂ < i₁, that is, the clusters do not overlap;

- The set of suffixes with a common prefix are contiguous in the suffix array
- ▶ If a *k*th power u^k is a factor of a word, then $clust(u) \ge k$

- ▶ if *u* is a prefix of *v*, then $clust(v) \subseteq clust(u)$, and vice versa;
- ▶ if u and v are incomparable with respect to the prefix order, then j₁ < i₂ or j₂ < i₁, that is, the clusters do not overlap;
- ▶ if $clust(u) \cap clust(v) \neq \emptyset$, then either *u* is prefix of *v* or *v* is prefix of *u*

		Results	
0000000 0	0000000	000000000	0000000

Preliminaries

2 Basics

4 Final Remarks
	Results ○●00000000	
Blocks		

If $u^k \neq v^k$ with k > 1 are factors of w and clust(u) = clust(v), then either u or v is primitive.

	Results ○●00000000	
Blocks		

If $u^k \neq v^k$ with k > 1 are factors of w and clust(u) = clust(v), then either u or v is primitive.

- if $u = t^n$ with n > 1 and primitive t, then $v = t^n t'$ for $\varepsilon \neq t' \leq_p t$;
- **2** if $v = t^n$ with n > 1 and primitive t, then $u = t^{n-1}t'$ for $\varepsilon \neq t' \leq_p t$.

	Results ○●00000000	
Blocks		

If $u^k \neq v^k$ with k > 1 are factors of w and clust(u) = clust(v), then either u or v is primitive.

- if $u = t^n$ with n > 1 and primitive t, then $v = t^n t'$ for $\varepsilon \neq t' \leq_p t$;
- 2) if $v = t^n$ with n > 1 and primitive t, then $u = t^{n-1}t'$ for $\varepsilon \neq t' \leq_p t$.

Lemma

Let $u^k \neq v^k$ with k > 1 be factors of w, where clust(u) = clust(v) and $u \leq_p v$. If their corresponding rightmost occurrences start at positions u_s and v_s , respectively, then $|u_s - v_s| \geq |u|$.

	Results ○●00000000	
Blocks		

If $u^k \neq v^k$ with k > 1 are factors of w and clust(u) = clust(v), then either u or v is primitive.

- if $u = t^n$ with n > 1 and primitive t, then $v = t^n t'$ for $\varepsilon \neq t' \leq_p t$;
- 3 if $v = t^n$ with n > 1 and primitive t, then $u = t^{n-1}t'$ for $\varepsilon \neq t' \leq_p t$.

Lemma

Let $u^k \neq v^k$ with k > 1 be factors of w, where clust(u) = clust(v) and $u \leq_p v$. If their corresponding rightmost occurrences start at positions u_s and v_s , respectively, then $|u_s - v_s| \geq |u|$.

Corollary

Let u_1^k, \ldots, u_n^k be squares in w such that $clust_w(u_1) = \cdots = clust_w(u_n)$. Then, $|clust_w(u_1)| > (k-1)n$.

	Results 000000000	
Connections		

How are the squares connected, and why clusters?!

	Results ○0●0000000	
Connections		

How are the squares connected, and why clusters?!

Why might [Three square prefixes] not be enough?

	Results 00●0000000	
Connections		

- How are the squares connected, and why clusters?!
- Why might [Three square prefixes] not be enough?

Our approach:

How are the squares connected, and why clusters?!

Why might [Three square prefixes] not be enough?

Our approach: We will try to count not the whole squares, but some really long prefixes.

How are the squares connected, and why clusters?!

Why might [Three square prefixes] not be enough?

Our approach: We will try to count not the whole squares, but some really long prefixes.

Idea was also mentioned/used in [Jonoska et al., 2014, Lemma 2] and [Bannai et al., 2014].)

x-rep is of length at least |u| + |x|

x-rep is of length at least |u| + |x|

In the word w = abaabcabaabab we have the square

 $u = (aba)^2$ starting at position 7.

x-rep is of length at least |u| + |x|

In the word w = abaabcabaabab we have the square

 $u = (aba)^2$ starting at position 7.

a-rep of u^2 is abaaba = u^2 ,

x-rep is of length at least |u| + |x|

In the word w = abaabcabaabab we have the square

 $u = (aba)^2$ starting at position 7.

a-rep of u^2 is abaaba = u^2 ,

ab-rep of u^2 is *abaab*.

		Results ○000●000000	
Anchors			
Let <i>x</i> -rep of squ	uare u^2 be $uu'x$. Let u	s be its starting positio	n and <i>u_m</i> be

$$u_m = u_s + |u|$$

	Results ○000●000000	
Anchors		

Let x-rep of square u^2 be uu'x. Let u_s be its starting position and u_m be $u_m = u_s + |u|$

The *x*-anchor of u^2 in *w* is

$$\Psi(u^2,x) = u_s + |uu'|$$

	Results 000000000	
Anchors		

Let x-rep of square u^2 be uu'x. Let u_s be its starting position and u_m be $u_m = u_s + |u|$

The *x*-anchor of u^2 in *w* is

$$\Psi(u^2,x) = u_s + |uu'|$$

w = abaabcabaabab

The a-rep of u^2 is abaaba = u^2 , first occurring at 7, $\Psi(u^2, a) = 7 + 5 = 12.$

	Results 000000000	
Anchors		

Let x-rep of square u^2 be uu'x. Let u_s be its starting position and u_m be $u_m = u_s + |u|$

The *x*-anchor of u^2 in *w* is

$$\Psi(u^2,x) = u_s + |uu'|$$

w = abaabcabaabab

The a-rep of u^2 is $abaaba = u^2$, first occurring at 7, $\Psi(u^2, a) = 7 + 5 = 12.$

The *ab*-rep of u^2 is *abaab*, first occurring at 1,

 $\Psi(u^2, ab) = 1 + 3 = 4.$

	Loughborough	
ŤΖ	University	

	Results ○○○○○●○○○○○	
Collision Lemma		

Let w be an arbitrary word with two square factors u^2 , v^2 such that $u <_p v$, and let $x \leq_p u$ be a common prefix of theirs.

	Results 0000000000	
Collision Lemma		

Let w be an arbitrary word with two square factors u^2 , v^2 such that $u <_p v$, and let $x \leq_p u$ be a common prefix of theirs. If $\Psi_w(u^2, x) = \Psi_w(v^2, x)$, then $u = t^k$ for some primitive word t with |t| < |x| and $k \geq 2$.

	Results ○○○○○●○○○○○	
Collision Lemma		

Let w be an arbitrary word with two square factors u^2 , v^2 such that $u <_p v$, and let $x \leq_p u$ be a common prefix of theirs. If $\Psi_w(u^2, x) = \Psi_w(v^2, x)$, then $u = t^k$ for some primitive word t with |t| < |x| and $k \ge 2$. Moreover, $tu'x \leq_p v$, where u'x is the longest prefix of u bordered by x.

	Results ○0000●00000	
Collision Lemma		

Let w be an arbitrary word with two square factors u^2 , v^2 such that $u <_p v$, and let $x \leq_p u$ be a common prefix of theirs. If $\Psi_w(u^2, x) = \Psi_w(v^2, x)$, then $u = t^k$ for some primitive word t with |t| < |x| and $k \ge 2$. Moreover, $tu'x \leq_p v$, where u'x is the longest prefix of u bordered by x.

Mercaş

		Results ○○○○○○●○○○○○	
Chain chain chain			
Corollary			
Let u_1^2, \ldots, u_n^2 and v_1^2 , the same chain, and x	, v _n ² be sq a common p	uares in a word w with th refix of theirs.	eir roots from

	Results ○○○○○○●○○○○	
Chain chain chain		
Corollary		

Let u_1^2, \ldots, u_n^2 and v_1^2, \ldots, v_n^2 be squares in a word w with their roots from the same chain, and x a common prefix of theirs. If $\Psi_w(u_i^2, x) = \Psi_w(v_i^2, x)$, for all $i \in \{1, \ldots, n\}$,

	Results ○00000●0000	
Chain chain chain		

Let u_1^2, \ldots, u_n^2 and v_1^2, \ldots, v_n^2 be squares in a word w with their roots from the same chain, and x a common prefix of theirs. If $\Psi_w(u_i^2, x) = \Psi_w(v_i^2, x)$, for all $i \in \{1, \ldots, n\}$, then there exists a primitive word t shorter than x, such that $u_i = t^{k_i}$ with $k_i \ge 2$, for all $i \in \{1, \ldots, n\}$.

	Results 0000000000	
Chain chain chain		

Let u_1^2, \ldots, u_n^2 and v_1^2, \ldots, v_n^2 be squares in a word w with their roots from the same chain, and x a common prefix of theirs. If $\Psi_w(u_i^2, x) = \Psi_w(v_i^2, x)$, for all $i \in \{1, \ldots, n\}$, then there exists a primitive word t shorter than x, such that $u_i = t^{k_i}$ with $k_i \ge 2$, for all $i \in \{1, \ldots, n\}$.

Proof.

If the x-anchor of some u_i^2 and v_i^2 coincide, there is some primitive t_i with $|t_i| < |x|$ such that $u_i = t_i^{k_i}$ with $k_i \ge 2$ and $t_i x$ is a prefix of v_i .

Mercaş

	Results ○○○○○●○○○○	
Chain chain chain		

Let u_1^2, \ldots, u_n^2 and v_1^2, \ldots, v_n^2 be squares in a word w with their roots from the same chain, and x a common prefix of theirs. If $\Psi_w(u_i^2, x) = \Psi_w(v_i^2, x)$, for all $i \in \{1, \ldots, n\}$, then there exists a primitive word t shorter than x, such that $u_i = t^{k_i}$ with $k_i \ge 2$, for all $i \in \{1, \ldots, n\}$.

Proof.

If the x-anchor of some u_i^2 and v_i^2 coincide, there is some primitive t_i with $|t_i| < |x|$ such that $u_i = t_i^{k_i}$ with $k_i \ge 2$ and $t_i x$ is a prefix of v_i . Since the roots form a prefix chain, we get that the words $t_i x$ also form a prefix chain (either $t_i x \le_p t_j x$ or $t_j x \le_p t_i x$)..

	Results ○○○○○●○○○○	
Chain chain chain		

Let u_1^2, \ldots, u_n^2 and v_1^2, \ldots, v_n^2 be squares in a word w with their roots from the same chain, and x a common prefix of theirs. If $\Psi_w(u_i^2, x) = \Psi_w(v_i^2, x)$, for all $i \in \{1, \ldots, n\}$, then there exists a primitive word t shorter than x, such that $u_i = t^{k_i}$ with $k_i \ge 2$, for all $i \in \{1, \ldots, n\}$.

Proof.

If the x-anchor of some u_i^2 and v_i^2 coincide, there is some primitive t_i with $|t_i| < |x|$ such that $u_i = t_i^{k_i}$ with $k_i \ge 2$ and $t_i x$ is a prefix of v_i . Since the roots form a prefix chain, we get that the words $t_i x$ also form a prefix chain (either $t_i x \le_p t_j x$ or $t_j x \le_p t_i x$). Since x prefix of all the squares, we get that $t_i x$ has periods $|t_i|, |t_i|$.

	Results ○○○○○●○○○○	
Chain chain chain		

Let u_1^2, \ldots, u_n^2 and v_1^2, \ldots, v_n^2 be squares in a word w with their roots from the same chain, and x a common prefix of theirs. If $\Psi_w(u_i^2, x) = \Psi_w(v_i^2, x)$, for all $i \in \{1, \ldots, n\}$, then there exists a primitive word t shorter than x, such that $u_i = t^{k_i}$ with $k_i \ge 2$, for all $i \in \{1, \ldots, n\}$.

Proof.

If the x-anchor of some u_i^2 and v_i^2 coincide, there is some primitive t_i with $|t_i| < |x|$ such that $u_i = t_i^{k_i}$ with $k_i \ge 2$ and $t_i x$ is a prefix of v_i . Since the roots form a prefix chain, we get that the words $t_i x$ also form a prefix chain (either $t_i x \le_p t_j x$ or $t_j x \le_p t_i x$).. Since x prefix of all the squares, we get that $t_i x$ has periods $|t_i|, |t_i|$.

Since $|t_i x| > |t_i| + |t_j| > |t_i| + |t_j| - gcd(|t_i|, |t_j|)$, by [Fine and Wilf] we have that t_i and t_j have a common primitive root t, so $t_i = t_j = t$.

	Results ○000000●000	
Main Result		

Theorem

For all words w and squares u_1^2, \ldots, u_n^2 in w with $u_1 <_p \cdots <_p u_n$: $|\mathbf{clust}_w(u_1)| \ge n+1.$

	Results ○0000000●00	
Proof idea		

▶ in decreasing order of length, assign to u_i the position $\Psi_w(u_i^2, x)$ (if not previously assigned)

	Results 00000000●00	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$

	Results ○○○○○○○●○○	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$

	Results ○000000●00	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.

	Results ○000000●00	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.

	Results ○○○○○○○●○○	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.
- ▶ if s_i is leftmost position where $t^i x$ occurs in w, assign the position $p_i = s_i + i \cdot |t|$ to the square $(t^{k_i})^2$.

	Results ○○○○○○○●○○	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.
- ▶ if s_i is leftmost position where tⁱx occurs in w, assign the position p_i = s_i + i ⋅ |t| to the square (t^{k_i})².
- ▶ possible collisions: $v \in \{u_1, ..., u_n\} \setminus \{t^{k_1}, ..., t^{k_m}\}$ such that $\Psi_w(v^2, x) = p_i = s_i + i \cdot |t|$.

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.
- ▶ if s_i is leftmost position where $t^i x$ occurs in w, assign the position $p_i = s_i + i \cdot |t|$ to the square $(t^{k_i})^2$.
- ▶ possible collisions: $v \in \{u_1, ..., u_n\} \setminus \{t^{k_1}, ..., t^{k_m}\}$ such that $\Psi_w(v^2, x) = p_i = s_i + i \cdot |t|$.
- derive contradictions on v, which is either

	Results ○○○○○○○●○○	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.
- ▶ if s_i is leftmost position where $t^i x$ occurs in w, assign the position $p_i = s_i + i \cdot |t|$ to the square $(t^{k_i})^2$.
- ▶ possible collisions: $v \in \{u_1, ..., u_n\} \setminus \{t^{k_1}, ..., t^{k_m}\}$ such that $\Psi_w(v^2, x) = p_i = s_i + i \cdot |t|$.
- derive contradictions on v, which is either (1) a power of t,

	Results ○○○○○○○●○○	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.
- ▶ if s_i is leftmost position where $t^i x$ occurs in w, assign the position $p_i = s_i + i \cdot |t|$ to the square $(t^{k_i})^2$.
- ▶ possible collisions: $v \in \{u_1, ..., u_n\} \setminus \{t^{k_1}, ..., t^{k_m}\}$ such that $\Psi_w(v^2, x) = p_i = s_i + i \cdot |t|$.
- derive contradictions on v, which is either (1) a power of t, (2) some other prefix of a power of t or

Counting Squares

	Results ○○○○○○○●○○	
Proof idea		

- ▶ in decreasing order of length, assign to u_i the position Ψ_w(u_i², x) (if not previously assigned)
- ▶ if no collision, done. Otherwise, for largest such square [CL] $u = t^k$
- ▶ we get squares t^{k_1}, \ldots, t^{k_m} with $1 < k_1 < \cdots < k_m = k$
- if $x = t^{\ell}t'$, then $|x| \leq |t^{k_1}|$ since $x = u_1$, so $k_1 > \ell$ and $k_m \geq m + \ell$.
- ▶ By [CL] we know that $t^{k_m}t' \leq_p u_n$, so $t^{m+\ell}t' \leq_p u_n$.
- ▶ if s_i is leftmost position where $t^i x$ occurs in w, assign the position $p_i = s_i + i \cdot |t|$ to the square $(t^{k_i})^2$.
- ▶ possible collisions: $v \in \{u_1, ..., u_n\} \setminus \{t^{k_1}, ..., t^{k_m}\}$ such that $\Psi_w(v^2, x) = p_i = s_i + i \cdot |t|$.
- derive contradictions on v, which is either (1) a power of t, (2) some other prefix of a power of t or (3) neither, thus has ut' as a prefix

		Results ○0000000●0	
Doesn't work for mu	ltiple peaks		

Chains $x_1 <_p \cdots <_p x_k$, $u_1 <_p \cdots <_p u_m$ and $v_1 <_p \cdots <_p v_n$, where $x_k <_p u_1$ and $x_k <_p v_1$, but u_1 and v_1 are incomparable by $<_p$.

		Results ○00000000●0	
Doesn't work for multiple	e peaks		
Chains $x_1 <_p \cdots <_p x_k$ $x_k <_p u_1$ and $x_k <_p v_1$, $u_1 <_p \cdots <_p u_m$ and v_1 but u_1 and v_1 are in	nd $v_1 <_p \cdots <_p v_n$, when normalized by $<_p$.	re

[Theorem]: we know that $|\mathbf{clust}(u_1)| \ge m + 1$ and $|\mathbf{clust}(v_1)| \ge n + 1$, so $|\mathbf{clust}(x_k)| \ge m + n + 2$.

Preliminaries Basics Results Final Remarks 0000000 0000000000 000000000 00000000 Doesn't work for multiple peaks 0000000000 000000000

Chains $x_1 <_p \cdots <_p x_k$, $u_1 <_p \cdots <_p u_m$ and $v_1 <_p \cdots <_p v_n$, where $x_k <_p u_1$ and $x_k <_p v_1$, but u_1 and v_1 are incomparable by $<_p$.

[Theorem]: we know that $|\mathbf{clust}(u_1)| \ge m+1$ and $|\mathbf{clust}(v_1)| \ge n+1$, so $|\mathbf{clust}(x_k)| \ge m+n+2$.

For x_i 's we cannot use previous argument, since $\Psi_w(u_j^2, x_i) = \Psi_w(v_\ell^2, x_i)$ is possible without either u_j or v_ℓ being non-primitive.

Preliminaries Basics Results Final Remarks 0000000 0000000000 0000000000 000000000 Doesn't work for multiple peaks 00000000000 0000000000

Chains $x_1 <_p \cdots <_p x_k$, $u_1 <_p \cdots <_p u_m$ and $v_1 <_p \cdots <_p v_n$, where $x_k <_p u_1$ and $x_k <_p v_1$, but u_1 and v_1 are incomparable by $<_p$.

[Theorem]: we know that $|\mathbf{clust}(u_1)| \ge m + 1$ and $|\mathbf{clust}(v_1)| \ge n + 1$, so $|\mathbf{clust}(x_k)| \ge m + n + 2$.

For x_i 's we cannot use previous argument, since $\Psi_w(u_j^2, x_i) = \Psi_w(v_\ell^2, x_i)$ is possible without either u_j or v_ℓ being non-primitive.

Take incomparable $u_j = yzzyz$ and $v_\ell = zyz$ (y, z bordered by x_i).

Preliminaries Basics Results Final Remarks 0000000 0000000000 0000000000 000000000 Doesn't work for multiple peaks 00000000000 0000000000

Chains $x_1 <_p \cdots <_p x_k$, $u_1 <_p \cdots <_p u_m$ and $v_1 <_p \cdots <_p v_n$, where $x_k <_p u_1$ and $x_k <_p v_1$, but u_1 and v_1 are incomparable by $<_p$.

[Theorem]: we know that $|\mathbf{clust}(u_1)| \ge m + 1$ and $|\mathbf{clust}(v_1)| \ge n + 1$, so $|\mathbf{clust}(x_k)| \ge m + n + 2$.

For x_i 's we cannot use previous argument, since $\Psi_w(u_j^2, x_i) = \Psi_w(v_\ell^2, x_i)$ is possible without either u_j or v_ℓ being non-primitive.

Take incomparable $u_j = yzzyz$ and $v_\ell = zyz$ (y, z bordered by x_i).

Then $\Psi_w((yzzyz)^2, x_i) = |w| - |x_i| + 1 = \Psi_w((zyz)^2, x_i)$ in:

w = yzzyzyzzyz

Preliminaries Basics Results Final Remarks 0000000 0000000000 000000000 00000000 Doesn't work for multiple peaks 0000000000 000000000

Chains $x_1 <_p \cdots <_p x_k$, $u_1 <_p \cdots <_p u_m$ and $v_1 <_p \cdots <_p v_n$, where $x_k <_p u_1$ and $x_k <_p v_1$, but u_1 and v_1 are incomparable by $<_p$.

[Theorem]: we know that $|\mathbf{clust}(u_1)| \ge m + 1$ and $|\mathbf{clust}(v_1)| \ge n + 1$, so $|\mathbf{clust}(x_k)| \ge m + n + 2$.

For x_i 's we cannot use previous argument, since $\Psi_w(u_j^2, x_i) = \Psi_w(v_\ell^2, x_i)$ is possible without either u_j or v_ℓ being non-primitive.

Take incomparable $u_j = yzzyz$ and $v_\ell = zyz$ (y, z bordered by x_i).

Then
$$\Psi_w((yzzyz)^2, x_i) = |w| - |x_i| + 1 = \Psi_w((zyz)^2, x_i)$$
 in:

$$w = yzzyzyzzyz$$

In such a case u_j and v_ℓ have a special structure resembling the reverses of the FS double squares analysed in [Deza et al., 2015]

Preliminaries Basics Results Final Remarks 0000000 0000000000 000000000 00000000 Doesn't work for multiple peaks 0000000000 000000000

Chains $x_1 <_p \cdots <_p x_k$, $u_1 <_p \cdots <_p u_m$ and $v_1 <_p \cdots <_p v_n$, where $x_k <_p u_1$ and $x_k <_p v_1$, but u_1 and v_1 are incomparable by $<_p$.

[Theorem]: we know that $|\mathbf{clust}(u_1)| \ge m + 1$ and $|\mathbf{clust}(v_1)| \ge n + 1$, so $|\mathbf{clust}(x_k)| \ge m + n + 2$.

For x_i 's we cannot use previous argument, since $\Psi_w(u_j^2, x_i) = \Psi_w(v_\ell^2, x_i)$ is possible without either u_j or v_ℓ being non-primitive.

Take incomparable $u_j = yzzyz$ and $v_\ell = zyz$ (y, z bordered by x_i).

Then
$$\Psi_w((yzzyz)^2, x_i) = |w| - |x_i| + 1 = \Psi_w((zyz)^2, x_i)$$
 in:

$$w = yzzyzyzzyz$$

In such a case u_j and v_ℓ have a special structure resembling the reverses of the FS double squares analysed in [Deza et al., 2015]

A refinement of the anchor positions and assignment strategy might work.

a Loughborough Mercaș	Counting Squares	25
-----------------------	------------------	----

Using the lower bound construction in [Jonoska et al., 2014], we easily illustrate the extremal cases

- Using the lower bound construction in [Jonoska et al., 2014], we easily illustrate the extremal cases
 - $|\mathbf{clust}_w(u_i)| = n i + 2$, take $u_i = ab^{i-1}$ and $w = u_1u_2\cdots u_nu_n$.

Using the lower bound construction in [Jonoska et al., 2014], we easily illustrate the extremal cases

•
$$|\mathbf{clust}_w(u_i)| = n - i + 2$$
, take $u_i = ab^{i-1}$ and $w = u_1u_2\cdots u_nu_n$.

►
$$|\mathbf{clust}_w(u_1)| = |\mathbf{clust}_w(u_n)| = n + 1$$
 is realised by the roots $u_i = a^{n-1}ba^{i-1}$ and $w = u_1u_2\cdots u_nu_n$.

 marks
0

Preliminaries

2 Basics

3 Results

		Final Remarks ○●00000
Cluster sizes divers	sity - conjecture	

Can all possible combinations of cluster sizes be realised in some w?

		Final Remarks ○●00000
Cluster sizes diversity -	conjecture	

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots $u_1 <_p \cdots <_p u_n$.

		Final Remarks ○●00000
Cluster sizes divers	sity - conjecture	

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots $u_1 <_p \cdots <_p u_n$.

[Theorem]: $|clust(u_{i-1})| \ge |clust(u_i)|$ and $|clust(u_i)| \ge n - i + 2$

Preliminaries Basics Results Final Remarks 0000000 00000000 000000000 0000000 Cluster sizes diversity - conjecture

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots $u_1 <_p \cdots <_p u_n$.

[Theorem]: $|\mathbf{clust}(u_{i-1})| \ge |\mathbf{clust}(u_i)|$ and $|\mathbf{clust}(u_i)| \ge n - i + 2$

• enough to consider $|\mathbf{clust}_w(u_1)| = n + 1$

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots $u_1 <_p \cdots <_p u_n$.

[Theorem]: $|\mathbf{clust}(u_{i-1})| \ge |\mathbf{clust}(u_i)|$ and $|\mathbf{clust}(u_i)| \ge n - i + 2$

- enough to consider $|\mathbf{clust}_w(u_1)| = n + 1$
- ► denote by d_i = |clust(u_i)| (n i + 2) the amount that the length of the cluster at level i has over the minimum required for that level as a consequence of [Theorem] and let D = max_i{d_i}

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots $u_1 <_p \cdots <_p u_n$.

[Theorem]: $|\mathbf{clust}(u_{i-1})| \ge |\mathbf{clust}(u_i)|$ and $|\mathbf{clust}(u_i)| \ge n - i + 2$

- enough to consider $|\mathbf{clust}_w(u_1)| = n + 1$
- ► denote by d_i = |clust(u_i)| (n i + 2) the amount that the length of the cluster at level i has over the minimum required for that level as a consequence of [Theorem] and let D = max_i{d_i}
- ► (conjecture) the idea from [Jonoska et al., 2014] can be modified to produce any combination of cluster sizes

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots $u_1 <_p \cdots <_p u_n$.

[Theorem]: $|\mathbf{clust}(u_{i-1})| \ge |\mathbf{clust}(u_i)|$ and $|\mathbf{clust}(u_i)| \ge n - i + 2$

- enough to consider $|\mathbf{clust}_w(u_1)| = n + 1$
- ► denote by d_i = |clust(u_i)| (n i + 2) the amount that the length of the cluster at level i has over the minimum required for that level as a consequence of [Theorem] and let D = max_i{d_i}
- ► (conjecture) the idea from [Jonoska et al., 2014] can be modified to produce any combination of cluster sizes

► take words $u_i = a^D b a^{\ell_i}$, adjusting ℓ_i so u_i occurs exactly at positions $p_j = \sum_{k=1}^{j} |u_k|$ for $j \ge i - d_i$, which are the unique starting positions of squares u_j^2 in the word $w = u_1 \dots u_n u_n$.

		Final Remarks ○0●0000
Cluster diversity - examp	le	

		Final Remarks ○0●0000
Cluster diversity - ex	ample	

The values $d_1,\ldots,d_6=0,1,0,1,0,0,$ hence D=1

The values $d_1, \ldots, d_6 = 0, 1, 0, 1, 0, 0$, hence D = 1

We can set $u_1 = ab$, $u_2 = aba$, $u_3 = aba^3$, $u_4 = aba^4$, $u_5 = aba^6$ and $u_6 = aba^8$

 $u_1u_2u_3u_4u_5u_6u_6 = ababaaba^3aba^4aba^6aba^8aba^8$

The values $d_1, \ldots, d_6 = 0, 1, 0, 1, 0, 0$, hence D = 1

We can set $u_1 = ab$, $u_2 = aba$, $u_3 = aba^3$, $u_4 = aba^4$, $u_5 = aba^6$ and $u_6 = aba^8$

$$u_1u_2u_3u_4u_5u_6u_6 = ababaaba^3aba^4aba^6aba^8aba^8$$

We expect that investigating the shortest words which realise a combination of cluster sizes could lead to improvements in both lower and upper bounds on distinct repetitions (the above are NOT).

		Final Remarks ○○○●○○○
Runs		

		Final Remarks ○○○●○○○
Runs		

Consider a run $(a_1 \cdots a_n)^{\frac{k}{n}}$ beginning at some position *i* in *w*.

		Final Remarks ○○○●○○○
Runs		

Consider a run $(a_1 \cdots a_n)^{\frac{k}{n}}$ beginning at some position *i* in *w*. The run ending square (RES) is the square w[i + k - 2n.i + k - 1].

		Final Remarks ○○○●○○○
Runs		

Consider a run $(a_1 \cdots a_n)^{\frac{k}{n}}$ beginning at some position *i* in *w*. The run ending square (RES) is the square w[i + k - 2n . i + k - 1].

If w = aababaa and the run is $(ab)^{\frac{5}{2}}$

		Final Remarks ○○○●○○○
Runs		

Consider a run $(a_1 \cdots a_n)^{\frac{k}{n}}$ beginning at some position *i* in *w*. The run ending square (RES) is the square w[i + k - 2n . i + k - 1].

If w = aababaa and the run is $(ab)^{\frac{5}{2}}$, then the RES is baba.

		Final Remarks ○○○●○○○
Runs		

Consider a run $(a_1 \cdots a_n)^{\frac{k}{n}}$ beginning at some position *i* in *w*. The run ending square (RES) is the square w[i + k - 2n.i + k - 1].

If w = aababaa and the run is $(ab)^{\frac{5}{2}}$, then the RES is baba.

An upper bound on the number of run ending squares is implicitly an upper bound on the number of runs.

		Final Remarks ○○○○●○○
Runs - strategy		

▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter

		Final Remarks ○○○○●○○
Runs - strategy		

▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter

▶ an occurrence of *uu* in *w* is a RES if it followed by $b \neq a$ or suffix of *w*

		Final Remarks ○○○○●○○
Runs - strategy		

- ▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\}$

		Final Remarks ○○○○●○○
Runs - strategy		

- ▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\} \subseteq clust(u)$
| | | Final Remarks |
|-----------------|--|---------------|
| Runs - strategy | | |

- ▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\} \subseteq clust(u)$
- ▶ if $j \in \{1, ..., k-1\}$ then $w[i_j + |u|] \neq w[i_j + 2 \cdot |u|]$, and $w[i_k + |u|] \neq w[i_k + 2 \cdot |u|]$ or $i_k + 2 \cdot |u| = |w| + 1$

		Final Remarks ○000●00
Runs - strategy		

- ▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\} \subseteq clust(u)$

▶ if
$$j \in \{1, ..., k-1\}$$
 then $w[i_j + |u|] \neq w[i_j + 2 \cdot |u|]$, and
 $w[i_k + |u|] \neq w[i_k + 2 \cdot |u|]$ or $i_k + 2 \cdot |u| = |w| + 1$

For each j ∈ {1,...,k}, at least one of the two positions i_j and i_j + |u| is not in clust(v), so |clust(u)| - |clust(v)| ≥ k

		Final Remarks ○000●00
Runs - strategy		

- ▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\} \subseteq clust(u)$

▶ if
$$j \in \{1, ..., k-1\}$$
 then $w[i_j + |u|] \neq w[i_j + 2 \cdot |u|]$, and
 $w[i_k + |u|] \neq w[i_k + 2 \cdot |u|]$ or $i_k + 2 \cdot |u| = |w| + 1$

- For each j ∈ {1,...,k}, at least one of the two positions i_j and i_j + |u| is not in clust(v), so |clust(u)| |clust(v)| ≥ k
- ▶ for consecutive roots u₁ <_p ··· <_p u_n, we get that clust(u_i) is larger than the number of all runs with run ending square u_i², j ≥ i.

		Final Remarks ○000●00
Runs - strategy		

- ▶ if $u <_p v \in \Sigma^*$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\} \subseteq clust(u)$

▶ if
$$j \in \{1, ..., k-1\}$$
 then $w[i_j + |u|] \neq w[i_j + 2 \cdot |u|]$, and
 $w[i_k + |u|] \neq w[i_k + 2 \cdot |u|]$ or $i_k + 2 \cdot |u| = |w| + 1$

- For each j ∈ {1,...,k}, at least one of the two positions i_j and i_j + |u| is not in clust(v), so |clust(u)| |clust(v)| ≥ k
- ▶ for consecutive roots u₁ <_p ··· <_p u_n, we get that clust(u_i) is larger than the number of all runs with run ending square u_i², j ≥ i.
- argument does not extend easily to overlapping chains of run ending squares

		Final Remarks ○000●00
Runs - strategy		

- ▶ if $u <_{p} v \in \Sigma^{*}$, with *a* being their first letter
- ▶ an occurrence of uu in w is a RES if it followed by $b \neq a$ or suffix of w
- ▶ let run ending occurrences of u^2 at positions $\{i_1 < \cdots < i_k\} \subseteq clust(u)$

▶ if
$$j \in \{1, ..., k-1\}$$
 then $w[i_j + |u|] \neq w[i_j + 2 \cdot |u|]$, and
 $w[i_k + |u|] \neq w[i_k + 2 \cdot |u|]$ or $i_k + 2 \cdot |u| = |w| + 1$

- For each j ∈ {1,...,k}, at least one of the two positions i_j and i_j + |u| is not in clust(v), so |clust(u)| |clust(v)| ≥ k
- ▶ for consecutive roots u₁ <_p ··· <_p u_n, we get that clust(u_i) is larger than the number of all runs with run ending square u_i², j ≥ i.
- argument does not extend easily to overlapping chains of run ending squares (might cover cases when two chains overlap, but does not seem to work when we have 3 peeks)

		Final Remarks ○0000●0
Closing remarks		

() the bound for one chain is n-1

(where n is the number of occurrences of the common prefix)

			Final Remarks ○0000●0
Closing remarks			
the bound	for one chain is $n-1$ (where n is the numb	er of occurrences of the	e common prefix)
Conjecture			

For any word w, any integer $\ell \ge 0$, and any set $S = \{u_1, u_2, \dots, u_n\}$ s.t., for all $i \in \{1, \dots, n\}$, u_i^{ℓ} is a factor of w and $u_1 \le_p u_i$, we have $|S| < \frac{1}{\ell-1} |w|_{u_1}$.

			Final Remarks 0000000
Closing remarks			
the bound f (or one chain is $n-1$ where n is the numb	er of occurrences of the	common prefix)
Conjecture			
For any word w , all $i \in \{1, \ldots, n\}$	any integer $\ell \geq 0$, a $\{, u_i^\ell \ is a factor of w$	and any set $S = \{u_1, u_2, \}$ and $u_1 \leq_p u_i$, we have $ $	$\{, u_n \}$ s.t., for $ S < \frac{1}{\ell - 1} w _{u_1}.$

We can generalise the result for larger exponents

			Final Remarks ○0000●0
Closing remarks			
the bound fo (w	r one chain is <i>n</i> – 1 /here <i>n</i> is the numb	1 per of occurrences of the	common prefix)
Conjecture			
For any word w , all $i \in \{1, \ldots, n\}$,	any integer $\ell \ge 0$, a u_i^ℓ is a factor of w	and any set $S = \{u_1, u_2, .$ v and $u_1 \leq_p u_i$, we have $ $	$\frac{\ldots, u_n}{S < \frac{1}{\ell-1} w _{u_1}}.$

② we can generalise the result for larger exponents (define k-1 representatives and anchor positions for each u^k)

			Final Remarks ○0000●0
Closing remarks			
the bound for one (where)	e chain is <i>n</i> — 1 <i>n</i> is the numb	er of occurrences of the	e common prefix)
Conjecture			
For any word w , any in all $i \in \{1, \ldots, n\}$, u_i^ℓ is	nteger $\ell \geq 0$, as a factor of w	and any set $S = \{u_1, u_2, u_3, u_4, u_5, u_6, u_6, u_6, u_8, u_8, u_8, u_8, u_8, u_8, u_8, u_8$	$\{ \dots, u_n \}$ s.t., for $ S < \frac{1}{\ell - 1} w _{u_1}.$

 we can generalise the result for larger exponents (define k-1 representatives and anchor positions for each u^k)

• we can generalise it for single chains of run ending squares

			Final Remarks ○0000●0
Closing remarks			
the bound for one (where)	e chain is <i>n</i> — 1 <i>n</i> is the numb	er of occurrences of the	e common prefix)
Conjecture			
For any word w , any in all $i \in \{1, \ldots, n\}$, u_i^ℓ is	nteger $\ell \geq 0$, as a factor of w	and any set $S = \{u_1, u_2, u_3, u_4, u_5, u_6, u_6, u_6, u_8, u_8, u_8, u_8, u_8, u_8, u_8, u_8$	$\{ \dots, u_n \}$ s.t., for $ S < \frac{1}{\ell - 1} w _{u_1}.$

 we can generalise the result for larger exponents (define k-1 representatives and anchor positions for each u^k)

- we can generalise it for single chains of run ending squares
- the big challenge: overlapping chains

			Final Remarks 0000000
Closing remarks			
the bound for one (where)	chain is $n-1$ n is the numb	L ber of occurrences of the	e common prefix)
Conjecture			
For any word w , any in all $i \in \{1, \ldots, n\}$, u_i^ℓ is	nteger $\ell \ge 0$, as a factor of w	and any set $S = \{u_1, u_2, u_i, u_i, u_i\}$ and $u_1 \leq_p u_i$, we have	$, u_n$ s.t., for $ S < \frac{1}{\ell - 1} w _{u_1}$.

 we can generalise the result for larger exponents (define k-1 representatives and anchor positions for each u^k)

(a) we can generalise it for single chains of run ending squares

• the big challenge: overlapping chains (find a definition for anchor of u^2 which depends on anchors of all squares having u as a prefix)

÷	Loughborough
VV.	University

		Final Remarks ○00000●
Cheers		

QUESTIONS