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Basics

hotshots2 shshsh tratratratra

kth power: xk = x · x · · · · · x , where x is some word

2https://cs.uwaterloo.ca/∼shallit/repetitions.html
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Counting squares

Number of kth powers

: O(n2)

aaa · · · a

Number of kth powers with primitive root:
< n log n [Bannai et al., 2020]

Fibonacci word: 0110100110010110 · · ·

Distinct powers: if the root is the same do not
count it again
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Mercaş Counting Squares 3



Preliminaries Basics Results Final Remarks

Counting squares

Number of kth powers: O(n2)

aaa · · · a

Number of kth powers with primitive root:
< n log n [Bannai et al., 2020]

Fibonacci word: 0110100110010110 · · ·

Distinct powers: if the root is the same do not
count it again
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Words rich in distinct squares

abaabaaabaabaaabaaaab · · · [Fraenkel and Simpson, 1998]

ab a2b a3b a2b a3b a4b a3b a4b a5b · · ·

squares: unary, akbaj akbaj , akbak+1b akbak+1b

abaabaaabaaaab · · · [Jonoska et al., 2014]

ab a2b a3b a4b a5b · · ·

squares: unary, akbaj akbaj

lower bound: 2k−1
2k+2n, k=number of b’s
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Upper bounds

Lemma (Three square prefixes, [Crochemore and Rytter, 1995])

If u2 prefix of v2, v2 prefix of w2, and u primitive then |u|+ |v | ≤ |w |.

Less than 2n primitively-rooted squares [Fraenkel and Simpson, 1998]

Direct proofs [Hickerson, 2003],[Ilie, 2005],[Lam, 2013]

Best bound: 11n
6 [Deza et al., 2015]

Potential: 3n
2 [Thierry, 2020]

Bounds for binary alphabet suffice [Manea and Seki, 2015]

Circular squares [Amit and Gawrychowski, 2017]: >1.25n and <3.14n

Mercaş Counting Squares 5
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Runs

Non-expanding repetitions of power at least 2.

In abaabaaabaaaa we have (aba)7/3 and (aaba)10/4

Introduced [Kolpakov and Kucherov, 1999]

Best known upper bound
183/193 ≈ 0.9482n [Bannai et al., 2014],[Fischer et al., 2015],[Holub, 2017]

Best known lower bound is 0.944575712n [Simpson, 2010]

Strategy: Lyndon roots (of sorts)

Mercaş Counting Squares 6
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Existing results on higher powers (k > 2) and strategies

Less than n
k−2 [Crochemore et al., 2010]

Between n
2 − 2

√
n and 4n

5 [Kubica et al., 2009]

Strategy: (primitive) roots, or very techical

Mercaş Counting Squares 7
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Suffix mountains

Idea: separate the squares

Squares in one group share a common prefix

Show that the number of squares in a group is no more than the number of
occurrences of the common prefix

Lemma (Synchronization)

There are only 2 occurrences of a primitive word u in u2.

Lemma (Fine and Wilf)

If p and q are periods of a word with length at least p + q − gcd(p, q), then
gcd(p, q) is also a period.

Mercaş Counting Squares 9
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Suffix Array

order the suffixes lexicographically

a a b a b a
1 2 3 4 5 6

(a < b) a, aababa, aba, ababa, ba, baba

put the starting positions into an array

6, 1, 4, 2, 5, 3

useful for indexing text

Mercaş Counting Squares 10
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Why ’suffix mountains’

clust(u) - all suffixes which start with u

w = a a b b a b a a
1 2 3 4 5 6 7 8

SA(w) = [8, 7, 1, 5, 2, 6, 4, 3]
clust(a) = [8, 7, 1, 5, 2]

clust(ab) = [5, 2]
clust(aa) = [7, 1]

[7, 1] [5, 2]
[8, 7, 1 , 5, 2]
[8, 7, 1 , 5, 2 , 6, 4, 3]

Mercaş Counting Squares 11
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Mercaş Counting Squares 11



Preliminaries Basics Results Final Remarks

Mountain example
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Suffix mountains

We consider suffix mountains formed of words which are roots of squares.

We want to show that a cluster is at least as large as the number of clusters
on top of it

block - consecutive clusters of same size
chain - consecutive clusters

Mercaş Counting Squares 13
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Obsevations

I The set of suffixes with a common prefix are contiguous in the suffix
array

I If a kth power uk is a factor of a word, then clust(u) ≥ k

For any two clusters clust(u) = [i1..j1] and clust(v) = [i2..j2],

I if u is a prefix of v , then clust(v) ⊆ clust(u), and vice versa;

I if u and v are incomparable with respect to the prefix order, then j1 < i2
or j2 < i1, that is, the clusters do not overlap;

I if clust(u) ∩ clust(v) 6= ∅, then either u is prefix of v or v is prefix of u
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Blocks

Lemma

If uk 6= vk with k > 1 are factors of w and clust(u) = clust(v), then either
u or v is primitive.

1 if u = tn with n > 1 and primitive t, then v = tnt ′ for ε 6= t ′ ≤p t;

2 if v = tn with n > 1 and primitive t, then u = tn−1t ′ for ε 6= t ′ ≤p t.

Lemma

Let uk 6= vk with k > 1 be factors of w , where clust(u) = clust(v) and
u ≤p v . If their corresponding rightmost occurrences start at positions us
and vs , respectively, then |us − vs | ≥ |u|.

Corollary

Let uk1 , . . . , u
k
n be squares in w such that clustw (u1) = · · · = clustw (un).

Then, |clustw (u1)| > (k − 1)n.
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Connections

How are the squares connected, and why clusters?!

Why might [Three square prefixes] not be enough?

Our approach:
We will try to count not the whole squares, but some really long prefixes.

Idea was also mentioned/used in [Jonoska et al., 2014, Lemma 2]

and [Bannai et al., 2014].)
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Mercaş Counting Squares 18



Preliminaries Basics Results Final Remarks

Representatives (of squares)

For x ≤p u, the x-representative (x-rep) of u2 is the longest prefix of u2

which ends in x .

x-rep is of length at least |u|+ |x |

In the word w = abaabcabaabab we have the square

u = (aba)2 starting at position 7.

a-rep of u2 is abaaba = u2,

ab-rep of u2 is abaab.
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Mercaş Counting Squares 19



Preliminaries Basics Results Final Remarks

Representatives (of squares)

For x ≤p u, the x-representative (x-rep) of u2 is the longest prefix of u2

which ends in x .

x-rep is of length at least |u|+ |x |

In the word w = abaabcabaabab we have the square

u = (aba)2 starting at position 7.

a-rep of u2 is abaaba = u2,

ab-rep of u2 is abaab.
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Anchors

Let x-rep of square u2 be uu′x . Let us be its starting position and um be

um = us + |u|

The x-anchor of u2 in w is

Ψ(u2, x) = us + |uu′|

w = abaabcabaabab

The a-rep of u2 is abaaba = u2, first occurring at 7,

Ψ(u2, a) = 7 + 5 = 12.

The ab-rep of u2 is abaab, first occurring at 1,

Ψ(u2, ab) = 1 + 3 = 4.

For w = abaabcabaabab we have the square u = (aba)2 starting at position
7. The aaa-rep of u2 is abaabaaa = u2, first occurring at position 7, so
Ψw (u2, a) = 7 + 5 = 12. The ababab-rep of u2 is abaababab, first occurring at
position 1, therefore Ψw (u2, ab) = 1 + 3 = 4.
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Collision Lemma

Lemma

Let w be an arbitrary word with two square factors u2, v2 such that u <p v ,
and let x ≤p u be a common prefix of theirs.

If Ψw (u2, x) = Ψw (v2, x),
then u = tk for some primitive word t with |t| < |x | and k ≥ 2. Moreover,
tu′x ≤p v , where u′x is the longest prefix of u bordered by x .
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Chain chain chain

Corollary

Let u2
1 , . . . , u

2
n and v2

1 , . . . , v
2
n be squares in a word w with their roots from

the same chain, and x a common prefix of theirs.

If Ψw (u2
i , x) = Ψw (v2

i , x),
for all i ∈ {1, . . . , n}, then there exists a primitive word t shorter than x ,
such that ui = tki with ki ≥ 2, for all i ∈ {1, . . . , n}.

Proof.

If the x-anchor of some u2
i and v2

i coincide, there is some primitive ti with

|ti | < |x | such that ui = tkii with ki ≥ 2 and tix is a prefix of vi .
Since the roots form a prefix chain, we get that the words tix also form a
prefix chain (either tix ≤p tjx or tjx ≤p tix)..
Since x prefix of all the squares, we get that tix has periods |ti |, |tj |.

Since |tix | > |ti |+ |tj | > |ti |+ |tj | − gcd(|ti |, |tj |), by [Fine and Wilf] we have
that ti and tj have a common primitive root t, so ti = tj = t.
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Main Result

Theorem

For all words w and squares u2
1 , . . . , u

2
n in w with u1 <p · · · <p un:

|clustw (u1)| ≥ n + 1.
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Proof idea

I in decreasing order of length, assign to ui the position Ψw (u2
i , x) (if not

previously assigned)

I if no collision, done. Otherwise, for largest such square [CL] u = tk

I we get squares tk1 , . . . , tkm with 1 < k1 < · · · < km = k

I if x = t`t ′, then |x | ≤ |tk1 | since x = u1, so k1 > ` and km ≥ m + `.

I By [CL] we know that tkmt ′ ≤p un, so tm+`t ′ ≤p un.

I if si is leftmost position where t ix occurs in w , assign the position
pi = si + i · |t| to the square (tki )2.

I possible collisions: v ∈ {u1, . . . , un} \ {tk1 , . . . , tkm} such that
Ψw (v2, x) = pi = si + i · |t|.

I derive contradictions on v , which is either (1) a power of t, (2) some
other prefix of a power of t or (3) neither, thus has ut ′ as a prefix
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Mercaş Counting Squares 24



Preliminaries Basics Results Final Remarks

Proof idea

I in decreasing order of length, assign to ui the position Ψw (u2
i , x) (if not

previously assigned)

I if no collision, done. Otherwise, for largest such square [CL] u = tk

I we get squares tk1 , . . . , tkm with 1 < k1 < · · · < km = k

I if x = t`t ′, then |x | ≤ |tk1 | since x = u1, so k1 > ` and km ≥ m + `.

I By [CL] we know that tkmt ′ ≤p un, so tm+`t ′ ≤p un.

I if si is leftmost position where t ix occurs in w , assign the position
pi = si + i · |t| to the square (tki )2.

I possible collisions: v ∈ {u1, . . . , un} \ {tk1 , . . . , tkm} such that
Ψw (v2, x) = pi = si + i · |t|.

I derive contradictions on v , which is either

(1) a power of t, (2) some
other prefix of a power of t or (3) neither, thus has ut ′ as a prefix
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Doesn’t work for multiple peaks

Chains x1 <p · · · <p xk , u1 <p · · · <p um and v1 <p · · · <p vn, where
xk <p u1 and xk <p v1, but u1 and v1 are incomparable by <p.

[Theorem]: we know that |clust(u1)| ≥ m + 1 and |clust(v1)| ≥ n + 1, so
|clust(xk)| ≥ m + n + 2.

For xi ’s we cannot use previous argument, since Ψw (u2
j , xi ) = Ψw (v2

` , xi ) is
possible without either uj or v` being non-primitive.

Take incomparable uj = yzzyz and v` = zyz (y , z bordered by xi ).

Then Ψw ((yzzyz)2, xi ) = |w | − |xi |+ 1 = Ψw ((zyz)2, xi ) in:

w = yzzyzyzzyz

In such a case uj and v` have a special structure resembling the reverses of
the FS double squares analysed in [Deza et al., 2015]

A refinement of the anchor positions and assignment strategy might work.
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Optimality

Using the lower bound construction in [Jonoska et al., 2014], we easily illustrate
the extremal cases

I |clustw (ui )| = n − i + 2, take ui = abi−1 and w = u1u2 · · · unun.

I |clustw (u1)| = |clustw (un)| = n + 1 is realised by the roots
ui = an−1bai−1 and w = u1u2 · · · unun.
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Cluster sizes diversity - conjecture

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots u1 <p · · · <p un.

[Theorem]: |clust(ui−1)| ≥ |clust(ui )| and |clust(ui )| ≥ n − i + 2

I enough to consider |clustw (u1)| = n + 1

I denote by di = |clust(ui )| − (n − i + 2) the amount that the length of
the cluster at level i has over the minimum required for that level as a
consequence of [Theorem] and let D = maxi{di}

I (conjecture) the idea from [Jonoska et al., 2014] can be modified to produce
any combination of cluster sizes

I take words ui = aDba`i , adjusting `i so ui occurs exactly at positions

pj =
j∑

k=1

|uk | for j ≥ i − di , which are the unique starting positions of

squares u2
j in the word w = u1 . . . unun.
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Mercaş Counting Squares 28



Preliminaries Basics Results Final Remarks

Cluster sizes diversity - conjecture

Can all possible combinations of cluster sizes be realised in some w?

Consider a chain of square roots u1 <p · · · <p un.

[Theorem]: |clust(ui−1)| ≥ |clust(ui )| and |clust(ui )| ≥ n − i + 2

I enough to consider |clustw (u1)| = n + 1

I denote by di = |clust(ui )| − (n − i + 2) the amount that the length of
the cluster at level i has over the minimum required for that level as a
consequence of [Theorem] and let D = maxi{di}

I (conjecture) the idea from [Jonoska et al., 2014] can be modified to produce
any combination of cluster sizes

I take words ui = aDba`i , adjusting `i so ui occurs exactly at positions

pj =
j∑

k=1

|uk | for j ≥ i − di , which are the unique starting positions of

squares u2
j in the word w = u1 . . . unun.
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the cluster at level i has over the minimum required for that level as a
consequence of [Theorem] and let D = maxi{di}

I (conjecture) the idea from [Jonoska et al., 2014] can be modified to produce
any combination of cluster sizes

I take words ui = aDba`i , adjusting `i so ui occurs exactly at positions

pj =
j∑

k=1

|uk | for j ≥ i − di , which are the unique starting positions of

squares u2
j in the word w = u1 . . . unun.
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Cluster diversity - example

Let the clusters of u1, . . . , u6 be of size 7, 7, 5, 5, 3, 2, respectively.

The values d1, . . . , d6 = 0, 1, 0, 1, 0, 0, hence D = 1

We can set u1 = ab, u2 = aba, u3 = aba3, u4 = aba4, u5 = aba6 and
u6 = aba8

u1u2u3u4u5u6u6 = ababaaba3aba4aba6aba8aba8

We expect that investigating the shortest words which realise a combination
of cluster sizes could lead to improvements in both lower and upper bounds
on distinct repetitions (the above are NOT).
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Runs

We cannot readily apply the method used for distinct squares, because here
multiple occurrences of a repetition have to be taken into account.

Consider a run (a1 · · · an)
k
n beginning at some position i in w . The run

ending square (RES) is the square w [i + k − 2n..i + k − 1].

If w = aababaa and the run is (ab)
5
2 , then the RES is baba.

An upper bound on the number of run ending squares is implicitly an upper
bound on the number of runs.
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Runs - strategy

I if u <p v ∈ Σ∗, with a being their first letter

I an occurrence of uu in w is a RES if it followed by b 6= a or suffix of w

I let run ending occurrences of u2 at positions {i1 < · · · < ik} ⊆ clust(u)

I if j ∈ {1, . . . , k − 1} then w [ij + |u|] 6= w [ij + 2 · |u|], and
w [ik + |u|] 6= w [ik + 2 · |u|] or ik + 2 · |u| = |w |+ 1

I for each j ∈ {1, . . . , k}, at least one of the two positions ij and ij + |u| is
not in clust(v), so |clust(u)| − |clust(v)| ≥ k

I for consecutive roots u1 <p · · · <p un, we get that clust(ui ) is larger
than the number of all runs with run ending square u2

j , j ≥ i .

I argument does not extend easily to overlapping chains of run ending
squares (might cover cases when two chains overlap, but does not seem
to work when we have 3 peeks)
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Closing remarks

1 the bound for one chain is n − 1
(where n is the number of occurrences of the common prefix)

Conjecture

For any word w , any integer ` ≥ 0, and any set S = {u1, u2, . . . , un} s.t., for
all i ∈ {1, . . . , n}, u`i is a factor of w and u1 ≤p ui , we have |S | < 1

`−1 |w |u1 .

2 we can generalise the result for larger exponents
(define k−1 representatives and anchor positions for each uk)

3 we can generalise it for single chains of run ending squares

4 the big challenge: overlapping chains
(find a definition for anchor of u2 which depends

on anchors of all squares having u as a prefix)
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Cheers

QUESTIONS
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