Morphisms Generating Antipalindromic Words

Petr Ambrož, Z. Masáková, E. Pelantová

One World Combinatorics on Words Seminar February 15, 2021

Conclusion

A palindrome is a finite word invariant under the mirror image antimorphism R:

$$\mathsf{R}(a) = a \quad ext{for all } a \in A.$$

Indeed, $R(w_1 \cdots w_n) = w_n \cdots w_1$.

Czech palindromes: krk (neck), tahat (pull)

An antipalindrome is a finite binary word invariant under the exchange map E antimorphism:

$$E(a) = b$$
 and $E(b) = a$.

Conclusion

A palindrome is a finite word invariant under the mirror image antimorphism R:

$$\mathsf{R}(a) = a$$
 for all $a \in A$.

Indeed, $R(w_1 \cdots w_n) = w_n \cdots w_1$.

Czech palindromes: krk (neck), tahat (pull)

An antipalindrome is a finite binary word invariant under the exchange map E antimorphism:

$$E(a) = b$$
 and $E(b) = a$.

Conclusion

A palindrome is a finite word invariant under the mirror image antimorphism R:

$$\mathsf{R}(a) = a$$
 for all $a \in A$.

Indeed, $R(w_1 \cdots w_n) = w_n \cdots w_1$.

Czech palindromes: krk (neck), tahat (pull)

An antipalindrome is a finite binary word invariant under the exchange map E antimorphism:

$$E(a) = b$$
 and $E(b) = a$.

Conclusion

A palindrome is a finite word invariant under the mirror image antimorphism R:

$$\mathsf{R}(a) = a$$
 for all $a \in A$.

Indeed, $R(w_1 \cdots w_n) = w_n \cdots w_1$.

Czech palindromes: krk (neck), tahat (pull)

An antipalindrome is a finite binary word invariant under the exchange map E antimorphism:

$$E(a) = b$$
 and $E(b) = a$.

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

An infinite word is called palindromic if it contains arbitrarily long palindromes / infinitely many palindromes.

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \mathbf{v} : $S(\mathbf{v}) = \mathbf{u}$, \mathbf{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Conclusion

Which known words are palindromic?

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \mathbf{v} : $S(\mathbf{v}) = \mathbf{u}$, \mathbf{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots$$

 $u_i = v_i + v_{i+1} \mod 2$

Which known words are palindromic?

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \mathbf{v} : $S(\mathbf{v}) = \mathbf{u}$, \mathbf{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \quad \mapsto \quad \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Which known words are palindromic?

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \mathbf{v} : $S(\mathbf{v}) = \mathbf{u}$, \mathbf{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots$$

 $u_i = v_i + v_{i+1} \mod 2$

Fibonacci: $\boldsymbol{f} = S(\boldsymbol{v}) = 010010100100101 \cdots$ $\boldsymbol{v} =$

Which known words are palindromic?

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $\boldsymbol{f} = \mathcal{S}(\boldsymbol{v}) = 010010100100101 \cdots$ $\boldsymbol{v} =$

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $f = S(v) = 010010100100101 \cdots v = 0$

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $\mathbf{f} = S(\mathbf{v}) = \mathbf{0}10010100100101 \cdots$ $\mathbf{v} = \mathbf{0}\mathbf{0}$

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $f = S(v) = 010010100100101 \cdots v = 00$

Which known words are palindromic?

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $f = S(v) = 010010100100101 \cdots v = 001$

Which known words are palindromic?

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $f = S(v) = 010010100100101 \cdots$ v = 001

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $f = S(v) = 010010100100101 \cdots$ v = 0011

- Sturmian
- Arnoux-Rauzy, episturmian
- codings of a symmetric k-interval exchange transformations

Which known words are antipalindromic?

- Thue-Morse
- complementary symmetric Rote sequences

CS Rote sequence \boldsymbol{v} : $\mathcal{S}(\boldsymbol{v}) = \boldsymbol{u}$, \boldsymbol{u} Sturmian

$$\mathbf{v} = v_0 v_1 v_2 \cdots \mapsto \mathcal{S}(\mathbf{v}) = \mathbf{u} = u_0 u_1 u_2 \cdots u_i = v_i + v_{i+1} \mod 2$$

Fibonacci: $f = S(v) = 010010100100101 \cdots$ $v = 0011100111000110 \cdots$
Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Observation

Let $\boldsymbol{u}, \boldsymbol{v}$ be infinite words such that $\boldsymbol{u} = \mathcal{S}(\boldsymbol{v})$.

- If *u* contains infinitely many palindromes with center 1, then *v* contains infinitely many antipalindromes.
- If *u* contains infinitely many palindromes with center 0 or ε, then *ν* contains inifinitely many palindromes.

Unrelated remark. If t is Thue-Morse word then S(t) is period-dubling sequence $(0 \mapsto 11, 1 \mapsto 10)$.

Frid (see talk at OWCW Jan 2021) found the formula for the prefix palindromic length of Thue-Morse and formulated a conjecture concerning the prefix palindromic length of period-doubling word.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Observation

Let $\boldsymbol{u}, \boldsymbol{v}$ be infinite words such that $\boldsymbol{u} = \mathcal{S}(\boldsymbol{v})$.

- If *u* contains infinitely many palindromes with center 1, then *v* contains infinitely many antipalindromes.
- If *u* contains infinitely many palindromes with center 0 or ε, then *ν* contains inifinitely many palindromes.

Unrelated remark. If t is Thue-Morse word then S(t) is period-dubling sequence $(0 \mapsto 11, 1 \mapsto 10)$.

Frid (see talk at OWCW Jan 2021) found the formula for the prefix palindromic length of Thue-Morse and formulated a conjecture concerning the prefix palindromic length of period-doubling word.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Motivation

Hof, Knill and Simon (1995) studied spectral properties of

$$(H\phi)(n) = \phi(n+1) + \phi(n-1) + V(n)\phi(n)$$

on $\ell^2(\mathbb{Z})$ with $V: \mathbb{Z} \to \mathbb{R}, \#V(\mathbb{Z})$ finite ... infinite word v

- "interesting properties" of H ⇐⇒ purely singular continuous spectrum
- $\sigma(H) = \sigma_{sc}(H) \iff v$ aperiodic, palindromic
- $\bullet\,$ class ${\cal P}\,$ of morphisms that generate palindromic words

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Motivation

Hof, Knill and Simon (1995) studied spectral properties of

$$(H\phi)(n) = \phi(n+1) + \phi(n-1) + V(n)\phi(n)$$

on $\ell^2(\mathbb{Z})$ with $V:\mathbb{Z}\to\mathbb{R},\ \#V(\mathbb{Z})$ finite \ldots infinite word $m{v}$

- "interesting properties" of H ⇐⇒ purely singular continuous spectrum
- $\sigma(H) = \sigma_{sc}(H) \iff v$ aperiodic, palindromic
- $\bullet\,$ class ${\cal P}\,$ of morphisms that generate palindromic words

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Motivation

Hof, Knill and Simon (1995) studied spectral properties of

$$(H\phi)(n) = \phi(n+1) + \phi(n-1) + V(n)\phi(n)$$

on $\ell^2(\mathbb{Z})$ with $V:\mathbb{Z}\to\mathbb{R}, \#V(\mathbb{Z})$ finite ... infinite word \boldsymbol{v}

- "interesting properties" of H ⇐⇒ purely singular continuous spectrum
- $\sigma(H) = \sigma_{sc}(H) \iff v$ aperiodic, palindromic
- ullet class $\mathcal P$ of morphisms that generate palindromic words

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Motivation

Hof, Knill and Simon (1995) studied spectral properties of

$$(H\phi)(n) = \phi(n+1) + \phi(n-1) + V(n)\phi(n)$$

on $\ell^2(\mathbb{Z})$ with $V:\mathbb{Z}\to\mathbb{R}, \#V(\mathbb{Z})$ finite ... infinite word \boldsymbol{v}

- "interesting properties" of H ⇐⇒ purely singular continuous spectrum
- $\sigma(H) = \sigma_{sc}(H) \iff v$ aperiodic, palindromic
- $\bullet\,$ class ${\cal P}\,$ of morphisms that generate palindromic words

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Motivation

Hof, Knill and Simon (1995) studied spectral properties of

$$(H\phi)(n) = \phi(n+1) + \phi(n-1) + V(n)\phi(n)$$

on $\ell^2(\mathbb{Z})$ with $V:\mathbb{Z}\to\mathbb{R}, \,\#V(\mathbb{Z})$ finite ... infinite word \boldsymbol{v}

- "interesting properties" of H ⇐⇒ purely singular continuous spectrum
- $\sigma(H) = \sigma_{sc}(H) \iff v$ aperiodic, palindromic
- $\bullet\,$ class ${\cal P}$ of morphisms that generate palindromic words

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

Remark (Hof et al.)

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

Remark (Hof et al.)

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

Remark (Hof et al.)

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

Remark (Hof et al.)

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

$$\varphi_{F} = \begin{cases} a \mapsto ab \\ b \mapsto a \end{cases}$$
$$\Theta = \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases} \qquad \Theta^{2} = \begin{cases} a \mapsto abba \\ b \mapsto baab \end{cases}$$

Remark (Hof et al.)

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

$$\varphi_{F} = \begin{cases} a \mapsto ab \\ b \mapsto a \end{cases}$$
$$\Theta = \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases} \qquad \Theta^{2} = \begin{cases} a \mapsto \varepsilon abba \\ b \mapsto \varepsilon baab \end{cases}$$

Remark (Hof et al.)

Class *P* Conjecture ○●○○○○ Antipalindromic words

Conclusion

 $\mathsf{Class}\ \mathcal{P}$

Primitive morphism $\varphi : A^* \mapsto A^*$ is in class \mathcal{P} , if there is a palindrome w such that for each $a \in A$

 $\varphi(a) = wq_a$, where q_a is a palindrome.

$$\varphi_{F} = \begin{cases} a \mapsto ab \\ b \mapsto a \end{cases}$$
$$\Theta = \begin{cases} a \mapsto ab \\ b \mapsto ba \end{cases} \qquad \Theta^{2} = \begin{cases} a \mapsto abba \\ b \mapsto baab \end{cases}$$

Remark (Hof et al.)

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Class \mathcal{P} conjecture (HKS conjecture)

Allouche, Baake, Cassaigne, Damanik (2003):

• WLOG we can restrict ourselves to |w| = 0 or 1

Theorem (Allouche et al.)

Let u be a periodic sequence that contains arbitrarily long palindromes, then u is a fixed point of a morphism in class \mathcal{P} .

Tan (2007):

• "to be palindromic" is property of $\mathcal{L}(\boldsymbol{u})$

Theorem (Tan)

Class *P* Conjecture 00●000

Antipalindromic words

Conclusion

Class \mathcal{P} conjecture (HKS conjecture)

Allouche, Baake, Cassaigne, Damanik (2003):

• WLOG we can restrict ourselves to |w| = 0 or 1

Theorem (Allouche et al.)

Let u be a periodic sequence that contains arbitrarily long palindromes, then u is a fixed point of a morphism in class $\mathcal{P}.$

Tan (2007):

• "to be palindromic" is property of $\mathcal{L}(\boldsymbol{u})$

Theorem (Tan)

Class *P* Conjecture 00●000

Antipalindromic words

Conclusion

Class \mathcal{P} conjecture (HKS conjecture)

Allouche, Baake, Cassaigne, Damanik (2003):

• WLOG we can restrict ourselves to |w| = 0 or 1

Theorem (Allouche et al.)

Let u be a periodic sequence that contains arbitrarily long palindromes, then u is a fixed point of a morphism in class $\mathcal{P}.$

Tan (2007):

• "to be palindromic" is property of $\mathcal{L}(\boldsymbol{u})$

Theorem (Tan)

Class *P* Conjecture 00●000

Antipalindromic words

Conclusion

Class \mathcal{P} conjecture (HKS conjecture)

Allouche, Baake, Cassaigne, Damanik (2003):

• WLOG we can restrict ourselves to |w| = 0 or 1

Theorem (Allouche et al.)

Let u be a periodic sequence that contains arbitrarily long palindromes, then u is a fixed point of a morphism in class $\mathcal{P}.$

Tan (2007):

• "to be palindromic" is property of $\mathcal{L}(\boldsymbol{u})$

Theorem (Tan)

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

 $a \mapsto abbab$ $\psi : \qquad \psi :$ $b \mapsto abb$ $\phi : \qquad b \mapsto bba$ $\phi : \qquad b \mapsto bba$

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

φ :	$a\mapsto abbab$	
	$b\mapsto abb$	

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

 $\varphi: \begin{array}{l} a \mapsto abbab \\ b \mapsto abb \end{array} \qquad \qquad \varphi: \begin{array}{l} a \mapsto bbaba \\ b \mapsto bba \end{array}$

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

$a \mapsto abbab$	
arphi . b \mapsto abb	
$ otin ext{ class } \mathcal{P}$	

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

$$\varphi : \begin{array}{ll} a \mapsto abbab \\ b \mapsto abb \\ \notin \text{ class } \mathcal{P} \end{array} \qquad \begin{array}{ll} a \mapsto bbaba \\ b \mapsto bba \\ \in \text{ class } \mathcal{P} \end{array}$$

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

$$\varphi: \begin{array}{ll} a \mapsto abbab \\ b \mapsto abb \\ \notin \end{array} \begin{array}{ll} class \mathcal{P} \end{array} \qquad \begin{array}{ll} a \mapsto bbaba \\ b \mapsto bba \\ \in class \mathcal{P} \end{array}$$

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Conjugate morphisms

 $\varphi, \psi: A^* \to A^*$ morphisms. φ is conjugate to $\psi (\varphi \sim \psi)$ if there is $q \in A^*$ s.t.

$$arphi(\mathsf{a})\mathsf{q}=\mathsf{q}\psi(\mathsf{a})\qquad orall \mathsf{a}\in\mathsf{A}$$

or

$$q\varphi(a) = \psi(a)q \qquad \forall a \in A.$$

$$\begin{array}{ll} \varphi: \begin{array}{ll} a \mapsto abbab \\ b \mapsto abb \\ \notin \end{array} \begin{array}{ll} class \mathcal{P} \end{array} \qquad \begin{array}{ll} a \mapsto bbaba \\ \psi: \\ b \mapsto bba \\ \in \ class \mathcal{P} \end{array}$$

Proposition

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

$\mathsf{Class} \ \mathcal{P} \ \mathsf{conjecture}$

Conjecture (version 1)

Let \boldsymbol{u} be the fixed point of a primitive morphism. Then \boldsymbol{u} is palindromic if and only if there exists a morphism $\varphi \neq \mathsf{Id}$ such that $\boldsymbol{u} = \varphi(\boldsymbol{u})$ and φ has a conjugate in class \mathcal{P} .

- Allouche et al. (2003) for periodic words
- Tan (2007) for fixed point of a morphism over a **binary** alphabet
- Labbé and Pelantová (2016) for fixed point of a marked morphism over an arbitrary alphabet
- Masáková, Pelantová, Starosta (2017) for words coding symmetric non-degenerate 3 interval exchange transformation

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

$\mathsf{Class} \ \mathcal{P} \ \mathsf{conjecture}$

Conjecture (version 1)

Let \boldsymbol{u} be the fixed point of a primitive morphism. Then \boldsymbol{u} is palindromic if and only if there exists a morphism $\varphi \neq \mathsf{Id}$ such that $\boldsymbol{u} = \varphi(\boldsymbol{u})$ and φ has a conjugate in class \mathcal{P} .

- Allouche et al. (2003) for periodic words
- Tan (2007) for fixed point of a morphism over a **binary** alphabet
- Labbé and Pelantová (2016) for fixed point of a marked morphism over an arbitrary alphabet
- Masáková, Pelantová, Starosta (2017) for words coding symmetric non-degenerate 3 interval exchange transformation

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

$\mathsf{Class} \ \mathcal{P} \ \mathsf{conjecture}$

Conjecture (version 1)

Let \boldsymbol{u} be the fixed point of a primitive morphism. Then \boldsymbol{u} is palindromic if and only if there exists a morphism $\varphi \neq \mathsf{Id}$ such that $\boldsymbol{u} = \varphi(\boldsymbol{u})$ and φ has a conjugate in class \mathcal{P} .

- Allouche et al. (2003) for periodic words
- Tan (2007) for fixed point of a morphism over a **binary** alphabet
- Labbé and Pelantová (2016) for fixed point of a marked morphism over an arbitrary alphabet
- Masáková, Pelantová, Starosta (2017) for words coding symmetric non-degenerate 3 interval exchange transformation

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

$\mathsf{Class} \ \mathcal{P} \ \mathsf{conjecture}$

Conjecture (version 1)

Let \boldsymbol{u} be the fixed point of a primitive morphism. Then \boldsymbol{u} is palindromic if and only if there exists a morphism $\varphi \neq \mathsf{Id}$ such that $\boldsymbol{u} = \varphi(\boldsymbol{u})$ and φ has a conjugate in class \mathcal{P} .

- Allouche et al. (2003) for periodic words
- Tan (2007) for fixed point of a morphism over a **binary** alphabet
- Labbé and Pelantová (2016) for fixed point of a marked morphism over an arbitrary alphabet
- Masáková, Pelantová, Starosta (2017) for words coding symmetric non-degenerate 3 interval exchange transformation

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

$\mathsf{Class} \ \mathcal{P} \ \mathsf{conjecture}$

Conjecture (version 1)

Let \boldsymbol{u} be the fixed point of a primitive morphism. Then \boldsymbol{u} is palindromic if and only if there exists a morphism $\varphi \neq \mathsf{Id}$ such that $\boldsymbol{u} = \varphi(\boldsymbol{u})$ and φ has a conjugate in class \mathcal{P} .

- Allouche et al. (2003) for periodic words
- Tan (2007) for fixed point of a morphism over a **binary** alphabet
- Labbé and Pelantová (2016) for fixed point of a marked morphism over an arbitrary alphabet
- Masáková, Pelantová, Starosta (2017) for words coding symmetric non-degenerate 3 interval exchange transformation

Class *P* Conjecture 00000●

Antipalindromic words

Conclusion

$\mathsf{Class} \ \mathcal{P} \ \mathsf{conjecture}$

Labbé (2014) found a counter-example on ternary alphabet.

Let **x** be the fixed point of

 $a\mapsto aca, \quad b\mapsto cab, \quad c\mapsto b.$

Then x is palindromic but no morphism φ such that $\varphi(x) = x$ has a conjugate in class \mathcal{P} .

Conjecture (version 2)

Let \boldsymbol{u} be the fixed point of a primitive morphism φ . If \boldsymbol{u} is palindromic then there exists a morphism ψ in class \mathcal{P} such that the languages of both morphisms coincide.

Class *P* Conjecture 00000●

Antipalindromic words

Conclusion

Class \mathcal{P} conjecture

Labbé (2014) found a counter-example on ternary alphabet.

Let \boldsymbol{x} be the fixed point of

 $a \mapsto aca, \quad b \mapsto cab, \quad c \mapsto b.$

Then \boldsymbol{x} is palindromic but no morphism φ such that $\varphi(\boldsymbol{x}) = \boldsymbol{x}$ has a conjugate in class \mathcal{P} .

Conjecture (version 2)

Let \boldsymbol{u} be the fixed point of a primitive morphism φ . If \boldsymbol{u} is palindromic then there exists a morphism ψ in class \mathcal{P} such that the languages of both morphisms coincide.

Class *P* Conjecture 00000●

Antipalindromic words

Conclusion

Class \mathcal{P} conjecture

Labbé (2014) found a counter-example on ternary alphabet.

Let \boldsymbol{x} be the fixed point of

 $a \mapsto aca, \quad b \mapsto cab, \quad c \mapsto b.$

Then \boldsymbol{x} is palindromic but no morphism φ such that $\varphi(\boldsymbol{x}) = \boldsymbol{x}$ has a conjugate in class \mathcal{P} .

Conjecture (version 2)

Let \boldsymbol{u} be the fixed point of a primitive morphism φ . If \boldsymbol{u} is palindromic then there exists a morphism ψ in class \mathcal{P} such that the languages of both morphisms coincide.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words • 0000000 Conclusion

Our aim: Study a modification of class \mathcal{P} conjecture for antipalindromes.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Our aim: Study a modification of class \mathcal{P} conjecture for antipalindromes.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

A morphism $\varphi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_1 if there exist words $\mathfrak{p}, \mathfrak{s} \in \{0,1\}^*$ such that $\mathfrak{p} \neq \varepsilon$, \mathfrak{s} is an antipalindrome and

 $\varphi(0) = \mathfrak{ps}, \qquad \varphi(1) = \mathsf{E}(\mathfrak{p})\mathfrak{s}.$

Remarks.

- All morphisms in class \mathcal{A}_1 are uniform.
- All morphisms in class A_1 are primitive, except the trivial case $\varphi(0) = 0^k$, $\varphi(1) = 1^k$.
- Class A_1 has already been considered by Labbé (2008).
$\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

A morphism $\varphi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_1 if there exist words $\mathfrak{p}, \mathfrak{s} \in \{0,1\}^*$ such that $\mathfrak{p} \neq \varepsilon$, \mathfrak{s} is an antipalindrome and

 $\varphi(0) = \mathfrak{ps}, \qquad \varphi(1) = \mathsf{E}(\mathfrak{p})\mathfrak{s}.$

- All morphisms in class \mathcal{A}_1 are uniform.
- All morphisms in class A_1 are primitive, except the trivial case $\varphi(0) = 0^k$, $\varphi(1) = 1^k$.
- Class A_1 has already been considered by Labbé (2008).

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

A morphism $\varphi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_1 if there exist words $\mathfrak{p}, \mathfrak{s} \in \{0,1\}^*$ such that $\mathfrak{p} \neq \varepsilon$, \mathfrak{s} is an antipalindrome and

 $\varphi(0) = \mathfrak{ps}, \qquad \varphi(1) = \mathsf{E}(\mathfrak{p})\mathfrak{s}.$

- All morphisms in class \mathcal{A}_1 are uniform.
- All morphisms in class A_1 are primitive, except the trivial case $\varphi(0) = 0^k$, $\varphi(1) = 1^k$.
- Class A_1 has already been considered by Labbé (2008).

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

A morphism $\varphi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_1 if there exist words $\mathfrak{p}, \mathfrak{s} \in \{0,1\}^*$ such that $\mathfrak{p} \neq \varepsilon$, \mathfrak{s} is an antipalindrome and

 $\varphi(0) = \mathfrak{ps}, \qquad \varphi(1) = \mathsf{E}(\mathfrak{p})\mathfrak{s}.$

- All morphisms in class A_1 are uniform.
- All morphisms in class A_1 are primitive, except the trivial case $\varphi(0) = 0^k$, $\varphi(1) = 1^k$.
- Class A_1 has already been considered by Labbé (2008).

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in \mathcal{A}_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$.

Proof.

• w = 0

$\mathsf{E}(\mathfrak{s}\varphi(0))=\mathsf{E}(\mathfrak{s}\mathfrak{p}\mathfrak{s})=\mathfrak{s}\mathsf{E}(\mathfrak{p})\mathfrak{s}=\mathfrak{s}\varphi(1)=\mathfrak{s}\varphi(\mathsf{E}(0)),$

- $w = 1 \dots$ analogically,
- for |w| > 1 by induction.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in \mathcal{A}_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$.

Proof.

• w = 0

 $\mathsf{E}(\mathfrak{s}\varphi(0)) = \mathsf{E}(\mathfrak{s}\mathfrak{p}\mathfrak{s}) = \mathfrak{s}\mathsf{E}(\mathfrak{p})\mathfrak{s} = \mathfrak{s}\varphi(1) = \mathfrak{s}\varphi(\mathsf{E}(0)),$

- $w = 1 \dots$ analogically,
- for |w| > 1 by induction.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in \mathcal{A}_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$.

Proof.

• w = 0

 $\mathsf{E}(\mathfrak{s}\varphi(0)) = \mathsf{E}(\mathfrak{s}\mathfrak{p}\mathfrak{s}) = \mathfrak{s}\mathsf{E}(\mathfrak{p})\mathfrak{s} = \mathfrak{s}\varphi(1) = \mathfrak{s}\varphi(\mathsf{E}(0)),$

- $w = 1 \dots$ analogically,
- for |w| > 1 by induction.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in \mathcal{A}_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$.

Proof.

• w = 0

$$\mathsf{E}(\mathfrak{s}arphi(0))=\mathsf{E}(\mathfrak{s}\mathfrak{p}\mathfrak{s})=\mathfrak{s}\mathsf{E}(\mathfrak{p})\mathfrak{s}=\mathfrak{s}arphi(1)=\mathfrak{s}arphi(\mathsf{E}(0)),$$

- $w = 1 \dots$ analogically,
- for |w| > 1 by induction.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in \mathcal{A}_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$.

Proof.

• w = 0

$$\mathsf{E}(\mathfrak{s}arphi(0))=\mathsf{E}(\mathfrak{s}\mathfrak{p}\mathfrak{s})=\mathfrak{s}\mathsf{E}(\mathfrak{p})\mathfrak{s}=\mathfrak{s}arphi(1)=\mathfrak{s}arphi(\mathsf{E}(0)),$$

- $w = 1 \dots$ analogically,
- for |w| > 1 by induction.

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in \mathcal{A}_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$.

Proof.

• w = 0

$$\mathsf{E}(\mathfrak{s}\varphi(0))=\mathsf{E}(\mathfrak{s}\mathfrak{p}\mathfrak{s})=\mathfrak{s}\mathsf{E}(\mathfrak{p})\mathfrak{s}=\mathfrak{s}\varphi(1)=\mathfrak{s}\varphi(\mathsf{E}(0)),$$

- $w = 1 \dots$ analogically,
- for |w| > 1 by induction.

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. Proof of Proposition. Let $w \in \mathcal{L}(u)$.

if w is an antipalindrome ⇒ sφ(w) is an antipalindrome:
 E(sφ(w)) = sφ(E(w)) = sφ(w).

• $\mathfrak{s}\varphi(w) \in \mathcal{L}(u)$

- $w \in \mathcal{L}(u) \Rightarrow cw \in \mathcal{L}(u)$ for some $c \in \{0, 1\}$
- $cw \in \mathcal{L}(u) \Rightarrow \varphi(c)\varphi(w) \in \mathcal{L}(u)$
- \mathfrak{s} is a proper suffix of $\varphi(c) \Rightarrow \mathfrak{s}\varphi(w) \in \mathcal{L}(u)$
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. Proof of Proposition. Let $w \in \mathcal{L}(u)$.

- if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:
 - $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$
- $\mathfrak{s}\varphi(w) \in \mathcal{L}(u)$
 - $w \in \mathcal{L}(u) \Rightarrow cw \in \mathcal{L}(u)$ for some $c \in \{0,1\}$
 - $cw \in \mathcal{L}(u) \Rightarrow \varphi(c)\varphi(w) \in \mathcal{L}(u)$
 - \mathfrak{s} is a proper suffix of $\varphi(c) \Rightarrow \mathfrak{s}\varphi(w) \in \mathcal{L}(u)$
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. **Proof of Proposition.** Let $w \in \mathcal{L}(u)$.

• if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:

•
$$\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$$

• $\mathfrak{s}\varphi(w) \in \mathcal{L}(u)$

- $w \in \mathcal{L}(u) \Rightarrow cw \in \mathcal{L}(u)$ for some $c \in \{0,1\}$
- $cw \in \mathcal{L}(\boldsymbol{u}) \Rightarrow \varphi(c)\varphi(w) \in \mathcal{L}(\boldsymbol{u})$
- \mathfrak{s} is a proper suffix of $\varphi(c) \Rightarrow \mathfrak{s}\varphi(w) \in \mathcal{L}(u)$
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. **Proof of Proposition.** Let $w \in \mathcal{L}(u)$.

• if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:

•
$$\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$$

- $\mathfrak{s}\varphi(w)\in\mathcal{L}(u)$
 - $w \in \mathcal{L}(\boldsymbol{u}) \Rightarrow cw \in \mathcal{L}(\boldsymbol{u})$ for some $c \in \{0,1\}$
 - $cw \in \mathcal{L}(\mathbf{u}) \Rightarrow \varphi(c)\varphi(w) \in \mathcal{L}(\mathbf{u})$
 - \mathfrak{s} is a proper suffix of $\varphi(c) \Rightarrow \mathfrak{s}\varphi(w) \in \mathcal{L}(u)$
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. **Proof of Proposition.** Let $w \in \mathcal{L}(u)$.

• if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:

•
$$\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$$

•
$$\mathfrak{s}\varphi(w)\in\mathcal{L}(u)$$

- $w \in \mathcal{L}(\boldsymbol{u}) \Rightarrow cw \in \mathcal{L}(\boldsymbol{u})$ for some $c \in \{0,1\}$
- $cw \in \mathcal{L}(\mathbf{u}) \Rightarrow \varphi(c)\varphi(w) \in \mathcal{L}(\mathbf{u})$
- \mathfrak{s} is a proper suffix of $\varphi(c) \Rightarrow \mathfrak{s}\varphi(w) \in \mathcal{L}(u)$
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. **Proof of Proposition.** Let $w \in \mathcal{L}(u)$.

• if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:

•
$$\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$$

•
$$\mathfrak{s}\varphi(w) \in \mathcal{L}(u)$$

• $w \in \mathcal{L}(u) \Rightarrow cw \in \mathcal{L}(u)$ for some $c \in \{0, 1\}$
• $cw \in \mathcal{L}(u) \Rightarrow \varphi(c)\varphi(w) \in \mathcal{L}(u)$
• \mathfrak{s} is a proper suffix of $\varphi(c) \Rightarrow \mathfrak{s}\varphi(w) \in \mathcal{L}(u)$

• Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. **Proof of Proposition.** Let $w \in \mathcal{L}(u)$.

• if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:

•
$$\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$$

- \$\$φ(w) ∈ L(u)
 w ∈ L(u) ⇒ cw ∈ L(u) for some c ∈ {0,1}
 cw ∈ L(u) ⇒ φ(c)φ(w) ∈ L(u)
 \$\$ is a proper suffix of φ(c) ⇒ \$\$φ(w) ∈ L(u)
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class \mathcal{A}_1 – uniform morphisms

Proposition

Let φ be a primitive morphism in class A_1 , \boldsymbol{u} its fixed point. Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Lemma. Let $\varphi \in A_1$. Then $\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) \ \forall w \in \{0,1\}^*$. **Proof of Proposition.** Let $w \in \mathcal{L}(u)$.

• if w is an antipalindrome $\Rightarrow \mathfrak{s}\varphi(w)$ is an antipalindrome:

•
$$\mathsf{E}(\mathfrak{s}\varphi(w)) = \mathfrak{s}\varphi(\mathsf{E}(w)) = \mathfrak{s}\varphi(w).$$

- \$\$φ(w) ∈ L(u)
 w ∈ L(u) ⇒ cw ∈ L(u) for some c ∈ {0,1}
 cw ∈ L(u) ⇒ φ(c)φ(w) ∈ L(u)
 \$\$ is a proper suffix of φ(c) ⇒ \$\$φ(w) ∈ L(u)
- Thus we have longer and longer antipalindromes (starting from 10 or 01)

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

A morphism $\psi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_2 if there exist a non-empty word $\mathfrak{w} \in \{0,1\}^*$ and $k, h \in \mathbb{N}$ such that

 $\psi(0) = \Theta(\mathfrak{w}(\mathsf{R}(\mathfrak{w})\mathfrak{w})^k), \qquad \psi(1) = \Theta((\mathsf{R}(\mathfrak{w})\mathfrak{w})^h\mathsf{R}(\mathfrak{w})).$

If $\mathfrak{w} = 01$, k = h = 0then $\psi = \Theta^2$.

- In general, morphisms in class \mathcal{A}_2 are non-uniform.
- Morphisms in class A_2 are primitive.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

A morphism $\psi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_2 if there exist a non-empty word $\mathfrak{w} \in \{0,1\}^*$ and $k, h \in \mathbb{N}$ such that

 $\psi(0) = \Theta(\mathfrak{w}(\mathsf{R}(\mathfrak{w})\mathfrak{w})^k), \qquad \psi(1) = \Theta((\mathsf{R}(\mathfrak{w})\mathfrak{w})^h\mathsf{R}(\mathfrak{w})).$

If $\mathfrak{w} = 01$, k = h = 0then $\psi = \Theta^2$.

- In general, morphisms in class \mathcal{A}_2 are non-uniform.
- Morphisms in class A_2 are primitive.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

A morphism $\psi : \{0,1\}^* \to \{0,1\}^*$ belongs to class \mathcal{A}_2 if there exist a non-empty word $\mathfrak{w} \in \{0,1\}^*$ and $k, h \in \mathbb{N}$ such that

 $\psi(0) = \Theta(\mathfrak{w}(\mathsf{R}(\mathfrak{w})\mathfrak{w})^k), \qquad \psi(1) = \Theta((\mathsf{R}(\mathfrak{w})\mathfrak{w})^h\mathsf{R}(\mathfrak{w})).$

If $\mathfrak{w} = 01$, k = h = 0then $\psi = \Theta^2$.

- In general, morphisms in class A_2 are non-uniform.
- Morphisms in class A_2 are primitive.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

Proposition

Let \boldsymbol{u} be a fixed point of ψ in class \mathcal{A}_2 . Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Therefore, we have the set (class $A_1 \cup$ class A_2) of morphisms having antipalindromic fixed points.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

Proposition

Let \boldsymbol{u} be a fixed point of ψ in class \mathcal{A}_2 . Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Therefore, we have the set (class $A_1 \cup$ class A_2) of morphisms having antipalindromic fixed points.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

Proposition

Let \boldsymbol{u} be a fixed point of ψ in class \mathcal{A}_2 . Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Therefore, we have the set (class $A_1 \cup$ class A_2) of morphisms having antipalindromic fixed points.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \texttt{000000} \end{array}$

Antipalindromic words

Conclusion

Class A_2 – non-uniform morphisms

Proposition

Let \boldsymbol{u} be a fixed point of ψ in class \mathcal{A}_2 . Then $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes.

Therefore, we have the set (class $A_1 \cup$ class A_2) of morphisms having antipalindromic fixed points.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Main results

From now on: Let \boldsymbol{u} be a fixed point of a primitive morphism, \boldsymbol{u} antipalindromic.

Conjecture

There is a primitive morphism $\psi \in A_1 \cup A_2$ such that languages of **u** and of a fixed point of ψ conicide.

Supporting fact:

• \boldsymbol{u} is eventually periodic $\Rightarrow \boldsymbol{u} = (w_1 w_2)^{\omega}$, w_1, w_2 antipalindromes (by result of Labbé (2008)). Then \boldsymbol{u} is fixed by $\psi(0) = \psi(1) = w_1 w_2$, and $\psi \in \mathcal{A}_1$

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Main results

From now on: Let \boldsymbol{u} be a fixed point of a primitive morphism, \boldsymbol{u} antipalindromic.

Conjecture

There is a primitive morphism $\psi \in A_1 \cup A_2$ such that languages of **u** and of a fixed point of ψ conicide.

Supporting fact:

• \boldsymbol{u} is eventually periodic $\Rightarrow \boldsymbol{u} = (w_1 w_2)^{\omega}$, w_1, w_2 antipalindromes (by result of Labbé (2008)). Then \boldsymbol{u} is fixed by $\psi(0) = \psi(1) = w_1 w_2$, and $\psi \in \mathcal{A}_1$

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Main results

From now on:

Let \boldsymbol{u} be a fixed point of a primitive morphism, \boldsymbol{u} antipalindromic.

Conjecture

There is a primitive morphism $\psi \in A_1 \cup A_2$ such that languages of **u** and of a fixed point of ψ conicide.

Supporting fact:

• \boldsymbol{u} is eventually periodic $\Rightarrow \boldsymbol{u} = (w_1 w_2)^{\omega}$, w_1, w_2 antipalindromes (by result of Labbé (2008)). Then \boldsymbol{u} is fixed by $\psi(0) = \psi(1) = w_1 w_2$, and $\psi \in \mathcal{A}_1$

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Main results

From now on: Let \boldsymbol{u} be a fixed point of a primitive morphism, \boldsymbol{u} antipalindromic.

Conjecture

There is a primitive morphism $\psi \in A_1 \cup A_2$ such that languages of **u** and of a fixed point of ψ conicide.

Supporting fact:

• \boldsymbol{u} is eventually periodic $\Rightarrow \boldsymbol{u} = (w_1 w_2)^{\omega}$, w_1, w_2 antipalindromes (by result of Labbé (2008)). Then \boldsymbol{u} is fixed by $\psi(0) = \psi(1) = w_1 w_2$, and $\psi \in \mathcal{A}_1$.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Main results – Uniform morphisms

Theorem

Let \boldsymbol{u} be an aperiodic fixed point of a primitive binary uniform morphism φ such that $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes. Then φ or φ^2 is conjugated to a morphism in class \mathcal{A}_1 .

Remark. If $\varphi \in A_1$, **u** its aperiodic fixed point. Then **u** is palindromic if and only if $\mathfrak{s} = \varepsilon$ and \mathfrak{p} is a palindrome.

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Main results – Uniform morphisms

Theorem

Let \boldsymbol{u} be an aperiodic fixed point of a primitive binary uniform morphism φ such that $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes. Then φ or φ^2 is conjugated to a morphism in class \mathcal{A}_1 .

Remark. If $\varphi \in A_1$, **u** its aperiodic fixed point. Then **u** is palindromic if and only if $\mathfrak{s} = \varepsilon$ and \mathfrak{p} is a palindrome.

 $\begin{array}{c} \text{Class } \mathcal{P} \text{ Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Main results – Uniform morphisms

Theorem

Let \boldsymbol{u} be an aperiodic fixed point of a primitive binary uniform morphism φ such that $\mathcal{L}(\boldsymbol{u})$ contains infinitely many antipalindromes. Then φ or φ^2 is conjugated to a morphism in class \mathcal{A}_1 .

Remark. If $\varphi \in A_1$, \boldsymbol{u} its aperiodic fixed point. Then \boldsymbol{u} is palindromic if and only if $\mathfrak{s} = \varepsilon$ and \mathfrak{p} is a palindrome.

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Main results – Non-uniform morphisms

Theorem

Let \boldsymbol{u} be an aperiodic fixed point of a primitive binary non-uniform morphism φ such that $\mathcal{L}(\boldsymbol{u})$ contains infinite number of palindromes as well as antipalindromes. Then either φ or φ^2 is a morphism in class \mathcal{A}_2 (with \mathfrak{w} being an antipalindrome).

 $\begin{array}{c} \text{Class} \ \mathcal{P} \ \text{Conjecture} \\ \text{000000} \end{array}$

Antipalindromic words

Conclusion

Main results – Non-uniform morphisms

Theorem

Let \boldsymbol{u} be an aperiodic fixed point of a primitive binary non-uniform morphism φ such that $\mathcal{L}(\boldsymbol{u})$ contains infinite number of palindromes as well as antipalindromes. Then either φ or φ^2 is a morphism in class \mathcal{A}_2 (with \mathfrak{w} being an antipalindrome).

Prel	im	in	ar	i	es
000	0				

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion •0000

Comments

- Problem completely solved for palindromic binary words by Allouche at al. and Tan.
- Similar problem studied by Labbé:
 - If a uniform morphism φ has an antipalidromic fixed point, then φ or φΘ is conjugated to a morphism in *E-P*:

 $\varphi(a) = pp_a$ a = 0, 1 p, p_0, p_1 antipalindromes.

- He conjectures that always the latter is true.
 We proved this conjecture.
- Initial intuition: the problem for an antipalindromic word u over {0,1} should not be difficult:
 - Unlike the palindromic case, necessarily $\varrho(0) = \varrho(1) = \frac{1}{2}$.
 - Consequences for the matrix of a substitution fixing *u*.

Prel	im	ina	iri	es
000	0			

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion •0000

Comments

- Problem completely solved for palindromic binary words by Allouche at al. and Tan.
- ② Similar problem studied by Labbé:
 - If a uniform morphism φ has an antipalidromic fixed point, then φ or $\varphi\Theta$ is conjugated to a morphism in \mathcal{E} - \mathcal{P} :

 $\varphi(a) = pp_a$ a = 0, 1 p, p_0, p_1 antipalindromes.

- He conjectures that always the latter is true. We proved this conjecture.
- Initial intuition: the problem for an antipalindromic word u over {0,1} should not be difficult:
 - Unlike the palindromic case, necessarily $\varrho(0) = \varrho(1) = \frac{1}{2}$.
 - Consequences for the matrix of a substitution fixing *u*.

Prel	im	in	ar	ies
000	0			

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion •0000

Comments

- Problem completely solved for palindromic binary words by Allouche at al. and Tan.
- ② Similar problem studied by Labbé:
 - If a uniform morphism φ has an antipalidromic fixed point, then φ or $\varphi\Theta$ is conjugated to a morphism in \mathcal{E} - \mathcal{P} :

 $\varphi(a) = pp_a$ a = 0, 1 p, p_0, p_1 antipalindromes.

- He conjectures that always the latter is true. We proved this conjecture.
- Initial intuition: the problem for an antipalindromic word u over {0,1} should not be difficult:
 - Unlike the palindromic case, necessarily $\varrho(0) = \varrho(1) = \frac{1}{2}$.
 - Consequences for the matrix of a substitution fixing **u**.
| Prel | im | ina | ari | es |
|------|----|-----|-----|----|
| 0000 | | | | |

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion •0000

Comments

- Problem completely solved for palindromic binary words by Allouche at al. and Tan.
- ② Similar problem studied by Labbé:
 - If a uniform morphism φ has an antipalidromic fixed point, then φ or $\varphi\Theta$ is conjugated to a morphism in \mathcal{E} - \mathcal{P} :

 $\varphi(a) = pp_a$ a = 0, 1 p, p_0, p_1 antipalindromes.

- He conjectures that always the latter is true. We proved this conjecture.
- Initial intuition: the problem for an antipalindromic word u over {0,1} should not be difficult:
 - Unlike the palindromic case, necessarily $\varrho(0) = \varrho(1) = \frac{1}{2}$.
 - Consequences for the matrix of a substitution fixing **u**.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Palindromic/pseudopalindromic closure:
 - Palindromic and antipalindromic words can be constructed using the so-called palindromic and pseudopalindromic closure.
 - Introduced by de Luca and De Luca (2006):

 $\Delta = (d_1, \psi_1), (d_2, \psi_2), \dots \qquad d_i \in \{0, 1\}, \ \psi_i \in \{\mathsf{R}, \mathsf{E}\}.$

 $u_0 = \varepsilon$ $u_{i+1} =$ shortest ψ_i -palindrome with prefix $u_i d_i$

Then u_i are prefixes of Thue-Morse word.

• CS Rote words can be generated by (pseudo)palindromic closure. (Blondin Massé et al. 2013).

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Palindromic/pseudopalindromic closure:
 - Palindromic and antipalindromic words can be constructed using the so-called palindromic and pseudopalindromic closure.
 - Introduced by de Luca and De Luca (2006):

 $\Delta = (d_1, \psi_1), (d_2, \psi_2), \dots \qquad d_i \in \{0, 1\}, \ \psi_i \in \{\mathsf{R}, \mathsf{E}\}.$

 $u_0 = \varepsilon$ u_{i+1} = shortest ψ_i -palindrome with prefix $u_i d_i$

Then u_i are prefixes of Thue-Morse word.

• CS Rote words can be generated by (pseudo)palindromic closure. (Blondin Massé et al. 2013).

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Palindromic/pseudopalindromic closure:
 - Palindromic and antipalindromic words can be constructed using the so-called palindromic and pseudopalindromic closure.
 - Introduced by de Luca and De Luca (2006):

 $\Delta = (d_1, \psi_1), (d_2, \psi_2), \dots \qquad d_i \in \{0, 1\}, \ \psi_i \in \{\mathsf{R}, \mathsf{E}\}.$

 $u_0 = \varepsilon$ u_{i+1} = shortest ψ_i -palindrome with prefix $u_i d_i$

Then u_i are prefixes of Thue-Morse word.

• CS Rote words can be generated by (pseudo)palindromic closure. (Blondin Massé et al. 2013).

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

• Palindromic/pseudopalindromic closure:

 Dvořáková, Velká (2018): Which words generated by pseudopalindromic closure are fixed points of morphisms?
Conjecture: only morphisms φ : {0,1}* → {0,1}* of the form

 $arphi(0)=0(110)^k,\qquad arphi(1)=1(001)^k,\qquad k\in\mathbb{N},k\geq 1,$

- Above morphisms belong to $\mathcal{P} \cap \mathcal{A}_1$.
- Do other morphisms in A_1 or A_2 have fixed points arising by pseudopalindromic closure?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

• Palindromic/pseudopalindromic closure:

• Dvořáková, Velká (2018): Which words generated by pseudopalindromic closure are fixed points of morphisms?

Conjecture: only morphisms $\varphi: \{0,1\}^* \to \{0,1\}^*$ of the form

 $arphi(0)=0(110)^k,\qquad arphi(1)=1(001)^k,\qquad k\in\mathbb{N},k\geq 1,$

- Above morphisms belong to $\mathcal{P} \cap \mathcal{A}_1$.
- Do other morphisms in A_1 or A_2 have fixed points arising by pseudopalindromic closure?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

• Palindromic/pseudopalindromic closure:

Dvořáková, Velká (2018): Which words generated by pseudopalindromic closure are fixed points of morphisms?
Conjecture: only morphisms φ : {0,1}* → {0,1}* of the form

 $\varphi(0) = 0(110)^k, \qquad \varphi(1) = 1(001)^k, \qquad k \in \mathbb{N}, k \ge 1,$

- Above morphisms belong to $\mathcal{P} \cap \mathcal{A}_1$.
- Do other morphisms in A_1 or A_2 have fixed points arising by pseudopalindromic closure?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

Palindromic/pseudopalindromic closure:

Dvořáková, Velká (2018): Which words generated by pseudopalindromic closure are fixed points of morphisms?
Conjecture: only morphisms φ : {0,1}* → {0,1}* of the form

 $arphi(0)=0(110)^k,\qquad arphi(1)=1(001)^k,\qquad k\in\mathbb{N},k\geq 1,$

- Above morphisms belong to $\mathcal{P} \cap \mathcal{A}_1$.
- Do other morphisms in A_1 or A_2 have fixed points arising by pseudopalindromic closure?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

Palindromic/pseudopalindromic closure:

Dvořáková, Velká (2018): Which words generated by pseudopalindromic closure are fixed points of morphisms?
Conjecture: only morphisms φ : {0,1}* → {0,1}* of the form

 $arphi(0)=0(110)^k,\qquad arphi(1)=1(001)^k,\qquad k\in\mathbb{N},k\geq 1,$

- Above morphisms belong to $\mathcal{P} \cap \mathcal{A}_1$.
- Do other morphisms in \mathcal{A}_1 or \mathcal{A}_2 have fixed points arising by pseudopalindromic closure?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Not all palindromic infinite words are rich in palindromes.
- The question on which morphisms in class \mathcal{P} have rich fixed point is not solved even for the binary case. Partial results by Glen et al. (2009)
- Which are morphisms of classes A₁ ∩ P, A₂ ∩ P such that their fixed points are H-rich, where H is the group of morphisms and antimorphisms generated by E and R?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Not all palindromic infinite words are rich in palindromes.
- The question on which morphisms in class \mathcal{P} have rich fixed point is not solved even for the binary case. Partial results by Glen et al. (2009)
- Which are morphisms of classes A₁ ∩ P, A₂ ∩ P such that their fixed points are H-rich, where H is the group of morphisms and antimorphisms generated by E and R?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Not all palindromic infinite words are rich in palindromes.
- The question on which morphisms in class \mathcal{P} have rich fixed point is not solved even for the binary case. Partial results by Glen et al. (2009)
- Which are morphisms of classes A₁ ∩ P, A₂ ∩ P such that their fixed points are H-rich, where H is the group of morphisms and antimorphisms generated by E and R?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- Not all palindromic infinite words are rich in palindromes.
- The question on which morphisms in class \mathcal{P} have rich fixed point is not solved even for the binary case. Partial results by Glen et al. (2009)
- Which are morphisms of classes A₁ ∩ P, A₂ ∩ P such that their fixed points are H-rich, where H is the group of morphisms and antimorphisms generated by E and R?

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

③ Generalization to multiliteral alphabets A:

- Consider a group G generated by antimorphisms over the monoid A^* .
- Ask when an infinite word contains infinitely many f-palindromes for each antimorphism $f \in G$.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- **③** Generalization to multiliteral alphabets *A*:
 - Consider a group G generated by antimorphisms over the monoid A^* .
 - Ask when an infinite word contains infinitely many f-palindromes for each antimorphism $f \in G$.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- **③** Generalization to multiliteral alphabets *A*:
 - Consider a group G generated by antimorphisms over the monoid A^* .
 - Ask when an infinite word contains infinitely many f-palindromes for each antimorphism $f \in G$.

Class \mathcal{P} Conjecture

Antipalindromic words

Conclusion

Related problems

- **③** Generalization to multiliteral alphabets *A*:
 - Consider a group G generated by antimorphisms over the monoid A^* .
 - Ask when an infinite word contains infinitely many f-palindromes for each antimorphism $f \in G$.

Thank you for your attention.