Open and closed complexity of infinite words

Mickaël Postic (joint work with Olga Parshina)

Université Lyon 1 - Institut Camille Jordan

Monday, March 1st 2021

- 1 Complexity functions
- Open and closed complexity functions
- 3 Words with bounded open complexity are ultimately periodic
- 4 Words with bounded closed complexity are ultimately periodic

Table of content

1 Complexity functions

Open and closed complexity functions

3 Words with bounded open complexity are ultimately periodic

4 Words with bounded closed complexity are ultimately periodic

Classical complexity function $p_w(n)$

Definition

For an infinite word w, we define its **complexity function** p_w which associates to every non-negative integer n the number of distinct factors of length n in Fact(w); so we get

 $p_w(n) = \operatorname{Card}(\operatorname{Fact}_n(w)).$

Classical complexity function $p_w(n)$

Definition

For an infinite word w, we define its **complexity function** p_w which associates to every non-negative integer n the number of distinct factors of length n in Fact(w); so we get

$$p_w(n) = \operatorname{Card}(\operatorname{Fact}_n(w)).$$

Example

For the regular paperfolding word

 $\mathbf{p} = 0010011000110110001001110011011 \cdots$

we have $p_{\mathbf{p}}(n) = 4n$ for $n \ge 7$ (Allouche).

Classical complexity function $p_w(n)$

Definition

For an infinite word w, we define its **complexity function** p_w which associates to every non-negative integer n the number of distinct factors of length n in Fact(w); so we get

$$v_w(n) = \operatorname{Card}(\operatorname{Fact}_n(w)).$$

Example

For the regular paperfolding word

 $\mathbf{p} = 0010011000110110001001110011011 \cdots$

we have $p_{\mathbf{p}}(n) = 4n$ for $n \ge 7$ (Allouche). For the Fibonacci word

 $\mathbf{f} = 0100101001001001001001001001001001001 \cdots$

the complexity function is $p_{\mathbf{f}}(n) = n + 1$ for every integer n.

Morse and Hedlund's theorem

Theorem (Morse-Hedlund)

An infinite word w is aperiodic if and only if its complexity function is unbounded. If w is aperiodic, we have, for any integer n, $p_w(n) \ge n + 1$.

Morse and Hedlund's theorem

Theorem (Morse-Hedlund)

An infinite word w is aperiodic if and only if its complexity function is unbounded. If w is aperiodic, we have, for any integer n, $p_w(n) \ge n + 1$.

Remark

The proof is quite direct since the complexity function is non-decreasing.

Theorem (Morse-Hedlund)

An infinite word w is aperiodic if and only if its complexity function is unbounded. If w is aperiodic, we have, for any integer n, $p_w(n) \ge n + 1$.

Remark

- The proof is quite direct since the complexity function is non-decreasing.
- ▶ The Fibonacci word has the minimal complexity for an aperiodic infinite word. Words verifying $p_w(n) \ge n + 1$ for every integer *n* are called *Sturmian words* and have many other interesting properties.

Some generalizations

Other complexity functions have been studied : abelian complexity,

Some generalizations

Other complexity functions have been studied : *abelian complexity*, *palindromic complexity*,

These complexity function are usually not non-decreasing.

These complexity function are usually *not* non-decreasing.

So Morse and Hedlund's theorem is not always valid.

These complexity function are usually *not* non-decreasing.

So Morse and Hedlund's theorem is not always valid.

Example

For the Fibonacci word, the abelian complexity is constant, and for the Thue-Morse word, $a_t(2) = 3 > a_t(3) = 2 > a_t(4) = 1$.

1 Complexity functions

Open and closed complexity functions

3 Words with bounded open complexity are ultimately periodic

4 Words with bounded closed complexity are ultimately periodic

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words a and aa are borders of aabaaa

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words a and aa are borders of aabaaa

Definition

We say $w \in \mathbb{A}^+$ is **closed** if either $w \in \mathbb{A}$ or w admits a border u which occurs precisely twice in w.

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words a and aa are borders of aabaaa

Definition

We say $w \in \mathbb{A}^+$ is **closed** if either $w \in \mathbb{A}$ or w admits a border u which occurs precisely twice in w. Otherwise w is said to be **open**.

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words *a* and *aa* are borders of *aabaaa*

Definition

We say $w \in \mathbb{A}^+$ is **closed** if either $w \in \mathbb{A}$ or w admits a border u which occurs precisely twice in w. Otherwise w is said to be **open**. The longest border of a closed word is called its **frontier**.

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words a and aa are borders of aabaaa

Definition

We say $w \in \mathbb{A}^+$ is **closed** if either $w \in \mathbb{A}$ or w admits a border u which occurs precisely twice in w. Otherwise w is said to be **open**. The longest border of a closed word is called its **frontier**.

• w = abaaaab is closed (with frontier ab),

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words a and aa are borders of aabaaa

Definition

We say $w \in \mathbb{A}^+$ is **closed** if either $w \in \mathbb{A}$ or w admits a border u which occurs precisely twice in w. Otherwise w is said to be **open**. The longest border of a closed word is called its **frontier**.

• w = abaaaab is closed (with frontier ab),

▶ *aabab* is open,

Given $u, w \in \mathbb{A}^+$, we say u is a **border** of w if u is both a proper prefix and suffix of w.

Example

The words a and aa are borders of aabaaa

Definition

We say $w \in \mathbb{A}^+$ is **closed** if either $w \in \mathbb{A}$ or w admits a border u which occurs precisely twice in w. Otherwise w is said to be **open**. The longest border of a closed word is called its **frontier**.

- w = abaaaab is closed (with frontier ab),
- ▶ *aabab* is open,
- aabaaa is open.

Remark

- Closed words are frequently called complete first returns, they play a central part in symbolic dynamics.
- In a recurrent word, every factor admits complete first returns to itself.
- In a uniformly recurrent word, every factor admits finitely many complete first returns to itself and for a prefix of the word, those give a new coding of the word.

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n.

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n. Similarly, we define the **open complexity function** Op_x which associates to each $n \in \mathbb{N}$, the number of open factors of x of length n.

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n. Similarly, we define the **open complexity function** Op_x which associates to each $n \in \mathbb{N}$, the number of open factors of x of length n.

Example

 ${\rm Cl}_{(abba)^\omega}(2)=2$ since aa and bb are the only closed factors of length 2

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n. Similarly, we define the **open complexity function** Op_x which associates to each $n \in \mathbb{N}$, the number of open factors of x of length n.

Example

 $Cl_{(abba)^{\omega}}(2) = 2$ since aa and bb are the only closed factors of length 2 while $Cl_{(abba)^{\omega}}(3) = 0$.

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n. Similarly, we define the **open complexity function** Op_x which associates to each $n \in \mathbb{N}$, the number of open factors of x of length n.

Example

 $Cl_{(abba)^{\omega}}(2) = 2$ since aa and bb are the only closed factors of length 2 while $Cl_{(abba)^{\omega}}(3) = 0$. Similarly, $Op_{(abba)^{\omega}}(2) = 2$ since ab and ba are open;

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n. Similarly, we define the **open complexity function** Op_x which associates to each $n \in \mathbb{N}$, the number of open factors of x of length n.

Example

 $Cl_{(abba)^{\omega}}(2) = 2$ since *aa* and *bb* are the only closed factors of length 2 while $Cl_{(abba)^{\omega}}(3) = 0$. Similarly, $Op_{(abba)^{\omega}}(2) = 2$ since *ab* and *ba* are open; $Op_{(abba)^{\omega}}(3) = 4$.

Definition

For a word $x \in \mathbb{A}^{\mathbb{N}}$ we define the **closed complexity function** Cl_x which associates to each $n \in \mathbb{N}$, the number of closed factors of x of length n. Similarly, we define the **open complexity function** Op_x which associates to each $n \in \mathbb{N}$, the number of open factors of x of length n.

Example

 $Cl_{(abba)^{\omega}}(2) = 2$ since *aa* and *bb* are the only closed factors of length 2 while $Cl_{(abba)^{\omega}}(3) = 0$. Similarly, $Op_{(abba)^{\omega}}(2) = 2$ since *ab* and *ba* are open; $Op_{(abba)^{\omega}}(3) = 4$.

Remark

For every infinite word w and integer n we have :

$$\mathsf{Op}_w(n) + \mathsf{CI}_w(n) = p_w(n).$$

Theorem (O. Parshina, P. 2020)

Let $x \in \mathbb{A}^{\mathbb{N}}$ be a right-infinite word over a finite alphabet \mathbb{A} . The following are equivalent :

- 1. x is aperiodic;
- 2. $\liminf_{n \to +\infty} \operatorname{Op}_{X}(n) = +\infty.$
- 3. $\limsup_{n \to +\infty} \operatorname{Cl}_{X}(n) = +\infty;$

Remarks

Using Morse and Hedlund, it is easy to get and

$$\liminf_{n \to +\infty} \operatorname{Op}_{x}(n) = +\infty \implies x \text{ is aperiodic}$$

and

$$\limsup_{n \to +\infty} \mathsf{Cl}_{x}(n) = +\infty \implies x \text{ is aperiodic.}$$

Remarks

Using Morse and Hedlund, it is easy to get and

$$\liminf_{n \to +\infty} \operatorname{Op}_{x}(n) = +\infty \implies x \text{ is aperiodic}$$

and

$$\limsup_{n \to +\infty} \mathsf{Cl}_{x}(n) = +\infty \implies x \text{ is aperiodic.}$$

With $\liminf \operatorname{Op}_{x}(n) = +\infty \Leftrightarrow x$ is aperiodic, we get that

$$\liminf_{n \to +\infty} \operatorname{Op}_{X}(n) = +\infty \Leftrightarrow \limsup_{n \to +\infty} \operatorname{Op}_{X}(n) = +\infty.$$

Remarks

Using Morse and Hedlund, it is easy to get and

$$\liminf_{n \to +\infty} \operatorname{Op}_{x}(n) = +\infty \implies x \text{ is aperiodic}$$

and

$$\limsup_{n \to +\infty} \mathsf{Cl}_{x}(n) = +\infty \implies x \text{ is aperiodic.}$$

With $\liminf \operatorname{Op}_{X}(n) = +\infty \Leftrightarrow x$ is aperiodic, we get that

$$\liminf_{n \to +\infty} \operatorname{Op}_{X}(n) = +\infty \Leftrightarrow \limsup_{n \to +\infty} \operatorname{Op}_{X}(n) = +\infty.$$

We can't have \liminf in $\limsup \operatorname{Cl}_X(n) = +\infty \Leftrightarrow x$ is aperiodic : for the paperfolding words, it is known that

$$\liminf_{n\to+\infty}\operatorname{Cl}_{X}(n)=0.$$

1 Complexity functions

Open and closed complexity functions

8 Words with bounded open complexity are ultimately periodic

4 Words with bounded closed complexity are ultimately periodic

First part of the theorem : Open complexity function

Theorem

Let x be an infinite word over a finite alphabet \mathbb{A} . Let $k \in \mathbb{N}$ be such that $\liminf \operatorname{Op}_{x}(n) = k$. Then x is ultimately periodic.

For $x \in \mathbb{A}^{\mathbb{N}}$ and $n \in \mathbb{N}$, the **Rauzy graph** of order n of $x \in \mathbb{A}^{\mathbb{N}}$ is the directed graph whose set of vertices (resp. edges) consists of all factors of x of length n (resp. n + 1). There is a directed edge from u to v labeled w if u is a prefix of w and v a suffix of w.

For $x \in \mathbb{A}^{\mathbb{N}}$ and $n \in \mathbb{N}$, the **Rauzy graph** of order n of $x \in \mathbb{A}^{\mathbb{N}}$ is the directed graph whose set of vertices (resp. edges) consists of all factors of x of length n (resp. n + 1). There is a directed edge from u to v labeled w if u is a prefix of w and v a suffix of w.

The **distance** between two vertices in a Rauzy graph is the length of the shortest directed path between them.

For $x \in \mathbb{A}^{\mathbb{N}}$ and $n \in \mathbb{N}$, the **Rauzy graph** of order n of $x \in \mathbb{A}^{\mathbb{N}}$ is the directed graph whose set of vertices (resp. edges) consists of all factors of x of length n (resp. n + 1). There is a directed edge from u to v labeled w if u is a prefix of w and v a suffix of w.

The **distance** between two vertices in a Rauzy graph is the length of the shortest directed path between them. This path does not necessarily correspond to a factor in the word.

Rauzy graph

Rauzy graph of *abacacaddddd* \cdots of order 2 :

Open complexity function

Proposition

Let $x \in \mathbb{A}^{\mathbb{N}}$ and $N \in \mathbb{N}$. Let w_1 and w_2 be two factors of x, such that there is a path of length i from w_1 to w_2 in the Rauzy graph of order Nof x. Suppose w_1 and w_2 are closed with frontiers u_1 and u_2 respectively. Then $||u_1| - |u_2|| < i$. In particular, if i = 1 the frontiers are of the same length : $|u_1| = |u_2|$.

Open complexity function

Proposition

Let $x \in \mathbb{A}^{\mathbb{N}}$ and $N \in \mathbb{N}$. Let w_1 and w_2 be two factors of x, such that there is a path of length i from w_1 to w_2 in the Rauzy graph of order Nof x. Suppose w_1 and w_2 are closed with frontiers u_1 and u_2 respectively. Then $||u_1| - |u_2|| < i$. In particular, if i = 1 the frontiers are of the same length : $|u_1| = |u_2|$.

Figure – Factors w_1 and w_2 .

Open and closed complexity of infinite words

Some other lemmas

Lemma

Suppose that x is aperiodic with $\liminf \operatorname{Op}_{x} = k$. There exists an integer N such that $u^{N} \notin \operatorname{Fact}(x)$ for any choice of u with |u| < 2k.

Some other lemmas

Lemma

Suppose that x is aperiodic with $\liminf \operatorname{Op}_{x} = k$. There exists an integer N such that $u^{N} \notin \operatorname{Fact}(x)$ for any choice of u with |u| < 2k.

W

Figure – The frontier should be longer than $w = u^{\frac{N-1}{|u|}-1}$.

Lemma

Suppose that x is aperiodic with $\liminf Op_x = k$. For every integer m, there exists an integer N such that the frontier of any closed factor of length N is at least m.

Proof - open complexity

Figure – Open and closed factors in the Rauzy graph of order *N*.

1 Complexity functions

Open and closed complexity functions

3 Words with bounded open complexity are ultimately periodic

4 Words with bounded closed complexity are ultimately periodic

Closed complexity function

Theorem

Let $x \in \mathbb{A}^{\mathbb{N}}$ be such that $\limsup_{n \in \mathbb{N}} Cl_x(n) < k$. Then x is ultimately periodic.

Lemma

Let x be aperiodic with closed complexity bounded by k. At least one of the two following assertions holds :

1. $\forall u \in \text{RecFact}(x), \exists (p \leq k, a_1, \dots, a_p, a, b) \in \mathbb{N} \times \mathbb{A}^{p+2}, a \neq b, such that$

$$aa_1 \cdots a_p u \in \operatorname{RecFact}(x)$$
 and $ba_1 \cdots a_p u \in \operatorname{RecFact}(x)$;

2. $\forall u \in \text{RecFact}(x), \exists (p \leq k, a_1, \dots, a_p, a, b) \in \mathbb{N} \times \mathbb{A}^{p+2}, a \neq b, such that$

 $ua_1 \cdots a_p a \in \text{RecFact}(x)$ and $ua_1 \cdots a_p b \in \text{RecFact}(x)$.

Let *u* be such that *u* is always preceded by $a_1a_2\cdots a_k$.

Let *u* be such that *u* is always preceded by $a_1a_2 \cdots a_k$. Let *v* be such that *v* is always followed by $b_1b_2 \cdots b_k$.

Let *u* be such that *u* is always preceded by $a_1a_2\cdots a_k$. Let *v* be such that *v* is always followed by $b_1b_2\cdots b_k$.

Let w be such that uwv is a recurrent factor of x. We consider a complete first return to uwv.

Let *u* be such that *u* is always preceded by $a_1a_2\cdots a_k$. Let *v* be such that *v* is always followed by $b_1b_2\cdots b_k$.

Let w be such that uwv is a recurrent factor of x. We consider a complete first return to uwv.

Figure -k closed factors of x.

Corollary

Let $x \in \mathbb{A}^{\mathbb{N}}$ with bounded closed complexity. If x is uniformly recurrent, then it is periodic.

Corollary

Let $x \in \mathbb{A}^{\mathbb{N}}$ with bounded closed complexity. If x is uniformly recurrent, then it is periodic.

Figure – It is possible to avoid seeing *u*.

Lemma

Let $x \in \mathbb{A}^{\mathbb{N}}$ with $\limsup \operatorname{Cl}_{x}(n) < k$. Let u be a primitive word in $\operatorname{Fact}(x)$ such that, for every $n \in \mathbb{N}$, $u^{n} \in \operatorname{Fact}(x)$. Then |u| < k.

Lemma

Let $x \in \mathbb{A}^{\mathbb{N}}$ with $\limsup \operatorname{Cl}_{x}(n) < k$. Let u be a primitive word in $\operatorname{Fact}(x)$ such that, for every $n \in \mathbb{N}$, $u^{n} \in \operatorname{Fact}(x)$. Then |u| < k.

The word *uuu* contains the square r(u)r(u) for every rotation of *u*.

An operator often used in symbolic dynamics is the **shift operator** T. That operator has many uses in combinatorics on words. It is defined on infinite words as follows :

$$\forall x \in \mathbb{A}^{\mathbb{N}}, x = x_0 x_1 x_2 \cdots, T(x) = x_1 x_2 x_3 \cdots$$

An operator often used in symbolic dynamics is the **shift operator** T. That operator has many uses in combinatorics on words. It is defined on infinite words as follows :

$$\forall x \in \mathbb{A}^{\mathbb{N}}, x = x_0 x_1 x_2 \cdots$$
, $T(x) = x_1 x_2 x_3 \cdots$

For $x \in \mathbb{A}^{\mathbb{N}}$, we let $\Omega(x)$ denote the **shift orbit closure** of *x*, i.e. the closure in $\mathbb{A}^{\mathbb{N}}$ for the usual topology of the set

 $\{T^n(x) \mid n \in \mathbb{N}\}.$

An operator often used in symbolic dynamics is the **shift operator** T. That operator has many uses in combinatorics on words. It is defined on infinite words as follows :

$$\forall x \in \mathbb{A}^{\mathbb{N}}$$
, $x = x_0 x_1 x_2 \cdots$, $T(x) = x_1 x_2 x_3 \cdots$

For $x \in \mathbb{A}^{\mathbb{N}}$, we let $\Omega(x)$ denote the **shift orbit closure** of x, i.e. the closure in $\mathbb{A}^{\mathbb{N}}$ for the usual topology of the set

$$\{T^n(x) \mid n \in \mathbb{N}\}.$$

Theorem (Furstenberg)

For every infinite word x over a finite alphabet, $\Omega(x)$ contains at least one uniformly recurrent element.

Starting from x, we construct a word y that does not contain powers of great order.

- Starting from x, we construct a word y that does not contain powers of great order.
- We consider a uniformly recurrent element in $\Omega(y)$ and derive a contradiction.

Closed complexity function

Definition

A subset *S* of \mathbb{N} is **syndetic** if it has bounded gaps, so if there exists *d* such that, for every integer *n*,

 $S \cap [n, n+d] \neq \emptyset$.

Closed complexity function

Definition

A subset *S* of \mathbb{N} is **syndetic** if it has bounded gaps, so if there exists *d* such that, for every integer *n*,

$$S \cap [n, n+d] \neq \emptyset.$$

Theorem

Let $x \in \mathbb{A}^{\mathbb{N}}$ be such that there exist a positive integer d and a syndetic subset $S \subseteq \mathbb{N}$ with gaps smaller than d on which the closed complexity of x is bounded, i.e. there exists $k \in \mathbb{N}$ such that $Cl_x(n) < k$ for every $n \in S$. Then x is ultimately periodic.

Theorem (O. Parshina, P. 2020)

Let $x \in \mathbb{A}^{\mathbb{N}}$ be a right-infinite word over a finite alphabet \mathbb{A} . The following are equivalent :

- 1. x is aperiodic;
- 2. $\liminf_{n \to +\infty} \operatorname{Op}_{X}(n) = +\infty.$
- 3. There exists a syndetic set S such that $Cl_x(n)$ is bounded on S.

Thank you for your attention!