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We will say, that word W can be squre reduced in one step to word U (denoted by
W — U) iff exist words A, B, C such that W = ABBC and U = ABC.

Word W can be square reduced to word U (denoted by W ~~ U) iff W = U or if we can find
a sequence of one step square reductions starting with word W and ending with word U. It's
obvious that relation ~~ is a transitive and reflexive closure of relation —.

Word U is a reduct of word W iff W ~~ U and U is square-free.

We will denote the set of all reducts of word W by R(W) and size of this set by r(W). Let
fx(n) be the maximal value of r(W) over all words of length n over alphabet of size k.
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Example 1 - (ab)®

® ababababab — abababab
® ababababab — ababab
® ababababab — ababab

ababababab ~~ ababababab
ababababab ~~ abababab
ababababab ~~ ababab
ababababab ~ abab
ababababab ~ ab

ab is the only reduct of ababababab.
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Example 2 - abcbabcbc

abcbabcbc
abcbabcbc i
1 abcbc
abcbabc i
abc

abcbabcbc has two reducts
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Binary words

Proposition

Every binary word W satisfies r(W) = 1.

Sketch of proof:

® Only six square-free binary words exist: 0, 1, 01, 10, 010, 101.
o |f W ~» U, then first letter, last letter and set of letters of W is the same as for U.
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Ternary words

For every integer k > 1, there exists a ternary word W with r(W) > k.

A = abacabcbacabacbabc
B = abacabcbacbcacbabc
C = abacbcacbacabcbabc
D = abacabcbabcbabacabacacbcacbabcbababce
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Ternary words
Morphism ¢ :a+— A, b— B, c+> C is square-free. \

By the result of Crochemore, to prove that a morphism is square-free it suffices to check its
images on the set of square-free words of length at most 3.

Morphism ¢’ : a— B, b— A, ¢+ C is square-free. l
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Ternary words

D~ Aand D ~ B. l

D~ A D~ B
abacabcbabcbabacabacacbcacbabcbababc abacabcbabcbabacabacacbcacbabcbababc
abacabcbabacabacacbcacbabcbababc abacabcbabacabacacbcacbabcbababc
abacabcbacabacacbcacbabcbababc abacabcbacabacacbcacbabcbababc
abacabcbacabacacbabcbababc abacabcbacacbcacbabcbababc
abacabcbacabacbabcbababc abacabcbacbcacbabcbababc
abacabcbacabacbababc abacabcbacbcacbababc

abacabcbacabacbabc abacabcbacbcacbabc
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Ternary words

We can define new morphism ¢» :a— D, b+— D, c+— C. Since D ~» A and D ~~ B we
know, that for each ternary word W (W) ~» (W) and (W) ~~ o' (W).

Since for any morphing x we may prove that if U ~~ W then x(U) ~» x(W) we may conclude
that for any word S if T € R(S) then ¢o(T),¢'(T) € R(¥(S)).
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Ternary words

Let W be any ternary word containing one of letters a, b then r(¢)(W)) > 2r(W).

e If S# T, then p(S) # ¢(T) and ¢'(S) # ¢'(T).
® For all S containing one of letters a,b ¢(S) # ¢/(S).

So each word S € R(W) generate two distinct words ¢(S) and ¢/(S), both being elements of
R(p(W)).
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Ternary words

The number of square-free words of length n over a 3-letter alphabet is at least c¢”, for some
constant ¢ > 1.

There exists a constant « > 1 such that f3(n) > a".
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Ternary words

Consider a word W,;, = CDDDCDDD - - - CDDD = (CDDD)™.

® DDD can be reduced to any of the words A, B, AB, BA, ABA, BAB.

® W, can be reduced to any square-free word over alphabet {A, B, C} having m letters C
and starting with CA or CB. The number of such words is at least ¢™.
® | ength of W, is at most 36m.

Theorem follows for & = ¢3 and since ¢ is roughly 1.3 we know that o > 1.0073.
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Words over four letters

For every integer k > 1, there exists a word over a 4-letter alphabet with exactly k distinct
reducts.
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Words over four letters

Let us fix the 4-letter alphabet as {a, b, x, y}. Take the word F = xabaxababx having exactly
two reducts P = xabx and Q = xabaxabx = Q'P.

Let W4 be any infinite square-free word over the alphabet {a, b, y} starting with the letter y.
Let Wi, Wh, ... be any sequence of prefixes of the word W, with strictly growing lengths such

that each of them ends with letter y.

For each i > 1 word S; = FWiFW, - - - FW; has exactly i + 1 reducts.

R(Si) = {PW;, QW;} U {PWAQW;, PW2QW;, ..., PW;_1QW;}.
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Words over four letters

Let W = a1as - - - a5 be any square-free word, where each a; is a single letter. Let

V = all“aé2 -+ akn where each k; is a positive integer. Then every square in V is of the form

x?K where x = a; for some i € 1,2, ..., n.

15/27



Words over four letters

Let U be a word over alphabet {a, b, x} starting and ending with the letter x. Let

1
a = r(U)1U5. Then there exists a constant ¢ such that fa(n) > ca”, for all n € N

Let S be any infinite square-free word over alphabet {a, b, y} starting with the letter y. Let T
be a word obtained form S by duplicating every occurrence of the letter y in S, except the first
one. Hence, the word T can be written uniquely as T = T1 T» T3... , where each factor T;
starts and ends with the letter y, and these are the only occurrences of this letter in T;.
Finally, let us define V; = UT1UT> - - - UT}, for each j > 1.
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Words over four letters

e r(V;)=r(UY.
© [V <j(U| +5)
o (V) = r(UY > (r(U) )Y = oV

|Vis1] — | V| < |U] + 5, therefore we can take ¢ = a~(IUI+5)

One may check that the word U = xabaxababxbabx satisfies r(U) = 4 and |U| = 14. Hence,
in the above theorem we may take a = 4% ~ 1.075.
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Posets of square reductions

For any alphabet X pair (X*,~) forms a poset.

Poset S = ({a, b}*,~>) is universal.
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Posets of square reductions

Let A= a1 bha®2bh---a* and B = a%1ha%b-..ab A~ Biff aj > B forallie 1,2, ... n.

Let P be a poset and R be it's realizer of size n. For element p of poset P let «;(p) be the
positions of element p in j-th linear order of R.

We will map element p to ¢(p) = a®1(P) pge2(P)p . .. a2n(P) |t's easy to see that for any
element p, g of poset P ¢(p) ~ &(q) iff aj(p) > «i(q) for all i € 1,2, ..., n, which means that
p > q in poset P.
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Posets of square reductions

Let Gk be a graph created by removing directions of edges from poset ([k]*,~~).

Gs has finitely many connected components. \

20 /27



Posets of square reductions

X1 = abcabac Y7 = abcbac
Xo = abcacba Y> = abcba
X3 = abcbabc Y3 = abc

X4 = abcbacab Y4 = abcab
Xs = abcbacb Ys = abcacbh

S1 = abcbabcbcacbcacabacabcbacabcabacacbcabacac
S, = abcbabcbcacbcabacbcabcbacbcabcacbecbabeba

S3 = abcbabcbcacbcacabacabcbabebce

S4 = abcbabcbcacbcacabacabcbacabcabacacbcacbacab
Ss = abcbabcbcacbcabacbcabcbacbcabcacbabcacbch
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Posets of square reductions

® Each square-free ternary word of leangth at least 9 contains one of the words X (up to
alphabet permutation).

® Foreachiel,...,5, 5~ X;and S; ~ Y}, therefore X; and Y; are in the same connected
component.

® |f S = AX;B then S is in the same connected component as AY;B.
® Foreach i€ l,..,5 |Xi| > 1Yl

Since each connected component contains square-free word of length at most 8, then Gs has
finitely many connected components.
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Open problems

Is there a ternary word W with r(W) = 807

Other missing values up to 120: 95, 97, 101, 102, 104, 105, 107, 117, 119.

There exist infinitely many positive integers m such that no ternary word have exactly m
distinct reducts.
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Open problems

Conjecture (Fraenkel and Simpson)

Each word of length n has at most n distinct squares.

Each word of length n can be square reduced in one step to at most n different words. l
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Open problems

For every k > 1 Gy has finitely many connected components. \
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Questions?
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The End
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