Square-free reducts of words Combinatorics on Words Seminar

Szymon Stankiewicz

joint work with Jarosław Grytczuk

March 15, 2021

We will say, that word W can be squre reduced in one step to word U (denoted by $W \rightarrow U$) iff exist words A, B, C such that W = ABBC and U = ABC.

Word W can be **square reduced** to word U (denoted by $W \rightsquigarrow U$) iff W = U or if we can find a sequence of one step square reductions starting with word W and ending with word U. It's obvious that relation \rightsquigarrow is a transitive and reflexive closure of relation \rightarrow .

Word U is a **reduct** of word W iff $W \rightsquigarrow U$ and U is square-free.

We will denote the set of all reducts of word W by R(W) and size of this set by r(W). Let $f_k(n)$ be the maximal value of r(W) over all words of length n over alphabet of size k.

- $ababababab \rightarrow abababab$
- $ababababab \rightarrow ababab$
- $ababababab \rightarrow ababab$

- ababababab ~→ ababababab
- ababababab ~→ abababab
- $\bullet \ ababababab \rightsquigarrow ababab$
- ababababab ~→ abab
- ababababab ~→ ab

ab is the only reduct of ababababab.

abcbabcbc has two reducts

Proposition

Every binary word W satisfies r(W) = 1.

Sketch of proof:

- Only six square-free binary words exist: 0, 1, 01, 10, 010, 101.
- If $W \rightsquigarrow U$, then first letter, last letter and set of letters of W is the same as for U.

Theorem

For every integer $k \ge 1$, there exists a ternary word W with $r(W) \ge k$.

- A = abacabcbacabacbabc
- B = abacabcbacbcacbabc
- C = a bacbcacbacabcbabc
- D = abacabcbabcbabacabacacbcacbabcbababc

Lemma

Morphism $\varphi : a \mapsto A, b \mapsto B, c \mapsto C$ is square-free.

By the result of Crochemore, to prove that a morphism is square-free it suffices to check its images on the set of square-free words of length at most 3.

Corollary

Morphism $\varphi' : a \mapsto B, b \mapsto A, c \mapsto C$ is square-free.

Ternary words

Lemma

 $D \rightsquigarrow A \text{ and } D \rightsquigarrow B.$

 $D \rightsquigarrow A$

abacahchahchahacahacachcachahchahahc abacahchahacabacachcachahchahahc abacabcbacabacacbcacbabcbababc abacabcbacabacac babcbababc abacab**cbacabacbabcbaba**bc abacab**cbacabac**bababc abacabcbacabacbabc

abacabchabchabacabacachcachabchababc abacahchahacabacachcachahchahahc abacabc bacabacacbcacbabcbababc abacabcbacacbcacbabcbababc abacab**cbacbcacbabcbaba**bc abacabcbacbcacbababc abacabcbacbcacbabc

 $D \rightsquigarrow B$

We can define new morphism $\psi : a \mapsto D$, $b \mapsto D$, $c \mapsto C$. Since $D \rightsquigarrow A$ and $D \rightsquigarrow B$ we know, that for each ternary word $W \ \psi(W) \rightsquigarrow \varphi(W)$ and $\psi(W) \rightsquigarrow \varphi'(W)$.

Since for any morphing χ we may prove that if $U \rightsquigarrow W$ then $\chi(U) \rightsquigarrow \chi(W)$ we may conclude that for any word S if $T \in R(S)$ then $\varphi(T), \varphi'(T) \in R(\psi(S))$.

Lemma

Let W be any ternary word containing one of letters a, b then $r(\psi(W)) \ge 2r(W)$.

- If $S \neq T$, then $\varphi(S) \neq \varphi(T)$ and $\varphi'(S) \neq \varphi'(T)$.
- For all S containing one of letters a, b $\varphi(S) \neq \varphi'(S)$.

So each word $S \in R(W)$ generate two distinct words $\varphi(S)$ and $\varphi'(S)$, both being elements of $R(\psi(W))$.

Fact

The number of square-free words of length n over a 3-letter alphabet is at least c^n , for some constant c > 1.

Theorem

There exists a constant $\alpha > 1$ such that $f_3(n) \ge \alpha^n$.

Consider a word $W_m = CDDDCDDD \cdots CDDD = (CDDD)^m$.

- *DDD* can be reduced to any of the words *A*, *B*, *AB*, *BA*, *ABA*, *BAB*.
- W_m can be reduced to any square-free word over alphabet $\{A, B, C\}$ having *m* letters *C* and starting with *CA* or *CB*. The number of such words is at least c^m .
- Length of W_m is at most 36m.

Theorem follows for $\alpha = c^{\frac{1}{36}}$ and since c is roughly 1.3 we know that $\alpha \ge 1.0073$.

Theorem

For every integer $k \ge 1$, there exists a word over a 4-letter alphabet with exactly k distinct reducts.

Let us fix the 4-letter alphabet as $\{a, b, x, y\}$. Take the word F = xabaxababx having exactly two reducts P = xabx and Q = xabaxabx = Q'P.

Let W_{∞} be any infinite square-free word over the alphabet $\{a, b, y\}$ starting with the letter y. Let $W_1, W_2, ...$ be any sequence of prefixes of the word W_{∞} with strictly growing lengths such that each of them ends with letter y.

Lemma

For each $i \ge 1$ word $S_i = FW_1FW_2 \cdots FW_i$ has exactly i + 1 reducts.

 $R(S_i) = \{PW_i, QW_i\} \cup \{PW_1QW_i, PW_2QW_i, ..., PW_{i-1}QW_i\}.$

Lemma

Let $W = a_1 a_2 \cdots a_n$ be any square-free word, where each a_i is a single letter. Let $V = a_1^{k_1} a_2^{k_2} \cdots a_n^{k_n}$, where each k_i is a positive integer. Then every square in V is of the form x^{2k} , where $x = a_i$ for some $i \in 1, 2, ..., n$.

Theorem

Let U be a word over alphabet $\{a, b, x\}$ starting and ending with the letter x. Let $\alpha = r(U)^{\frac{1}{|U|+5}}$. Then there exists a constant c such that $f_4(n) \ge c\alpha^n$, for all $n \in \mathbb{N}$

Let S be any infinite square-free word over alphabet $\{a, b, y\}$ starting with the letter y. Let T be a word obtained form S by duplicating every occurrence of the letter y in S, except the first one. Hence, the word T can be written uniquely as $T = T_1 T_2 T_3 \dots$, where each factor T_i starts and ends with the letter y, and these are the only occurrences of this letter in T_i . Finally, let us define $V_j = UT_1UT_2 \cdots UT_j$, for each $j \ge 1$.

- $r(V_j) = r(U)^j$.
- $|V_j| \le j(|U| + 5)$

•
$$r(V_j) = r(U)^j \ge (r(U)^{\frac{1}{|U|+5}})^{|V_j|} = \alpha^{|V_j|}$$

• $|V_{i+1}| - |V| \leq |U| + 5$, therefore we can take $c = lpha^{-(|U|+5)}$

One may check that the word U = xabaxababxbabx satisfies r(U) = 4 and |U| = 14. Hence, in the above theorem we may take $\alpha = 4^{\frac{1}{19}} \approx 1.075$.

Fact

For any alphabet Σ pair ($\Sigma^*, \rightsquigarrow$) forms a poset.

Theorem

Poset $S = (\{a, b\}^*, \rightsquigarrow)$ is universal.

Lemma

Let $A = a^{\alpha_1} b a^{\alpha_2} b \cdots a^{\alpha_n}$ and $B = a^{\beta_1} b a^{\beta_2} b \cdots a^{\beta_n}$. $A \rightsquigarrow B$ iff $\alpha_i \ge \beta_i$ for all $i \in 1, 2, ..., n$.

Let P be a poset and R be it's realizer of size n. For element p of poset P let $\alpha_i(p)$ be the positions of element p in *i*-th linear order of R.

We will map element p to $\phi(p) = a^{\alpha_1(p)} b a^{\alpha_2(p)} b \cdots a^{\alpha_n(p)}$. It's easy to see that for any element p, q of poset $P \phi(p) \rightsquigarrow \phi(q)$ iff $\alpha_i(p) \ge \alpha_i(q)$ for all $i \in 1, 2, ..., n$, which means that $p \ge q$ in poset P.

Let G_k be a graph created by removing directions of edges from poset $([k]^*, \rightsquigarrow)$.

Theorem

G₃ has finitely many connected components.

Posets of square reductions

$X_1 = abcabac$	$Y_1 = abcbac$
$X_2 = abcacba$	$Y_2 = abcba$
$X_3 = abcbabc$	$Y_3 = abc$
$X_4 = abcbacab$	$Y_4 = abcab$
$X_5 = abcbacb$	$Y_5 = abcacb$

- $S_1 = abcbabcbcacbcacabacabcbacabcabacacbcabacac$
- $S_3 = abcbabcbcacbcacabacabcbabcbc$
- $S_5 = abcbabcbcacbcabacbcabcbacbcabcacbabcacbcb$

- Each square-free ternary word of leangth at least 9 contains one of the words X (up to alphabet permutation).
- For each i ∈ 1, ..., 5, S_i → X_i and S_i → Y_i, therefore X_i and Y_i are in the same connected component.
- If $S = AX_iB$ then S is in the same connected component as AY_iB .
- For each $i \in 1, ..., 5$, $|X_i| > |Y_i|$.

Since each connected component contains square-free word of length at most 8, then G_3 has finitely many connected components.

Question

Is there a ternary word W with r(W) = 80?

Other missing values up to 120: 95, 97, 101, 102, 104, 105, 107, 117, 119.

Conjecture

There exist infinitely many positive integers m such that no ternary word have exactly m distinct reducts.

Conjecture (Fraenkel and Simpson)

Each word of length n has at most n distinct squares.

Conjecture

Each word of length n can be square reduced in one step to at most n different words.

Conjecture

For every $k \ge 1$ G_k has finitely many connected components.

Questions?

The End