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Warm up : Lyndon words

Let A be (totally) ordered. Eg: A = {a,b} with a < b.

1 x ∈ A+ is Lyndon if x ≤ x ′ for each suffix x ′ of x . Eg.
ab, aabab, . . . .

2 x ∈ A+ is anti-Lyndon if x ≥ x ′ for each suffix x ′ of x . Eg.
ba, bbaba,aa,bab, bba, . . .

3 x ∈ A+ is alt-Lyndon if x ≤alt x ′ for each suffix x ′ of x . Eg.
ab, abaabb, . . . .

4 x ∈ A+ is anti-alt-Lyndon if x ≥alt x ′ for each suffix x ′ of x .
Eg. ba, babbaa, . . . .
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Outline

1 Extremal problems in the theory of finite continued
fractions

2 Singular words

3 A non-commutative variant of the Euclidean algorithm
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Regular continuant

For x = x1x2 · · · xn (xi ∈ N)

K (x) = Kn(x1, x2, . . . , xn)

K0() = 1, K1(x1) = x1

Kn(x1, x2, . . . , xn) = xnKn−1(x1, x2, . . . , xn−1) + Kn−2(x1, x2, . . . , xn−2)

K (x∗) = K (x) x∗ = xnxn−1 · · · x1

K (x) is the denominator of the terminating regular
continued fraction [0; x1, x2, . . . , xn].
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Semi-regular continuant

.
K (x) =

.
Kn(x1, x2, . . . , xn)

.
K0() = 1,

.
K1(x1) = x1

.
Kn(x1, x2, . . . , xn) = xn

.
Kn−1(x1, x2, . . . , xn−1)−

.
Kn−2(x1, x2, . . . , xn−2)

.
K (x) =

.
K (x∗)

If xi ≥ 2, then
.
K (x) is the denominator of the semi-regular c.f.

[x ]• =
1

x1 −
1

x2 −
1

x3 − · · ·
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Matrix comparison

X =



x1 1 0 · · · 0

1 x2 1
. . . 0

0 1
. . . . . . 0

...
. . . . . . xn−1 1

0 · · · 0 1 xn


K (x1x2 · · · xn) = perm(X ).

.
K (x1x2 · · · xn) = det(X ).
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Cyclic continuants of Motzkin-Straus (1956)

The following cyclic analogues of K and
.
K are well defined on

cyclic words (circular words/necklaces...) :

K�(x1x2 · · · xn) = K (x1x2 · · · xn) + K (x2 · · · xn−1)

.
K�(x1x2 · · · xn) =

.
K (x1x2 · · · xn)−

.
K (x2 · · · xn−1)

Remark
The cyclic continuant K� also appears in a 2008 paper by J.
Berstel, L. Boasson, O. Carton, under the name circular
continuant, in connection with Hopcroft’s automaton
minimisation algorithm.
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Problem

Given
x = an1

1 an2
2 · · · a

nk
k

1 ≤ a1 < a2 < · · · < ak and n1 + n2 + · · ·+ nk = n

Problem (C.A. Nicol, ≤ 1955)
Describe the extremal (maximising/minimising) arrangements
for K (·).

Problem

Describe the extremal arrangements for
.
K (·).

Problem (Ramharter 83)

Describe the extremal arrangements for K�(·) and
.
K�(·).
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Ramharter’s theorem 1983

Ramharter found both the maximising and minimising
arrangements for the regular continuant K (·).

He also found the minimising arrangement for
.
K (·).

In all three cases, the extremal arrangements are unique
(up to reversal) and independent of the actual values of the
+’ve integers a1,a2, . . . ,ak .
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Ramharter’s theorem 1983

Example : If x = an1
1 an2

2 · · · a
nk
k with 1 ≤ a1 < a2 < · · · < ak then

maximising arrangement for K (·) is unique up to reversal
and is given by :

akLk−1ak−2Lk−3 · · · an1
1 · · · ak−3Lk−2ak−1Lk

Li = ani−1
i (leftovers).

2233333555888 7→ 8553223333588.
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Ramharter’s theorem ’83

The determination of the maximising arrangement for
.
K (·)

turned out to be more difficult.

“There is an infinity of essentially different patterns.”
“The maximising arrangements have to be described in
terms of an algorithmic procedure, as their combinatorial
structure is exceptionally complicated.”

The maximising arrangement for
.
K (·) in the binary case

x = an1
1 an2

2 is unique and independent on the actual choice
of +’ve integers a1 and a2.
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Fast forward 20 years

G. Ramharter: Maximal continuants and the Fine-Wilf
theorem JCTA (2005) :

On a binary alphabet 2 ≤ a1 < a2 the maximizing
arrangement for

.
K (·) is a Sturmian word; he develops a

Euclidean-like algorithm for constructing the arrangement
as a function of the Parikh vector (n1,n2).

Palindromic (binary) maximising arrangements are in 1-1
correspondence with the extremal cases of the Fine and
Wilf theorem with co-prime periods p and q.

Ramharter conjectured that for general an1
1 an2

2 · · · a
nk
k with

2 ≤ a1 < a2 < · · · < ak , the maximising arrangement for.
K (·) is unique and independent of the actual values of the
+’ve integers ai .
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Ramharter’s key observations

Theorem (1, Ramharter 83)

Let x = x1x2 · · · xn (xi ≥ 2).

Suppose x = u∗vw with v 6= v∗

and u 6= w . If v ≺ v∗ and u ≺ w (or v � v∗ and u � w), then.
K (u∗v∗w) >

.
K (u∗vw).

Theorem (2, Ramharter 83)

Let x = x1x2 · · · xn (xi ≥ 2). Suppose x = u∗vw with v 6= v∗

and u 6= w . If v ≺alt v∗ and u ≺alt w (or v �alt v∗ and u �alt w),
then K (u∗v∗w) < K (u∗vw).

(K ,≺alt ) (
.
K ,≺)
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Ramharter’s key observations -Example-

Theorem (1, Ramharter 83)

Let x = x1x2 · · · xn (xi ≥ 2). Suppose x = u∗vw with v 6= v∗

and u 6= w . If v ≺ v∗ and u ≺ w (or v � v∗ and u � w) then.
K (u∗v∗w) >

.
K (u∗vw).

(n2,n3,n4,n5) = (3,6,4,6).

x = 5543324533324545235

= 5543324533324545235.
K (5543325454233354235) >

.
K (5543324533324545235)

3024689366 > 3022832894.

x ′ = 5543325454233354235 = 5543325454233354235.
K (5543325454233355324) >

.
K (5543325454233354235)

3078516614 > 3024689366.

xmax = 2535253534435344352 :
.
Kmax = 4823503656.

xmin = 5554433322233344555 :
.
Kmin = 1888985692.
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x = 5543324533324545235 = 5543324533324545235.
K (5543325454233354235) >

.
K (5543324533324545235)

3024689366 > 3022832894.

x ′ = 5543325454233354235 = 5543325454233354235

.
K (5543325454233355324) >

.
K (5543325454233354235)

3078516614 > 3024689366.

xmax = 2535253534435344352 :
.
Kmax = 4823503656.

xmin = 5554433322233344555 :
.
Kmin = 1888985692.

14/ 33 One World CoW Seminar Singular Words



Ramharter’s key observations -Example-

Theorem (1, Ramharter 83)

Let x = x1x2 · · · xn (xi ≥ 2). Suppose x = u∗vw with v 6= v∗

and u 6= w . If v ≺ v∗ and u ≺ w (or v � v∗ and u � w) then.
K (u∗v∗w) >

.
K (u∗vw).

(n2,n3,n4,n5) = (3,6,4,6).

x = 5543324533324545235 = 5543324533324545235.
K (5543325454233354235) >

.
K (5543324533324545235)

3024689366 > 3022832894.

x ′ = 5543325454233354235 = 5543325454233354235.
K (5543325454233355324) >

.
K (5543325454233354235)

3078516614 > 3024689366.

xmax = 2535253534435344352 :
.
Kmax = 4823503656.

xmin = 5554433322233344555 :
.
Kmin = 1888985692.

14/ 33 One World CoW Seminar Singular Words



Ramharter’s key observations -Example-

Theorem (1, Ramharter 83)

Let x = x1x2 · · · xn (xi ≥ 2). Suppose x = u∗vw with v 6= v∗

and u 6= w . If v ≺ v∗ and u ≺ w (or v � v∗ and u � w) then.
K (u∗v∗w) >

.
K (u∗vw).

(n2,n3,n4,n5) = (3,6,4,6).

x = 5543324533324545235 = 5543324533324545235.
K (5543325454233354235) >

.
K (5543324533324545235)

3024689366 > 3022832894.

x ′ = 5543325454233354235 = 5543325454233354235.
K (5543325454233355324) >

.
K (5543325454233354235)

3078516614 > 3024689366.

xmax = 2535253534435344352 :
.
Kmax = 4823503656.

xmin = 5554433322233344555 :
.
Kmin = 1888985692.

14/ 33 One World CoW Seminar Singular Words



Directed graph construction (version 1)

Let A be an ordered (abstract) alphabet and
x = x1x2 · · · xn ∈ A+.

Let Π(x) denote the abelian class of x .
For y , z ∈ Π(x), put a directed edge y → z whenever
y = u∗vw , z = u∗v∗w with v ≺ v∗ and u ≺ w (or v � v∗

and u � w).

This construction factors to the quotient X(x) = Π(x)/∗
and defines a directed graph

.
G(x) with vertex set X(x).

Theorem (Ramharter 83)

The directed graph
.
G(x) is acyclic and has a unique vertex with

in-degree zero (and hence in particular
.
G(x) is connected as a

graph). Thus the minimising arrangement for
.
K (·) is unique.
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Directed graph construction (version 2)

Let A be an ordered (abstract) alphabet and
x = x1x2 · · · xn ∈ A+.

Let Π(x) denote the abelian class of x .
For y , z ∈ Π(x), put a directed edge y → z whenever
y = u∗vw , z = u∗v∗w with v ≺alt v∗ and u ≺alt w (or
v �alt v∗ and u �alt w).

This construction factors to the quotient X(x) = Π(x)/∗
and defines a directed graph G(x) with vertex set X(x).

Theorem (Ramharter ’83)

The directed graph G(x) is acyclic and has a unique vertex with
in-degree zero and a unique vertex with out-degree zero. Thus
both extremal arrangements for K (·) are unique.
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Directed graph construction (exotic version a la DRR)

Let A be an ordered (abstract) alphabet and
x = x1x2 · · · xn ∈ A+. To each α ∈ {0,1}N 7→�α on A∗.
Eg. α = 0ω 7→� and α = (01)ω 7→�alt .

For y , z ∈ Π(x), put a directed edge y → z whenever
y = u∗vw , z = u∗v∗w with v ≺α v∗ and u ≺α w (or
v �α v∗ and u �α w).

This construction factors to the quotient X(x) = Π(x)/∗
and defines a directed graph Gα(x).

Theorem

Let α ∈ {0,1}N. The directed graph Gα(x) is acyclic for each
x ∈ A+ iff α = 0ω or α = (01)ω.
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Cyclic versions of Theorems 1 & 2

Theorem (1�)
Let x = x1x2 · · · xn xi ≥ 2 be a cyclic word. Suppose x = uv
with u 6= u∗ and v 6= v∗. If u ≺ u∗ and v � v∗ (or u � u∗ and
v ≺ v∗), then

.
K�(u∗v) >

.
K�(uv).

Theorem (2�)
Let x = x1x2 · · · xn xi ≥ 2 be a cyclic word. Suppose x = uv
with u 6= u∗ and v 6= v∗. If u ≺alt u∗ and v �alt v∗ (or u �alt u∗

and v ≺alt v∗) then K�(u∗v) < K�(uv).
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Same story in the cyclic case

Let x ∈ A� be a cyclic word over an ordered alphabet A.

Theorem
The directed graph G�(x) has a unique vertex with in-degree 0
and a unique vertex with out degree 0. In particular, if
x = an1

1 · · · a
nk
k (ai ≥ 2), then both extremal arrangements for

K�(·) are unique (up to reversal) and independent of the values
of the ai .

Theorem

The directed graph
.
G
�

(x) has a unique vertex with in-degree 0.
In particular, if x = an1

1 · · · a
nk
k (ai ≥ 2), then the minimising

arrangement for
.
K�(·) is unique (up to reversal) and

independent of the values of the ai .
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Singular words - Linear version

Definition

Let A be an ordered alphabet and let x ∈ A+ ∪ AN ∪ AZ. We
say x is singular if for all factorisations x = u∗vw (v ∈ A+) with
v 6= v∗ and u 6= w we have v ≺ v∗ iff w ≺ u.

Remark

Let x ∈ A+ ∪ AZ. Then x is singular iff x∗ is singular.
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Singular words - Cyclic version

Definition
Let A be an ordered alphabet. We say ω ∈ A� is (cyclic)
singular if for all factorisations ω = uv with u 6= u∗ and v 6= v∗

we have u ≺ u∗ iff v ≺ v∗.

Remark
x ∈ A� is singular iff x∗ is singular.

Lemma
x ∈ A+ is singular iff x∞ ∈ A� is (cyclic) singular.
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Binary singular words

Let A = {a < b}.

x ∈ AZ is singular iff x is balanced.
x ∈ AN aperiodic is singular iff x is a Lyndon Sturmian
word.
x ∈ A� is singular iff x is a power of a Christoffel word.
Christoffel words maximise

.
K�(·).

x ∈ A+ is singular iff x or x∗ is of the form bn, abn or ava
where v is a bispecial Sturmian word (equiv: a′vb′ is a
power of a Christoffel word A = {a′,b′}, (G. Fici, 2014)).
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Example

Example

Find a singular word with Parikh vector (na,nb) = (7,14).

(7,14) 7→ (6,15).

(6,15) = 3(2,5).

(2,5) 7→ abbabbb.
(6,15) 7→ (abbabbb)3.

w = abbabbb · abbabbb · abbabba.
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Bi-infinite binary singular words & Markoff property

Let A = {a,b} with a < b and x ∈ AZ.

Markoff property : For all factorisation x = u∗a′b′w with
a′ 6= b′ and u 6= w =⇒ a′ < b′ iff w < u. (Singular property
with |v | = 2).

C. Reutenauer, 2006 : x ∈ AZ is balanced iff x verifies the
Markoff property.

x ∈ AZ is singular iff x verifies the Markoff property.
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Interval exchange transformations

0 γ1 γ2 γ3 1

0 β1 β2 β3 1

i .d .o.c.⇔ the k − 1 sets {T−n(γi) : n ≥ 0} are infinite & disjoint.
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Singular words & symmetric interval exchange
transformations

Let Ak = {1,2, . . . , k}.

In 2008, with S. Ferenczi we gave an axiomatic
characterisation of languages L ⊂ A∗k defined by k -iets
satisfying i.d.o.c.

Let <1, <2 be two linear orders on Ak .

Order condition : For all w ∈ A∗k : awd ,bwc ∈ L with
a 6= b, c 6= d =⇒ a <1 b iff d <2 c.

Symmetric order condition : For all w ∈ A∗k : awd ,bwc ∈ L
with a 6= b, c 6= d =⇒ a < b iff c < d .

Lemma

Assume x ∈ AZ
k with L(x) is symmetric. Then x is singular iff

L(x) satisfies the symmetric order condition.
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k with L(x) is symmetric. Then x is singular iff

L(x) satisfies the symmetric order condition.
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Singular words & symmetric interval exchange
transformations

Theorem (DEZ)

Let Ak = {1,2, . . . , k} (k ≥ 2) and let x ∈ AZ
k be uniformly

recurrent. Then the following are equivalent :
1 x is singular and L(x) is symmetric.
2 L(x) is the language of a symmetric k-interval exchange

transformation.
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Finite singular words on higher alphabets

abacabadabacaba (Fraenkel words) -unique-

a3b5c7 7→ acbcbcacbcbcbca -unique-
a3b7c5 7→ acbbbcbbcacbbca -unique-

Theorem
Each abelian class over an ordered ternary alphabet contains a
unique (up to reversal) singular word. Thus if x = an1

1 an2
2 an3

3 with
2 ≤ a1 < a2 < a3. Then the maximising arrangement for

.
K (·) is

unique and independent of the values of the ai .

a3b7c5d4e6 7→ aebdbebdbebdcccccdbeaebea -unique-
(a3b7c5d4e6z)� 7→ aebdbebdbebdcccccdbeaebeaz
(a3b7c5d5e6z)� 7→ aebdcccdbebdbebdccdbeaebeaz
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Non-unicity on 4 letters

Example : x = bcdbda & x ′ = bdbcda ↔ (1,2,1,2)

If (a,b, c,d) 7→ (3,4,5,6)
.
K (x) = 6827 &

.
K (x ′) = 6825 ;

.
K (x) >

.
K (x ′).

If (a,b, c,d) 7→ (3,4,7,8)
.
K (x) =

.
K (x ′) = 18247. xmax is not unique.

If (a,b, c,d) 7→ (3,4,15,16)
.
K (x) = 171127 &

.
K (x ′) = 171135 ;

.
K (x ′) >

.
K (x).
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Non-commutative variant of the Euclidean algorithm

Let α = (α1, α2, . . . , αk ) be given with αi > 0. (Ordered Parikh
vector of a cyclic word or a symmetric k-i.e.t. with |Ij | = αj).

δi = |
∑
j>i

αj −
∑
j<i

αj |

1. δi > 0 for i = 1,2, . . . , k ; then either
(a) ∃! index j such that αj > δj and ∀i 6= j , αi < δi . i.d.o.c
(b) ∃! index j such that αj = δj and αj+1 = δj+1 and
∀i 6= j , j + 1, αi < δi .
k = 5, j = 2 : α2 = δ2 = α3 + α4 + α5 − α1
α1 + α2 = α3 + α4 + α5 ⇔ γ2 = 1/2
γ3 = T−1γ2 contradicts the “d” in i.d.o.c.

(α1, α2, . . . , αk ) 7→ (α1, · · · , αj−1, αj − δj , αj+1, · · · , αk )
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Non-commutative variant of the Euclidean algorithm

2. δj = 0 for some j = 1,2, . . . , k (this j is unique);

Geometrically =⇒ The point 1/2 is the midpoint of one of
the exchanged intervals Ij .
γj = T−1γj =⇒ Contradicts the “i” in i.d.o.c.

(α1, α2, . . . , αk ) 7→ (α1, · · · , αj−1,0, αj+1, · · · , αk )

Applied to a Parikh vector α, this state corresponds to the
critical state of the algorithm, and may give rise to multiple
cyclic singular words having the same Parikh vector.
Ex : (1,2,1,2)↔ (1,2,1,2,1)� δc = 0.

If only cases 1.(a) or 1.(b) occur, then there exists a unique
cyclic singular word having the prescribed Parikh vector and
hence a unique global maximum for

.
K�(·) or for

.
K (·).

Ex : (2,3,4,3).
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Conclusions

Associated to each symmetric k -i.e.t. (i.d.o.c.) is an infinite
directive word on {1,2, . . . , k} (as for A.R. sequences)

Question
¿ Symmetric 3-i.e.t whose directive word is (abc)ω ? ( 3-i.e.t.
analogue of Tribonacci)

Let T be the symmetric 3-i.e.t. with interval lengths

α = (

√
3

3
,
2
√

3
3
− 1,2−

√
3).

Let x ∈ {a,b, c}N be the f.p. of τ : a 7→ aca, b 7→ acabab,
c 7→ acab.
x is the natural coding of T (0) = β2 = 1−

√
3/3 under T .

dropc ◦ dropb ◦ dropa(x) = x .
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Conclusions

Associated to each symmetric k -i.e.t. (i.d.o.c.) is an infinite
directive word on {1,2, . . . , k} (as for A.R. sequences)

Question
¿ Symmetric 3-i.e.t whose directive word is (abc)ω ? ( 3-i.e.t.
analogue of Tribonacci)

Let T be the symmetric 3-i.e.t. with interval lengths

α = (

√
3

3
,
2
√

3
3
− 1,2−

√
3).

Let x ∈ {a,b, c}N be the f.p. of τ : a 7→ aca, b 7→ acabab,
c 7→ acab.
x is the natural coding of T (0) = β2 = 1−

√
3/3 under T .

dropc ◦ dropb ◦ dropa(x) = x .
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THE END

Thank you for your attention !
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