Singular Words

Joint with Alessandro De Luca & Marcia Edson

One World Combinatorics on Words Seminar April 26, 2021

イロト イポト イヨト イヨト

E DQC

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ 釣へで

• $x \in \mathbb{A}^+$ is Lyndon if $x \le x'$ for each suffix x' of x. Eg. *ab*, *aabab*,

- $x \in \mathbb{A}^+$ is Lyndon if $x \le x'$ for each suffix x' of x. Eg. *ab*, *aabab*,
- 2 $x \in \mathbb{A}^+$ is anti-Lyndon if $x \ge x'$ for each suffix x' of x. Eg. *ba*, *bbaba*,

イロト 不得 とくほ とくほ とう

∃ <2 <</p>

- $x \in \mathbb{A}^+$ is Lyndon if $x \le x'$ for each suffix x' of x. Eg. *ab*, *aabab*,
- 2 $x \in \mathbb{A}^+$ is anti-Lyndon if $x \ge x'$ for each suffix x' of x. Eg. ba, bbaba, aa,

イロト 不得 とくほ とくほ とう

∃ <2 <</p>

- $x \in \mathbb{A}^+$ is Lyndon if $x \le x'$ for each suffix x' of x. Eg. *ab*, *aabab*,
- 2 $x \in \mathbb{A}^+$ is anti-Lyndon if $x \ge x'$ for each suffix x' of x. Eg. ba, bbaba, aa, bab, bba, ...

・ロト ・回 ト ・ ヨ ト ・

= 990

三) (

- $x \in \mathbb{A}^+$ is Lyndon if $x \le x'$ for each suffix x' of x. Eg. *ab*, *aabab*,
- 2 $x \in \mathbb{A}^+$ is anti-Lyndon if $x \ge x'$ for each suffix x' of x. Eg. ba, bbaba, aa, bab, bba, . . .
- **③** $x \in \mathbb{A}^+$ is alt-Lyndon if $x \leq_{alt} x'$ for each suffix x' of x. Eg. *ab*, *abaabb*,

・ロト ・回 ト ・ ヨ ト ・

= 990

- $x \in \mathbb{A}^+$ is Lyndon if $x \le x'$ for each suffix x' of x. Eg. *ab*, *aabab*,
- 2 $x \in \mathbb{A}^+$ is anti-Lyndon if $x \ge x'$ for each suffix x' of x. Eg. ba, bbaba, aa, bab, bba, . . .
- **③** $x \in \mathbb{A}^+$ is alt-Lyndon if $x \leq_{alt} x'$ for each suffix x' of x. Eg. *ab*, *abaabb*,
- $x \in \mathbb{A}^+$ is anti-alt-Lyndon if $x \ge_{alt} x'$ for each suffix x' of x. Eg. *ba*, *babbaa*,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Extremal problems in the theory of finite continued fractions

- ② Singular words
- A non-commutative variant of the Euclidean algorithm

イロト イポト イヨト イヨト

E DQC

For
$$x = x_1 x_2 \cdots x_n$$
 $(x_i \in \mathbb{N})$
 $K(x) = K_n(x_1, x_2, \dots, x_n)$

$$K_{0}() = 1, K_{1}(x_{1}) = x_{1}$$

$$K_{n}(x_{1}, x_{2}, \dots, x_{n}) = x_{n}K_{n-1}(x_{1}, x_{2}, \dots, x_{n-1}) + K_{n-2}(x_{1}, x_{2}, \dots, x_{n-2})$$

$$K(x^{*}) = K(x) \qquad x^{*} = x_{n}x_{n-1}\cdots x_{1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

K(x) is the denominator of the terminating regular continued fraction [0; x₁, x₂,..., x_n].

Semi-regular continuant

$$\dot{K}(x) = \dot{K}_n(x_1, x_2, \dots, x_n)$$

 $\dot{K}_0() = 1, \ \dot{K}_1(x_1) = x_1$

$$\dot{K}_{n}(x_{1}, x_{2}, \dots, x_{n}) = x_{n} \dot{K}_{n-1}(x_{1}, x_{2}, \dots, x_{n-1}) - \dot{K}_{n-2}(x_{1}, x_{2}, \dots, x_{n-2})$$
$$\dot{K}(x) = \dot{K}(x^{*})$$

If $x_i \ge 2$, then $\dot{K}(x)$ is the denominator of the semi-regular c.f.

$$[x]^{\bullet} = \frac{1}{x_1 - \frac{1}{x_2 - \frac{1}{x_3 - \dots}}}$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Matrix comparison

$$X = \begin{pmatrix} x_1 & 1 & 0 & \cdots & 0 \\ 1 & x_2 & 1 & \ddots & 0 \\ 0 & 1 & \ddots & \ddots & 0 \\ \vdots & \ddots & \ddots & x_{n-1} & 1 \\ 0 & \cdots & 0 & 1 & x_n \end{pmatrix}$$

$$K(x_1x_2\cdots x_n) = \operatorname{perm}(X)$$

$$\tilde{K}(x_1x_2\cdots x_n) = \det(X).$$

・ロト ・聞 ト ・ ヨト ・ ヨト

6/33

One World CoW Seminar Singular Words

Cyclic continuants of Motzkin-Straus (1956)

The following cyclic analogues of K and K are well defined on cyclic words (circular words/necklaces...) :

$$K^{\circlearrowright}(x_1x_2\cdots x_n)=K(x_1x_2\cdots x_n)+K(x_2\cdots x_{n-1})$$

$$\dot{K}^{\circlearrowright}(x_1x_2\cdots x_n)=\dot{K}(x_1x_2\cdots x_n)-\dot{K}(x_2\cdots x_{n-1})$$

э

< < >> < </p>

Cyclic continuants of Motzkin-Straus (1956)

The following cyclic analogues of K and K are well defined on cyclic words (circular words/necklaces...) :

$$K^{\circlearrowright}(x_1x_2\cdots x_n)=K(x_1x_2\cdots x_n)+K(x_2\cdots x_{n-1})$$

$$\dot{K}^{\circlearrowright}(x_1x_2\cdots x_n)=\dot{K}(x_1x_2\cdots x_n)-\dot{K}(x_2\cdots x_{n-1})$$

Remark

The cyclic continuant K° also appears in a 2008 paper by J. Berstel, L. Boasson, O. Carton, under the name *circular continuant*, in connection with Hopcroft's automaton minimisation algorithm.

Given

$$x = a_1^{n_1} a_2^{n_2} \cdots a_k^{n_k}$$

 $1 \le a_1 < a_2 < \cdots < a_k$ and $n_1 + n_2 + \cdots + n_k = n$

Given

$$x = a_1^{n_1} a_2^{n_2} \cdots a_k^{n_k}$$

 $1 \le a_1 < a_2 < \cdots < a_k$ and $n_1 + n_2 + \cdots + n_k = n$

Problem (C.A. Nicol, \leq 1955)

Describe the extremal (maximising/minimising) arrangements for $K(\cdot)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Given

$$x=a_1^{n_1}a_2^{n_2}\cdots a_k^{n_k}$$

 $1 \le a_1 < a_2 < \cdots < a_k$ and $n_1 + n_2 + \cdots + n_k = n$

Problem (C.A. Nicol, \leq 1955)

Describe the extremal (maximising/minimising) arrangements for $K(\cdot)$.

Problem

Describe the extremal arrangements for $K(\cdot)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Given

$$x=a_1^{n_1}a_2^{n_2}\cdots a_k^{n_k}$$

 $1 \le a_1 < a_2 < \cdots < a_k$ and $n_1 + n_2 + \cdots + n_k = n$

Problem (C.A. Nicol, \leq 1955)

Describe the extremal (maximising/minimising) arrangements for $K(\cdot)$.

Problem

Describe the extremal arrangements for $K(\cdot)$.

Problem (Ramharter 83)

Describe the extremal arrangements for $K^{\circlearrowright}(\cdot)$ and $\dot{K}^{\circlearrowright}(\cdot)$.

イロト 不得 とくほ とくほ とう

э

 Ramharter found both the maximising and minimising arrangements for the regular continuant K(·).

イロト 不得 とくほ とくほ とう

∃ <2 <</p>

- Ramharter found both the maximising and minimising arrangements for the regular continuant K(·).
- He also found the minimising arrangement for $\dot{K}(\cdot)$.

イロト 不得 とくほ とくほ とう

= 990

- Ramharter found both the maximising and minimising arrangements for the regular continuant $K(\cdot)$.
- He also found the minimising arrangement for $\dot{K}(\cdot)$.
- In all three cases, the extremal arrangements are unique (up to reversal) and independent of the actual values of the +'ve integers a_1, a_2, \ldots, a_k .

Example : If $x = a_1^{n_1} a_2^{n_2} \cdots a_k^{n_k}$ with $1 \le a_1 < a_2 < \cdots < a_k$ then • maximising arrangement for $K(\cdot)$ is unique up to reversal and is given by :

$$a_k L_{k-1} a_{k-2} L_{k-3} \cdots a_1^{n_1} \cdots a_{k-3} L_{k-2} a_{k-1} L_k$$

3

▲ @ ▶ ▲ 三 ▶ ▲

$$L_i = a_i^{n_i-1}$$
 (leftovers).

 $\textbf{2233333555888}\mapsto \textbf{8553223333588}.$

• The determination of the maximising arrangement for $\dot{K}(\cdot)$ turned out to be more difficult.

ヘロト ヘアト ヘヨト ヘ

E DQC

- The determination of the maximising arrangement for $\dot{K}(\cdot)$ turned out to be more difficult.
 - "There is an infinity of essentially different patterns."

3

三 🕨 👘

< □ > < 同 > < 三 > <

- The determination of the maximising arrangement for $\dot{K}(\cdot)$ turned out to be more difficult.
 - "There is an infinity of essentially different patterns."
 - "The maximising arrangements have to be described in terms of an algorithmic procedure, as their combinatorial structure is exceptionally complicated."

< ロ > < 同 > < 三 >

- The determination of the maximising arrangement for $\dot{K}(\cdot)$ turned out to be more difficult.
 - "There is an infinity of essentially different patterns."
 - "The maximising arrangements have to be described in terms of an algorithmic procedure, as their combinatorial structure is exceptionally complicated."
- The maximising arrangement for $K(\cdot)$ in the binary case $x = a_1^{n_1} a_2^{n_2}$ is unique and independent on the actual choice of +'ve integers a_1 and a_2 .

Fast forward 20 years

 G. Ramharter: Maximal continuants and the Fine-Wilf theorem JCTA (2005) :

イロト イポト イヨト イヨト

E DQC

- G. Ramharter: Maximal continuants and the Fine-Wilf theorem *JCTA* (2005) :
 - On a binary alphabet $2 \le a_1 < a_2$ the maximizing arrangement for $\dot{K}(\cdot)$ is a Sturmian word; he develops a Euclidean-like algorithm for constructing the arrangement as a function of the Parikh vector (n_1, n_2) .

< ロ > < 同 > < 三 >

æ

- G. Ramharter: Maximal continuants and the Fine-Wilf theorem *JCTA* (2005) :
 - On a binary alphabet $2 \le a_1 < a_2$ the maximizing arrangement for $\dot{K}(\cdot)$ is a Sturmian word; he develops a Euclidean-like algorithm for constructing the arrangement as a function of the Parikh vector (n_1, n_2) .
 - Palindromic (binary) maximising arrangements are in 1-1 correspondence with the extremal cases of the Fine and Wilf theorem with co-prime periods *p* and *q*.

- G. Ramharter: Maximal continuants and the Fine-Wilf theorem *JCTA* (2005) :
 - On a binary alphabet $2 \le a_1 < a_2$ the maximizing arrangement for $\dot{K}(\cdot)$ is a Sturmian word; he develops a Euclidean-like algorithm for constructing the arrangement as a function of the Parikh vector (n_1, n_2) .
 - Palindromic (binary) maximising arrangements are in 1-1 correspondence with the extremal cases of the Fine and Wilf theorem with co-prime periods *p* and *q*.
- Ramharter conjectured that for general $a_1^{n_1} a_2^{n_2} \cdots a_k^{n_k}$ with $2 \le a_1 < a_2 < \cdots < a_k$, the maximising arrangement for $\dot{K}(\cdot)$ is unique and independent of the actual values of the +'ve integers a_i .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let $x = x_1 x_2 \cdots x_n$ $(x_i \ge 2)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$),

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$), then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$), then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

Theorem (2, Ramharter 83)

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec_{alt} v^*$ and $u \prec_{alt} w$ (or $v \succ_{alt} v^*$ and $u \succ_{alt} w$), then $K(u^*v^*w) < K(u^*vw)$.

$$(K,\prec_{alt})$$
 (\dot{K},\prec)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●
Ramharter's key observations -Example-

Theorem (1, Ramharter 83)

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

• *x* = 5543324533324545235

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Ramharter's key observations -Example-

Theorem (1, Ramharter 83)

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

• *x* = 5543324533324545235 = 5543324533324545235

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

• x = 5543324533324545235 = 5543324533324545235K(5543325454233354235) > K(5543324533324545235)3024689366 > 3022832894.

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

• x = 5543324533324545235 = 5543324533324545235 $\dot{K}(5543325454233354235) > \dot{K}(5543324533324545235)$ 3024689366 > 3022832894.

• *x*′ = 5543325454233354235

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

• x = 5543324533324545235 = 5543324533324545235 $\dot{K}(5543325454233354235) > \dot{K}(5543324533324545235)$ 3024689366 > 3022832894.

• *x*′ = 5543325454233354235 = 5543325454233354235

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

- x = 5543324533324545235 = 5543324533324545235K(5543325454233354235) > K(5543324533324545235)3024689366 > 3022832894.
- x' = 5543325454233354235 = 5543325454233354235K(5543325454233355324) > K(5543325454233354235)3078516614 > 3024689366.

Let $x = x_1 x_2 \cdots x_n$ ($x_i \ge 2$). Suppose $x = u^* vw$ with $v \ne v^*$ and $u \ne w$. If $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$) then $\dot{K}(u^*v^*w) > \dot{K}(u^*vw)$.

 $(n_2, n_3, n_4, n_5) = (3, 6, 4, 6).$

- x = 5543324533324545235 = 5543324533324545235 $\dot{K}(5543325454233354235) > \dot{K}(5543324533324545235)$ 3024689366 > 3022832894.
- x' = 5543325454233354235 = 5543325454233354235 $\dot{K}(5543325454233355324) > \dot{K}(5543325454233354235)$ 3078516614 > 3024689366.

• $x_{max} = 2535253534435344352$: $K_{max} = 4823503656$. $x_{min} = 5554433322233344555$: $K_{min} = 1888985692$.

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

• Let $\Pi(x)$ denote the abelian class of x.

イロト 不得 とくほ とくほ とう

∃ <2 <</p>

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

- Let $\Pi(x)$ denote the abelian class of *x*.
- For y, z ∈ Π(x), put a directed edge y → z whenever y = u*vw, z = u*v*w with v ≺ v* and u ≺ w (or v ≻ v* and u ≻ w).

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 ● のへの

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

- Let $\Pi(x)$ denote the abelian class of x.
- For y, z ∈ Π(x), put a directed edge y → z whenever y = u*vw, z = u*v*w with v ≺ v* and u ≺ w (or v ≻ v* and u ≻ w).
- This construction factors to the quotient X(x) = Π(x)/* and defines a directed graph G
 [']
 [']
 (x) with vertex set X(x).

ヘロト ヘアト ヘヨト ヘ

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

- Let $\Pi(x)$ denote the abelian class of x.
- For $y, z \in \Pi(x)$, put a directed edge $y \to z$ whenever $y = u^* vw, z = u^* v^* w$ with $v \prec v^*$ and $u \prec w$ (or $v \succ v^*$ and $u \succ w$).
- This construction factors to the quotient X(x) = Π(x)/* and defines a directed graph G
 [']
 ^{''}
 ^{'''}
 ^{''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{'''}
 ^{''''}
 ^{''''}
 ^{''''}
 ^{''''}
 ^{''''}
 ^{'''''}
 ^{''''''}

Theorem (Ramharter 83)

The directed graph $\mathcal{G}(x)$ is acyclic and has a unique vertex with in-degree zero (and hence in particular $\mathcal{G}(x)$ is connected as a graph). Thus the minimising arrangement for $K(\cdot)$ is unique.

・ロト ・ 『 ト ・ ヨ ト

э

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

- Let $\Pi(x)$ denote the abelian class of *x*.
- For $y, z \in \Pi(x)$, put a directed edge $y \to z$ whenever $y = u^* v w$, $z = u^* v^* w$ with $v \prec_{alt} v^*$ and $u \prec_{alt} w$ (or $v \succ_{alt} v^*$ and $u \succ_{alt} w$).
- This construction factors to the quotient X(x) = Π(x)/* and defines a directed graph G(x) with vertex set X(x).

▲□▶▲圖▶▲圖▶▲圖▶ ▲国 ● のへの

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$.

- Let $\Pi(x)$ denote the abelian class of *x*.
- For $y, z \in \Pi(x)$, put a directed edge $y \to z$ whenever $y = u^* v w$, $z = u^* v^* w$ with $v \prec_{alt} v^*$ and $u \prec_{alt} w$ (or $v \succ_{alt} v^*$ and $u \succ_{alt} w$).
- This construction factors to the quotient X(x) = Π(x)/* and defines a directed graph G(x) with vertex set X(x).

Theorem (Ramharter '83)

The directed graph $\mathcal{G}(x)$ is acyclic and has a unique vertex with in-degree zero and a unique vertex with out-degree zero. Thus both extremal arrangements for $K(\cdot)$ are unique.

くロト (調) (目) (目)

æ

Directed graph construction (exotic version a la DRR)

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$. To each $\alpha \in \{0, 1\}^{\mathbb{N}} \mapsto \preceq_{\alpha}$ on \mathbb{A}^* . Eg. $\alpha = 0^{\omega} \mapsto \preceq$ and $\alpha = (01)^{\omega} \mapsto \preceq_{alt}$.

イロト イ押ト イヨト イヨトー

э.

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$. To each $\alpha \in \{0, 1\}^{\mathbb{N}} \mapsto \preceq_{\alpha}$ on \mathbb{A}^* . Eg. $\alpha = 0^{\omega} \mapsto \preceq$ and $\alpha = (01)^{\omega} \mapsto \preceq_{alt}$.

- For $y, z \in \Pi(x)$, put a directed edge $y \to z$ whenever $y = u^* v w$, $z = u^* v^* w$ with $v \prec_{\alpha} v^*$ and $u \prec_{\alpha} w$ (or $v \succ_{\alpha} v^*$ and $u \succ_{\alpha} w$).
- This construction factors to the quotient X(x) = Π(x)/* and defines a directed graph G_α(x).

ヘロト 人間 ト 人目 ト 人目 トー

Let \mathbb{A} be an ordered (abstract) alphabet and $x = x_1 x_2 \cdots x_n \in \mathbb{A}^+$. To each $\alpha \in \{0, 1\}^{\mathbb{N}} \mapsto \preceq_{\alpha}$ on \mathbb{A}^* . Eg. $\alpha = 0^{\omega} \mapsto \preceq$ and $\alpha = (01)^{\omega} \mapsto \preceq_{alt}$.

- For $y, z \in \Pi(x)$, put a directed edge $y \to z$ whenever $y = u^* v w$, $z = u^* v^* w$ with $v \prec_{\alpha} v^*$ and $u \prec_{\alpha} w$ (or $v \succ_{\alpha} v^*$ and $u \succ_{\alpha} w$).
- This construction factors to the quotient X(x) = Π(x)/* and defines a directed graph G_α(x).

Theorem

Let $\alpha \in \{0, 1\}^{\mathbb{N}}$. The directed graph $\mathcal{G}_{\alpha}(x)$ is acyclic for each $x \in \mathbb{A}^+$ iff $\alpha = 0^{\omega}$ or $\alpha = (01)^{\omega}$.

<ロト < 回 > < 回 > < 回 > < 回 > = 回

Theorem (1[°])

Let $x = x_1 x_2 \cdots x_n$ $x_i \ge 2$ be a cyclic word. Suppose x = uv with $u \ne u^*$ and $v \ne v^*$. If $u \prec u^*$ and $v \succ v^*$ (or $u \succ u^*$ and $v \prec v^*$), then $K^{\circlearrowright}(u^*v) > K^{\circlearrowright}(uv)$.

Theorem (2[©])

Let $x = x_1 x_2 \cdots x_n$ $x_i \ge 2$ be a cyclic word. Suppose x = uvwith $u \ne u^*$ and $v \ne v^*$. If $u \prec_{alt} u^*$ and $v \succ_{alt} v^*$ (or $u \succ_{alt} u^*$ and $v \prec_{alt} v^*$) then $K^{\circlearrowright}(u^*v) < K^{\circlearrowright}(uv)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Same story in the cyclic case

Let $x \in \mathbb{A}^{\circlearrowright}$ be a cyclic word over an ordered alphabet \mathbb{A} .

Theorem

The directed graph $\mathcal{G}^{\circlearrowright}(x)$ has a unique vertex with in-degree 0 and a unique vertex with out degree 0. In particular, if $x = a_1^{n_1} \cdots a_k^{n_k}$ ($a_i \ge 2$), then both extremal arrangements for $K^{\circlearrowright}(\cdot)$ are unique (up to reversal) and independent of the values of the a_i .

ヘロト ヘアト ヘヨト

Same story in the cyclic case

Let $x \in \mathbb{A}^{\circlearrowright}$ be a cyclic word over an ordered alphabet \mathbb{A} .

Theorem

The directed graph $\mathcal{G}^{\circlearrowright}(x)$ has a unique vertex with in-degree 0 and a unique vertex with out degree 0. In particular, if $x = a_1^{n_1} \cdots a_k^{n_k}$ ($a_i \ge 2$), then both extremal arrangements for $K^{\circlearrowright}(\cdot)$ are unique (up to reversal) and independent of the values of the a_i .

Theorem

The directed graph $\dot{\mathcal{G}}^{\heartsuit}(x)$ has a unique vertex with in-degree 0. In particular, if $x = a_1^{n_1} \cdots a_k^{n_k}$ ($a_i \ge 2$), then the minimising arrangement for $\dot{K}^{\circlearrowright}(\cdot)$ is unique (up to reversal) and independent of the values of the a_i .

Let \mathbb{A} be an ordered alphabet and let $x \in \mathbb{A}^+ \cup \mathbb{A}^{\mathbb{N}} \cup \mathbb{A}^{\mathbb{Z}}$. We say x is *singular* if for all factorisations $x = u^* vw$ ($v \in \mathbb{A}^+$) with $v \neq v^*$ and $u \neq w$ we have $v \prec v^*$ iff $w \prec u$.

Let \mathbb{A} be an ordered alphabet and let $x \in \mathbb{A}^+ \cup \mathbb{A}^{\mathbb{N}} \cup \mathbb{A}^{\mathbb{Z}}$. We say x is *singular* if for all factorisations $x = u^* vw$ ($v \in \mathbb{A}^+$) with $v \neq v^*$ and $u \neq w$ we have $v \prec v^*$ iff $w \prec u$.

Remark

Let $x \in \mathbb{A}^+ \cup \mathbb{A}^{\mathbb{Z}}$. Then x is singular iff x^* is singular.

Let \mathbb{A} be an ordered alphabet. We say $\omega \in \mathbb{A}^{\circlearrowright}$ is (cyclic) *singular* if for all factorisations $\omega = uv$ with $u \neq u^*$ and $v \neq v^*$ we have $u \prec u^*$ iff $v \prec v^*$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let \mathbb{A} be an ordered alphabet. We say $\omega \in \mathbb{A}^{\bigcirc}$ is (cyclic) singular if for all factorisations $\omega = uv$ with $u \neq u^*$ and $v \neq v^*$ we have $u \prec u^*$ iff $v \prec v^*$.

Remark

 $x \in \mathbb{A}^{\circlearrowright}$ is singular iff x^* is singular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let \mathbb{A} be an ordered alphabet. We say $\omega \in \mathbb{A}^{\circlearrowright}$ is (cyclic) *singular* if for all factorisations $\omega = uv$ with $u \neq u^*$ and $v \neq v^*$ we have $u \prec u^*$ iff $v \prec v^*$.

Remark

 $x \in \mathbb{A}^{\circlearrowright}$ is singular iff x^* is singular.

Lemma

 $x \in \mathbb{A}^+$ is singular iff $x \infty \in \mathbb{A}^{\circlearrowright}$ is (cyclic) singular.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Binary singular words

Let
$$\mathbb{A} = \{a < b\}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへで

Let
$$\mathbb{A} = \{a < b\}$$
.
• $x \in \mathbb{A}^{\mathbb{Z}}$ is singular iff x is balanced.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣・のへで

Let $\mathbb{A} = \{a < b\}$.

- $x \in \mathbb{A}^{\mathbb{Z}}$ is singular iff x is balanced.
- $x \in \mathbb{A}^{\mathbb{N}}$ aperiodic is singular iff x is a Lyndon Sturmian word.

くロト (調) (目) (目)

3

Let $\mathbb{A} = \{a < b\}$.

- $x \in \mathbb{A}^{\mathbb{Z}}$ is singular iff x is balanced.
- $x \in \mathbb{A}^{\mathbb{N}}$ aperiodic is singular iff x is a Lyndon Sturmian word.
- *x* ∈ A^č is singular iff *x* is a power of a Christoffel word. Christoffel words maximise *k*^č(·).

<<p>(日)

Let $\mathbb{A} = \{ a < b \}.$

- $x \in \mathbb{A}^{\mathbb{Z}}$ is singular iff x is balanced.
- $x \in \mathbb{A}^{\mathbb{N}}$ aperiodic is singular iff x is a Lyndon Sturmian word.
- *x* ∈ A^č is singular iff *x* is a power of a Christoffel word. Christoffel words maximise *k*^č(·).
- x ∈ A⁺ is singular iff x or x* is of the form bⁿ, abⁿ or ava where v is a bispecial Sturmian word (equiv: a'vb' is a power of a Christoffel word A = {a', b'}, (G. Fici, 2014)).

ヘロト ヘアト ヘヨト ヘ

Find a singular word with Parikh vector $(n_a, n_b) = (7, 14)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Find a singular word with Parikh vector $(n_a, n_b) = (7, 14)$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Find a singular word with Parikh vector $(n_a, n_b) = (7, 14)$.

•
$$(6, 15) = 3(2, 5).$$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Find a singular word with Parikh vector $(n_a, n_b) = (7, 14)$.

- (7, 14) → (6, 15).
- (6,15) = 3(2,5).
- $(2,5) \mapsto abbabbb.$

Find a singular word with Parikh vector $(n_a, n_b) = (7, 14)$.

- (7, 14) → (6, 15).
- (6,15) = 3(2,5).
- $(2,5) \mapsto abbabbb.$
- $(6, 15) \mapsto (abbabbb)^3$.

Find a singular word with Parikh vector $(n_a, n_b) = (7, 14)$.

- (7, 14) → (6, 15).
- (6,15) = 3(2,5).
- $(2,5) \mapsto abbabbb.$
- $(6, 15) \mapsto (abbabbb)^3$.
- $w = abbabbb \cdot abbabbb \cdot abbabba.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●
Let $\mathbb{A} = \{a, b\}$ with a < b and $x \in \mathbb{A}^{\mathbb{Z}}$.

イロト イポト イヨト イヨト

3

Let $\mathbb{A} = \{a, b\}$ with a < b and $x \in \mathbb{A}^{\mathbb{Z}}$.

• Markoff property : For all factorisation $x = u^* a' b' w$ with $a' \neq b'$ and $u \neq w \implies a' < b'$ iff w < u.

イロト 不得 とくほ とくほ とう

= 990

Let $\mathbb{A} = \{a, b\}$ with a < b and $x \in \mathbb{A}^{\mathbb{Z}}$.

• Markoff property : For all factorisation $x = u^* a' b' w$ with $a' \neq b'$ and $u \neq w \implies a' < b'$ iff w < u. (Singular property with |v| = 2).

Let $\mathbb{A} = \{a, b\}$ with a < b and $x \in \mathbb{A}^{\mathbb{Z}}$.

- Markoff property : For all factorisation $x = u^* a' b' w$ with $a' \neq b'$ and $u \neq w \implies a' < b'$ iff w < u. (Singular property with |v| = 2).
- C. Reutenauer, 2006 : $x \in \mathbb{A}^{\mathbb{Z}}$ is balanced iff x verifies the Markoff property.

Let $\mathbb{A} = \{a, b\}$ with a < b and $x \in \mathbb{A}^{\mathbb{Z}}$.

- Markoff property : For all factorisation $x = u^* a' b' w$ with $a' \neq b'$ and $u \neq w \implies a' < b'$ iff w < u. (Singular property with |v| = 2).
- C. Reutenauer, 2006 : $x \in \mathbb{A}^{\mathbb{Z}}$ is balanced iff x verifies the Markoff property.
- $x \in \mathbb{A}^{\mathbb{Z}}$ is singular iff x verifies the Markoff property.

Interval exchange transformations

i.d.o.c. \Leftrightarrow the k - 1 sets $\{T^{-n}(\gamma_i) : n \ge 0\}$ are infinite & disjoint.

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Let $\mathbb{A}_k = \{1, 2, ..., k\}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let $\mathbb{A}_k = \{1, 2, \dots, k\}.$

 In 2008, with S. Ferenczi we gave an axiomatic characterisation of languages L ⊂ A^{*}_k defined by k-iets satisfying i.d.o.c.

Let $A_k = \{1, 2, ..., k\}.$

- In 2008, with S. Ferenczi we gave an axiomatic characterisation of languages L ⊂ A^{*}_k defined by k-iets satisfying i.d.o.c.
- Let $<_1, <_2$ be two linear orders on \mathbb{A}_k .

Let $A_k = \{1, 2, ..., k\}.$

- In 2008, with S. Ferenczi we gave an axiomatic characterisation of languages L ⊂ A^{*}_k defined by k-iets satisfying i.d.o.c.
- Let $<_1, <_2$ be two linear orders on \mathbb{A}_k .
- Order condition : For all $w \in \mathbb{A}_k^*$: awd, $bwc \in L$ with $a \neq b, c \neq d \implies a <_1 b$ iff $d <_2 c$.

Let $A_k = \{1, 2, ..., k\}.$

- In 2008, with S. Ferenczi we gave an axiomatic characterisation of languages L ⊂ A^{*}_k defined by k-iets satisfying i.d.o.c.
- Let $<_1, <_2$ be two linear orders on \mathbb{A}_k .
- Order condition : For all $w \in \mathbb{A}_k^*$: awd, $bwc \in L$ with $a \neq b$, $c \neq d \Longrightarrow a <_1 b$ iff $d <_2 c$.
- Symmetric order condition : For all w ∈ A^{*}_k : awd, bwc ∈ L with a ≠ b, c ≠ d ⇒ a < b iff c < d.

Let $A_k = \{1, 2, ..., k\}.$

- In 2008, with S. Ferenczi we gave an axiomatic characterisation of languages L ⊂ A^{*}_k defined by k-iets satisfying i.d.o.c.
- Let $<_1, <_2$ be two linear orders on \mathbb{A}_k .
- Order condition : For all $w \in \mathbb{A}_k^*$: awd, $bwc \in L$ with $a \neq b$, $c \neq d \Longrightarrow a <_1 b$ iff $d <_2 c$.
- Symmetric order condition : For all w ∈ A^{*}_k : awd, bwc ∈ L with a ≠ b, c ≠ d ⇒ a < b iff c < d.

Lemma

Assume $x \in \mathbb{A}_k^{\mathbb{Z}}$ with L(x) is symmetric. Then x is singular iff L(x) satisfies the symmetric order condition.

Theorem (DEZ)

Let $\mathbb{A}_k = \{1, 2, ..., k\}$ $(k \ge 2)$ and let $x \in \mathbb{A}_k^{\mathbb{Z}}$ be uniformly recurrent. Then the following are equivalent :

- x is singular and L(x) is symmetric.
- L(x) is the language of a symmetric k-interval exchange transformation.

イロト 不得 とくほ とくほ とう

• abacabadabacaba (Fraenkel words) -unique-

イロト イポト イヨト イヨト

∃ <2 <</p>

- abacabadabacaba (Fraenkel words) -unique-
- $a^3b^5c^7 \mapsto acbcbcacbcbcbca$ -unique-

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

- abacabadabacaba (Fraenkel words) -unique-
- $a^3b^5c^7 \mapsto acbcbcacbcbcbca$ -unique-
- $a^3b^7c^5 \mapsto acbbbcbbcacbbca unique$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

- abacabadabacaba (Fraenkel words) -unique-
- $a^3b^5c^7 \mapsto acbcbcacbcbcbca$ -unique-
- $a^3b^7c^5 \mapsto acbbbcbbcacbbca unique$

Theorem

Each abelian class over an ordered ternary alphabet contains a unique (up to reversal) singular word. Thus if $x = a_1^{n_1} a_2^{n_2} a_3^{n_3}$ with $2 \le a_1 < a_2 < a_3$. Then the maximising arrangement for $K(\cdot)$ is unique and independent of the values of the a_i .

- abacabadabacaba (Fraenkel words) -unique-
- $a^3b^5c^7 \mapsto acbcbcacbcbcbca$ -unique-
- $a^3b^7c^5 \mapsto acbbbcbbcacbbca unique-$

Theorem

Each abelian class over an ordered ternary alphabet contains a unique (up to reversal) singular word. Thus if $x = a_1^{n_1} a_2^{n_2} a_3^{n_3}$ with $2 \le a_1 < a_2 < a_3$. Then the maximising arrangement for $K(\cdot)$ is unique and independent of the values of the a_i .

• $a^3b^7c^5d^4e^6 \mapsto aebdbebdbebdcccccdbeaebea$ -unique-

- abacabadabacaba (Fraenkel words) -unique-
- $a^3b^5c^7 \mapsto acbcbcacbcbcbca$ -unique-
- $a^3b^7c^5 \mapsto acbbbcbbcacbbca unique-$

Theorem

Each abelian class over an ordered ternary alphabet contains a unique (up to reversal) singular word. Thus if $x = a_1^{n_1} a_2^{n_2} a_3^{n_3}$ with $2 \le a_1 < a_2 < a_3$. Then the maximising arrangement for $K(\cdot)$ is unique and independent of the values of the a_i .

• $a^3b^7c^5d^4e^6 \mapsto aebdbebdbebdcccccdbeaebea$ -unique-

イロト イポト イヨト イヨト 一日

• $(a^3b^7c^5d^4e^6z)^{\circlearrowright} \mapsto aebdbebdbebdcccccdbeaebeaz$

- abacabadabacaba (Fraenkel words) -unique-
- $a^3b^5c^7 \mapsto acbcbcacbcbcbca$ -unique-
- $a^3b^7c^5 \mapsto acbbbcbbcacbbca unique-$

Theorem

Each abelian class over an ordered ternary alphabet contains a unique (up to reversal) singular word. Thus if $x = a_1^{n_1} a_2^{n_2} a_3^{n_3}$ with $2 \le a_1 < a_2 < a_3$. Then the maximising arrangement for $K(\cdot)$ is unique and independent of the values of the a_i .

- $a^3b^7c^5d^4e^6 \mapsto aebdbebdbebdcccccdbeaebea$ -unique-
- $(a^3b^7c^5d^4e^6z)^{\circlearrowright} \mapsto aebdbebdbebdcccccdbeaebeaz$
- $(a^3b^7c^5d^5e^6z)^{\circlearrowright} \mapsto aebdcccdbebdbebdccdbeaebeaz$

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

• If $(a, b, c, d) \mapsto (3, 4, 5, 6)$ $\dot{K}(x) = 6827 \& \dot{K}(x') = 6825; \quad \dot{K}(x) > \dot{K}(x').$

• If
$$(a, b, c, d) \mapsto (3, 4, 5, 6)$$

 $\dot{K}(x) = 6827 \& \dot{K}(x') = 6825; \quad \dot{K}(x) > \dot{K}(x').$

• If
$$(a, b, c, d) \mapsto (3, 4, 7, 8)$$

 $\dot{K}(x) = \dot{K}(x') = 18247.$

x_{max} is not unique.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• If
$$(a, b, c, d) \mapsto (3, 4, 5, 6)$$

 $\dot{K}(x) = 6827 \& \dot{K}(x') = 6825; \quad \dot{K}(x) > \dot{K}(x').$

• If
$$(a, b, c, d) \mapsto (3, 4, 7, 8)$$

 $\dot{K}(x) = \dot{K}(x') = 18247.$ x_{max} is not unique.

• If
$$(a, b, c, d) \mapsto (3, 4, 15, 16)$$

 $\dot{K}(x) = 171127 \& \dot{K}(x') = 171135; \quad \dot{K}(x') > \dot{K}(x).$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ be given with $\alpha_i > 0$. (Ordered Parikh vector of a cyclic word or a symmetric k-i.e.t. with $|I_i| = \alpha_i$).

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ be given with $\alpha_i > 0$. (Ordered Parikh vector of a cyclic word or a symmetric k-i.e.t. with $|I_i| = \alpha_i$).

$$\delta_i = |\sum_{j>i} \alpha_j - \sum_{j$$

イロト 不得 とくほ とくほ とう

э.

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ be given with $\alpha_i > 0$. (Ordered Parikh vector of a cyclic word or a symmetric k-i.e.t. with $|I_i| = \alpha_i$).

$$\delta_i = |\sum_{j>i} \alpha_j - \sum_{j$$

1.
$$\delta_i > 0$$
 for $i = 1, 2, ..., k$;

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ be given with $\alpha_i > 0$. (Ordered Parikh vector of a cyclic word or a symmetric k-i.e.t. with $|I_i| = \alpha_i$).

$$\delta_i = |\sum_{j>i} \alpha_j - \sum_{j$$

1.
$$\delta_i > 0$$
 for $i = 1, 2, ..., k$; then either
(a) $\exists !$ index j such that $\alpha_j > \delta_j$ and $\forall i \neq j, \alpha_i < \delta_i$. i.d.o.c
(b) $\exists !$ index j such that $\alpha_j = \delta_j$ and $\alpha_{j+1} = \delta_{j+1}$ and
 $\forall i \neq j, j + 1, \alpha_i < \delta_i$.

ヘロト 人間 ト 人目 ト 人目 トー

э.

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ be given with $\alpha_i > 0$. (Ordered Parikh vector of a cyclic word or a symmetric k-i.e.t. with $|I_i| = \alpha_i$).

$$\delta_i = |\sum_{j>i} \alpha_j - \sum_{j$$

1.
$$\delta_i > 0$$
 for $i = 1, 2, ..., k$; then either
(a) $\exists !$ index j such that $\alpha_j > \delta_j$ and $\forall i \neq j, \alpha_i < \delta_i$. i.d.o.c
(b) $\exists !$ index j such that $\alpha_j = \delta_j$ and $\alpha_{j+1} = \delta_{j+1}$ and
 $\forall i \neq j, j+1, \alpha_i < \delta_i$.
 $k = 5, j = 2 : \alpha_2 = \delta_2 = \alpha_3 + \alpha_4 + \alpha_5 - \alpha_1$
 $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4 + \alpha_5 \Leftrightarrow \gamma_2 = 1/2$
 $\gamma_3 = T^{-1}\gamma_2$ contradicts the "d" in i.d.o.c.

ヘロト 人間 ト 人目 ト 人目 トー

э.

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_k)$ be given with $\alpha_i > 0$. (Ordered Parikh vector of a cyclic word or a symmetric k-i.e.t. with $|I_i| = \alpha_i$).

$$\delta_i = |\sum_{j>i} \alpha_j - \sum_{j$$

1.
$$\delta_i > 0$$
 for $i = 1, 2, ..., k$; then either
(a) $\exists !$ index j such that $\alpha_j > \delta_j$ and $\forall i \neq j, \alpha_i < \delta_i$. i.d.o.c
(b) $\exists !$ index j such that $\alpha_j = \delta_j$ and $\alpha_{j+1} = \delta_{j+1}$ and
 $\forall i \neq j, j+1, \alpha_i < \delta_i$.
 $k = 5, j = 2 : \alpha_2 = \delta_2 = \alpha_3 + \alpha_4 + \alpha_5 - \alpha_1$
 $\alpha_1 + \alpha_2 = \alpha_3 + \alpha_4 + \alpha_5 \Leftrightarrow \gamma_2 = 1/2$
 $\gamma_3 = T^{-1}\gamma_2$ contradicts the "d" in i.d.o.c.
($\alpha_1, \alpha_2, ..., \alpha_k$) $\mapsto (\alpha_1, ..., \alpha_{i-1}, \alpha_i - \delta_i, \alpha_{i+1}, ..., \alpha_k$)

2.
$$\delta_j = 0$$
 for some $j = 1, 2, \dots, k$ (this j is unique);

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

2. $\delta_j = 0$ for some j = 1, 2, ..., k (this *j* is unique); Geometrically \implies The point 1/2 is the midpoint of one of the exchanged intervals I_j .

 $\gamma_j = T^{-1} \gamma_j \Longrightarrow$ Contradicts the "i" in i.d.o.c.

<ロト < 回 > < 回 > < 回 > < 回 > = 回

2. $\delta_j = 0$ for some j = 1, 2, ..., k (this *j* is unique); Geometrically \Longrightarrow The point 1/2 is the midpoint of one of the exchanged intervals I_j . $\gamma_i = T^{-1}\gamma_i \Longrightarrow$ Contradicts the "i" in i.d.o.c.

 $(\alpha_1, \alpha_2, \ldots, \alpha_k) \mapsto (\alpha_1, \cdots, \alpha_{j-1}, \mathbf{0}, \alpha_{j+1}, \cdots, \alpha_k)$

2. $\delta_j = 0$ for some j = 1, 2, ..., k (this *j* is unique); Geometrically \implies The point 1/2 is the midpoint of one of the exchanged intervals I_j . $\gamma_j = T^{-1}\gamma_j \implies$ Contradicts the "i" in i.d.o.c.

$$(\alpha_1, \alpha_2, \ldots, \alpha_k) \mapsto (\alpha_1, \cdots, \alpha_{j-1}, \mathbf{0}, \alpha_{j+1}, \cdots, \alpha_k)$$

Applied to a Parikh vector α , this state corresponds to the critical state of the algorithm, and may give rise to multiple cyclic singular words having the same Parikh vector. Ex : $(1,2,1,2) \leftrightarrow (1,2,1,2,1)^{\circ}$ $\delta_c = 0$.

ヘロト 人間 ト 人目 ト 人目 トー

2. $\delta_j = 0$ for some j = 1, 2, ..., k (this *j* is unique); Geometrically \implies The point 1/2 is the midpoint of one of the exchanged intervals I_j . $\gamma_j = T^{-1}\gamma_j \implies$ Contradicts the "i" in i.d.o.c.

$$(\alpha_1, \alpha_2, \ldots, \alpha_k) \mapsto (\alpha_1, \cdots, \alpha_{j-1}, \mathbf{0}, \alpha_{j+1}, \cdots, \alpha_k)$$

Applied to a Parikh vector α , this state corresponds to the critical state of the algorithm, and may give rise to multiple cyclic singular words having the same Parikh vector. Ex : $(1,2,1,2) \leftrightarrow (1,2,1,2,1)^{\circ}$ $\delta_c = 0$.

If only cases 1.(a) or 1.(b) occur, then there exists a unique cyclic singular word having the prescribed Parikh vector and hence a unique global maximum for $\dot{K}^{\circ}(\cdot)$ or for $\dot{K}(\cdot)$. Ex : (2,3,4,3).

<回▶ < 注▶ < 注▶ = 注

Associated to each symmetric *k*-i.e.t. (i.d.o.c.) is an infinite directive word on $\{1, 2, ..., k\}$ (as for A.R. sequences)

◆□ > ◆□ > ◆豆 > ◆豆 > □ = ・ つ < ()
Associated to each symmetric *k*-i.e.t. (i.d.o.c.) is an infinite directive word on $\{1, 2, ..., k\}$ (as for A.R. sequences)

Question

; Symmetric 3-i.e.t whose directive word is $(abc)^{\omega}$? (3-i.e.t. analogue of Tribonacci)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Associated to each symmetric *k*-i.e.t. (i.d.o.c.) is an infinite directive word on $\{1, 2, ..., k\}$ (as for A.R. sequences)

Question

; Symmetric 3-i.e.t whose directive word is $(abc)^{\omega}$? (3-i.e.t. analogue of Tribonacci)

• Let \mathcal{T} be the symmetric 3-i.e.t. with interval lengths

$$\alpha = (\frac{\sqrt{3}}{3}, \frac{2\sqrt{3}}{3} - 1, 2 - \sqrt{3}).$$

ヘロト 人間 ト 人目 ト 人目 トー

э.

Associated to each symmetric *k*-i.e.t. (i.d.o.c.) is an infinite directive word on $\{1, 2, ..., k\}$ (as for A.R. sequences)

Question

; Symmetric 3-i.e.t whose directive word is $(abc)^{\omega}$? (3-i.e.t. analogue of Tribonacci)

• Let \mathcal{T} be the symmetric 3-i.e.t. with interval lengths

$$\alpha = (\frac{\sqrt{3}}{3}, \frac{2\sqrt{3}}{3} - 1, 2 - \sqrt{3}).$$

ヘロト 人間 ト 人目 ト 人目 トー

• Let $x \in \{a, b, c\}^{\mathbb{N}}$ be the f.p. of $\tau : a \mapsto aca, b \mapsto acabab$, $c \mapsto acab$.

Associated to each symmetric *k*-i.e.t. (i.d.o.c.) is an infinite directive word on $\{1, 2, ..., k\}$ (as for A.R. sequences)

Question

; Symmetric 3-i.e.t whose directive word is $(abc)^{\omega}$? (3-i.e.t. analogue of Tribonacci)

• Let \mathcal{T} be the symmetric 3-i.e.t. with interval lengths

$$\alpha = (\frac{\sqrt{3}}{3}, \frac{2\sqrt{3}}{3} - 1, 2 - \sqrt{3}).$$

- Let $x \in \{a, b, c\}^{\mathbb{N}}$ be the f.p. of $\tau : a \mapsto aca, b \mapsto acabab$, $c \mapsto acab$.
- x is the natural coding of $\mathcal{T}(0) = \beta_2 = 1 \sqrt{3}/3$ under \mathcal{T} .

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Associated to each symmetric *k*-i.e.t. (i.d.o.c.) is an infinite directive word on $\{1, 2, ..., k\}$ (as for A.R. sequences)

Question

; Symmetric 3-i.e.t whose directive word is $(abc)^{\omega}$? (3-i.e.t. analogue of Tribonacci)

• Let \mathcal{T} be the symmetric 3-i.e.t. with interval lengths

$$\alpha = (\frac{\sqrt{3}}{3}, \frac{2\sqrt{3}}{3} - 1, 2 - \sqrt{3}).$$

- Let $x \in \{a, b, c\}^{\mathbb{N}}$ be the f.p. of $\tau : a \mapsto aca, b \mapsto acabab$, $c \mapsto acab$.
- x is the natural coding of $\mathcal{T}(0) = \beta_2 = 1 \sqrt{3}/3$ under \mathcal{T} .

 $\operatorname{drop}_{c} \circ \operatorname{drop}_{b} \circ \operatorname{drop}_{a}(x) = x.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Thank you for your attention !

・ロン・西方・ ・ ヨン・ ヨン・