On sets of indefinitely desubstitutable words

Gwenaël Richomme

LIRMM (CNRS, Univ. Montpellier) and Université Montpellier 3 France

One World Combinatorics on Words Seminar, May 3rd 2021

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Definition

A word **w** on an alphabet A is balanced if for all factors u, v of **w** with |u| = |v|for each letter a in A, $||u|_a - |v|_a| \le 1$.

(日) (四) (日) (日) (日)

Definition

A word **w** on an alphabet A is balanced if for all factors u, v of **w** with |u| = |v|for each letter a in A, $||u|_a - |v|_a| \le 1$.

(Right) infinite binary balanced words =

• Aperiodic words = Sturmian words

Definition

A word **w** on an alphabet A is balanced if for all factors u, v of **w** with |u| = |v|for each letter a in A, $||u|_a - |v|_a| \le 1$.

(Right) infinite binary balanced words =

• Aperiodic words = Sturmian words

• Periodic words = repetitions of conjugates of finite standard words

 $\mathsf{Example} = ab(abaab)^{\omega} = (ababa)^{\omega}$

Definition

A word **w** on an alphabet A is balanced if for all factors u, v of **w** with |u| = |v|for each letter a in A, $||u|_a - |v|_a| \le 1$.

(Right) infinite binary balanced words =

• Aperiodic words = Sturmian words

• Periodic words = repetitions of conjugates of finite standard words

 $\mathsf{Example} = ab(abaab)^{\omega} = (ababa)^{\omega}$

• Ultimately periodic words:

Examples = $a^n b a^{\omega}$, $(ab)^n a (ab)^{\omega}$, $(abaab)^n a b a (abaab)^{\omega}$, ...

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

• Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1

(日) (四) (日) (日) (日)

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	over { <i>a</i> , <i>ab</i> }
а	аа	over { <i>ab</i> , <i>b</i> }
b	bb	over { <i>ba</i> , <i>a</i> }
b	аа	over { <i>ba</i> , <i>b</i> }

(日) (四) (日) (日) (日)

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	over { <i>a</i> , <i>ab</i> }
а	аа	over { <i>ab</i> , <i>b</i> }
b	bb	over { <i>ba</i> , <i>a</i> }
b	аа	over $\{ba, b\}$

Definition
$$L_a: \begin{cases} a \mapsto a \\ b \mapsto ab \end{cases}$$

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	$\mathbf{w}_1 = oldsymbol{L}_{oldsymbol{a}}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a,b\}^\omega$
а	аа	over { <i>ab</i> , <i>b</i> }
b	bb	over { <i>ba</i> , <i>a</i> }
b	аа	over $\{ba, b\}$

Definition
$$L_a: \begin{cases} a \mapsto a \\ b \mapsto ab \end{cases}$$

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	$\mathbf{w}_1 = oldsymbol{L}_{oldsymbol{a}}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a,b\}^\omega$
а	аа	over { <i>ab</i> , <i>b</i> }
b	bb	over { <i>ba</i> , <i>a</i> }
b	аа	over { <i>ba</i> , <i>b</i> }

Definition
$$L_a: \left\{ \begin{array}{c} a \mapsto a \\ b \mapsto ab \end{array} \right.$$
 $R_b: \left\{ \begin{array}{c} a \mapsto ab \\ b \mapsto b \end{array} \right.$

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	$\mathbf{w}_1 = oldsymbol{L}_{oldsymbol{a}}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a,b\}^\omega$
а	аа	$\mathbf{w}_1 = R_b(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	bb	over { <i>ba</i> , <i>a</i> }
b	аа	over $\{ba, b\}$

Definition
$$L_a: \left\{ \begin{array}{c} a \mapsto a \\ b \mapsto ab \end{array} \right.$$
 $R_b: \left\{ \begin{array}{c} a \mapsto ab \\ b \mapsto b \end{array} \right.$

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	$\mathbf{w}_1 = oldsymbol{L}_{oldsymbol{a}}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a,b\}^\omega$
а	аа	$\mathbf{w}_1 = R_b(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	bb	$\mathbf{w}_1 = R_{a}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	аа	over $\{ba, b\}$

Definition $L_a: \left\{ \begin{array}{cc} a \mapsto a \\ b \mapsto ab \end{array} \right.$ $R_a: \left\{ \begin{array}{cc} a \mapsto a \\ b \mapsto ba \end{array} \right.$ $R_b: \left\{ \begin{array}{cc} a \mapsto ab \\ b \mapsto b \end{array} \right.$

イロト 不得 トイヨト イヨト

э

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

- Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1
- Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	$\mathbf{w}_1 = oldsymbol{L}_a(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a,b\}^\omega$
а	аа	$\mathbf{w}_1 = R_b(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	bb	$\mathbf{w}_1 = R_{a}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	аа	$\mathbf{w}_1 = L_b(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^{\omega}$

$$L_a: \left\{ \begin{array}{cc} a\mapsto a\\ b\mapsto ab \end{array} \right. L_b: \left\{ \begin{array}{cc} a\mapsto ba\\ b\mapsto b \end{array} \right. R_a: \left\{ \begin{array}{cc} a\mapsto a\\ b\mapsto ba \end{array} \right. R_b: \left\{ \begin{array}{cc} a\mapsto ab\\ b\mapsto b \end{array} \right.$$

First desubstitutive step

Hypothesis: \mathbf{w}_1 an infinite balanced infinite words over $\{a, b\}$

• Definition \Rightarrow *aa* or *bb* is not a factor of \mathbf{w}_1

Hence:

\mathbf{w}_1 starts with	\mathbf{w}_1 does not contain	\mathbf{w}_1 can be decomposed
а	bb	$\mathbf{w}_1 = L_a(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
а	аа	$\mathbf{w}_1 = R_b(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	bb	$\mathbf{w}_1 = R_{a}(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^\omega$
b	аа	$\mathbf{w}_1 = L_b(\mathbf{w}_2)$ with $\mathbf{w}_2 \in \{a, b\}^{\omega}$

Definition

$$L_a: \left\{ \begin{array}{cc} a \mapsto a \\ b \mapsto ab \end{array} \right. L_b: \left\{ \begin{array}{cc} a \mapsto ba \\ b \mapsto b \end{array} \right. R_a: \left\{ \begin{array}{cc} a \mapsto a \\ b \mapsto ba \end{array} \right. R_b: \left\{ \begin{array}{cc} a \mapsto ab \\ b \mapsto b \end{array} \right.$$

Thus
$$\mathbf{w}_1 = f_1(\mathbf{w}_2)$$
 with $\begin{cases} f_1 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_2 \in \{a, b\}^{\omega} \end{cases}$

Iterating the desubstitution

Hypothesis: $\mathbf{w}_1 \in \{a, b\}^{\omega}$ balanced

$$\Rightarrow \mathbf{w}_1 = f_1(\mathbf{w}_2) \text{ with } \begin{cases} f_1 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_2 \in \{a, b\}^{\omega} \end{cases}$$

On sets ofindefinitely desubstitutable words One World Combinatorics on Words Seminar, May 3rd

Iterating the desubstitution

Hypothesis: $\mathbf{w}_1 \in \{a, b\}^\omega$ balanced

$$\Rightarrow \mathbf{w}_1 = f_1(\mathbf{w}_2) \text{ with } \begin{cases} f_1 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_2 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

On sets ofindefinitely desubstitutable words One World Combinatorics on Words Seminar, May 3rd

A starting example: infinite binary balanced words 3/5 Iterating the desubstitution

Hypothesis: $\mathbf{w}_1 \in \{a, b\}^{\omega}$ balanced

$$\Rightarrow \mathbf{w}_1 = f_1(\mathbf{w}_2) \text{ with } \begin{cases} f_1 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_2 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

Thus we can iterate the decomposition.

$$\Rightarrow \mathbf{w}_2 = f_2(\mathbf{w}_3) \text{ with } \begin{cases} f_2 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_3 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

A starting example: infinite binary balanced words 3/5 Iterating the desubstitution

Hypothesis: $\mathbf{w}_1 \in \{a, b\}^{\omega}$ balanced

$$\Rightarrow \mathbf{w}_1 = f_1(\mathbf{w}_2) \text{ with } \begin{cases} f_1 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_2 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

Thus we can iterate the decomposition.

$$\Rightarrow \mathbf{w}_2 = f_2(\mathbf{w}_3) \text{ with } \begin{cases} f_2 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_3 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

$$\Rightarrow \mathbf{w}_3 = f_3(\mathbf{w}_4) \text{ with } \begin{cases} f_3 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_4 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

< □ > < □ > < □ > < □ > < □ >

A starting example: infinite binary balanced words 3/5 Iterating the desubstitution

Hypothesis: $\mathbf{w}_1 \in \{a, b\}^{\omega}$ balanced

$$\Rightarrow \mathbf{w}_1 = f_1(\mathbf{w}_2) \text{ with } \begin{cases} f_1 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_2 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

Thus we can iterate the decomposition.

$$\Rightarrow \mathbf{w}_2 = f_2(\mathbf{w}_3) \text{ with } \begin{cases} f_2 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_3 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

$$\Rightarrow \mathbf{w}_3 = f_3(\mathbf{w}_4) \text{ with } \begin{cases} f_3 \in \{L_a, L_b, R_a, R_b\} \\ \mathbf{w}_4 \in \{a, b\}^{\omega} \text{ balanced} \end{cases}$$

And so on

< □ > < □ > < □ > < □ > < □ >

A necessary condition

Infinite sequence of decompositions/desubstitutions

$$\begin{split} & \mathbf{w} \in \{a, b\}^{\omega} \text{ balanced,} \\ & \Rightarrow \begin{cases} \exists (\mathbf{w}_i)_{i \ge 1} \in \{a, b\}^{\omega} \\ \exists (f_i)_{i \ge 1} \in \{L_a, L_b, R_a, R_b\} \end{cases} \text{ s.t. } \begin{cases} \mathbf{w}_1 = \mathbf{w} \text{ and} \\ \mathbf{w}_i = f_i(\mathbf{w}_{i+1}) \end{cases} (\forall i \ge 1) \end{split}$$

On sets ofindefinitely desubstitutable words One World Combinatorics on Words Seminar, May 3rd

< 口 > < 同 > < 回 > < 回 > .

A necessary condition

Infinite sequence of decompositions/desubstitutions

Definitions

Let $\mathcal S$ be a set of substitutions (non-erasing endomorphisms) on A (fixed)

A necessary condition

Infinite sequence of decompositions/desubstitutions

Definitions

Let $\mathcal S$ be a set of substitutions (non-erasing endomorphisms) on A (fixed)

• [Arnoux, Mizutani, Sellami 2014] Let $(\sigma_n)_{n\geq 1}$ be a sequence of substitutions in S. $\mathbf{w} \in A^{\omega}$ is a *limit point of* $(\sigma_n)_{n\geq 1}$ $((\sigma_n)_{n\geq 1} = \text{directive sequence of } \mathbf{w})$ if $\exists (\mathbf{w}_n)_{n\geq 1} \in A^{\omega}$ such that $\mathbf{w} = \mathbf{w}_1$ and $\mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1})$ for all $n \geq 1$.

A necessary condition

Infinite sequence of decompositions/desubstitutions

Definitions

Let $\mathcal S$ be a set of substitutions (non-erasing endomorphisms) on A (fixed)

- [Arnoux, Mizutani, Sellami 2014] Let $(\sigma_n)_{n\geq 1}$ be a sequence of substitutions in S. $\mathbf{w} \in A^{\omega}$ is a *limit point of* $(\sigma_n)_{n\geq 1}$ $((\sigma_n)_{n\geq 1} = \text{directive sequence of } \mathbf{w})$ if $\exists (\mathbf{w}_n)_{n\geq 1} \in A^{\omega}$ such that $\mathbf{w} = \mathbf{w}_1$ and $\mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1})$ for all $n \geq 1$.
- [Godelle 2010] $Stab(S) = stable set of S = set of all limit points of sequences in S^{<math>\omega$}

A necessary condition

Infinite sequence of decompositions/desubstitutions

Equivalently: $\mathbf{w} \in \{a, b\}^{\omega}$ balanced $\Rightarrow \mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\})$

Definitions

Let $\mathcal S$ be a set of substitutions (non-erasing endomorphisms) on A (fixed)

- [Arnoux, Mizutani, Sellami 2014] Let $(\sigma_n)_{n\geq 1}$ be a sequence of substitutions in S. $\mathbf{w} \in A^{\omega}$ is a *limit point of* $(\sigma_n)_{n\geq 1}$ ($(\sigma_n)_{n\geq 1}$ = directive sequence of \mathbf{w}) if $\exists (\mathbf{w}_n)_{n\geq 1} \in A^{\omega}$ such that $\mathbf{w} = \mathbf{w}_1$ and $\mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1})$ for all $n \geq 1$.
- [Godelle 2010] $Stab(S) = stable set of S = set of all limit points of sequences in S^{<math>\omega$}

The condition is sufficient

 $\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$ balanced

On sets ofindefinitely desubstitutable words One World Combinatorics on Words Seminar, May 3rd

The condition is sufficient

$$\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$$
 balanced

Proof.

Let **w** be the limit point of $\mathbf{s} = (\sigma_n)_{n \geq 1} \in \{L_a, L_b, R_a, R_b\}^{\omega}$

The condition is sufficient

$$\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$$
 balanced

Proof.

Let **w** be the limit point of $\mathbf{s} = (\sigma_n)_{n \ge 1} \in \{L_a, L_b, R_a, R_b\}^{\omega}$

- Case 1, s contains
 - infinitely many occurrences of elements of $\{L_a, R_a\}$ and
 - ▶ infinitely many occurrences of elements of {L_b, R_b}

 \Rightarrow (well-known) w is Sturmian, that is, aperiodic balanced

(日) (四) (日) (日) (日)

The condition is sufficient

$$\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$$
 balanced

Proof.

Let **w** be the limit point of $\mathbf{s} = (\sigma_n)_{n \ge 1} \in \{L_a, L_b, R_a, R_b\}^{\omega}$

- Case 1, s contains
 - infinitely many occurrences of elements of $\{L_a, R_a\}$ and
 - ▶ infinitely many occurrences of elements of {L_b, R_b}
 - \Rightarrow (well-known) w is Sturmian, that is, aperiodic balanced
- Case 2.1, **s** contains only elements of $\{L_a, R_a\}$ \Rightarrow **w** $\in \{a^{\omega}, a^n b a^{\omega} \mid n \ge 1\}$ and is balanced.

< ロ > < 同 > < 回 > < 回 >

The condition is sufficient

$$\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$$
 balanced

Proof.

Let **w** be the limit point of $\mathbf{s} = (\sigma_n)_{n \ge 1} \in \{L_a, L_b, R_a, R_b\}^{\omega}$

- Case 1, s contains
 - infinitely many occurrences of elements of $\{L_a, R_a\}$ and
 - ▶ infinitely many occurrences of elements of {L_b, R_b}
 - \Rightarrow (well-known) **w** is Sturmian, that is, aperiodic balanced
- Case 2.1, **s** contains only elements of $\{L_a, R_a\}$ \Rightarrow **w** $\in \{a^{\omega}, a^n b a^{\omega} \mid n \ge 1\}$ and is balanced.
- Case 2.2, **s** contains finitely many elements of $\{L_b, R_b\}$: $\Rightarrow \mathbf{w} = f(\mathbf{w}')$ with $f \in \{L_a, L_b, R_a, R_b\}^*$ and \mathbf{w}' as in Case 2.1

The condition is sufficient

$$\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$$
 balanced

Proof.

Let **w** be the limit point of $\mathbf{s} = (\sigma_n)_{n \ge 1} \in \{L_a, L_b, R_a, R_b\}^{\omega}$

- Case 1, s contains
 - infinitely many occurrences of elements of $\{L_a, R_a\}$ and
 - ▶ infinitely many occurrences of elements of {L_b, R_b}
 - \Rightarrow (well-known) **w** is Sturmian, that is, aperiodic balanced
- Case 2.1, **s** contains only elements of $\{L_a, R_a\}$ \Rightarrow **w** $\in \{a^{\omega}, a^n b a^{\omega} \mid n \ge 1\}$ and is balanced.
- Case 2.2, **s** contains finitely many elements of $\{L_b, R_b\}$: $\Rightarrow \mathbf{w} = f(\mathbf{w}')$ with $f \in \{L_a, L_b, R_a, R_b\}^*$ and \mathbf{w}' as in Case 2.1 As all morphisms L_a, L_b, R_a and R_b preserve the balance property, **w** is balanced.

イロト イボト イヨト イヨト

The condition is sufficient

$$\mathbf{w} \in Stab(\{L_a, L_b, R_a, R_b\}) \Rightarrow \mathbf{w}$$
 balanced

Proof.

Let **w** be the limit point of $\mathbf{s} = (\sigma_n)_{n \geq 1} \in \{L_a, L_b, R_a, R_b\}^{\omega}$

- Case 1, s contains
 - infinitely many occurrences of elements of $\{L_a, R_a\}$ and
 - ▶ infinitely many occurrences of elements of {L_b, R_b}
 - \Rightarrow (well-known) **w** is Sturmian, that is, aperiodic balanced
- Case 2.1, **s** contains only elements of $\{L_a, R_a\}$ \Rightarrow **w** $\in \{a^{\omega}, a^n b a^{\omega} \mid n \ge 1\}$ and is balanced.
- Case 2.2, **s** contains finitely many elements of $\{L_b, R_b\}$: $\Rightarrow \mathbf{w} = f(\mathbf{w}')$ with $f \in \{L_a, L_b, R_a, R_b\}^*$ and \mathbf{w}' as in Case 2.1 As all morphisms L_a, L_b, R_a and R_b preserve the balance property, \mathbf{w} is balanced.

• Case 3, w contains finitely many elements of $\{L_a, R_a\}$: similar

< ロ > < 同 > < 回 > < 回 >

Previous starting result

The set of infinite binary balanced words = the stable set of $\{L_a, L_b, R_a, R_b\}$.

Previous starting result

The set of infinite binary balanced words = the stable set of $\{L_a, L_b, R_a, R_b\}$.

Main questions considered during the talk

• For which combinatorial properties, does a similar characterization hold?

< □ > < 同 > < 回 > < 回 >

Previous starting result

The set of infinite binary balanced words = the stable set of $\{L_a, L_b, R_a, R_b\}$.

Main questions considered during the talk

• For which combinatorial properties, does a similar characterization hold?

Many examples will be given.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Previous starting result

The set of infinite binary balanced words = the stable set of $\{L_a, L_b, R_a, R_b\}$.

Main questions considered during the talk

- For which combinatorial properties, does a similar characterization hold? Many examples will be given.
- \bullet What can be said on the structure of the stable set of a given set ${\mathcal S}$ of substitutions?

(人間) とうきょうきょう
Questions for the end of the talk

Previous starting result

The set of infinite binary balanced words = the stable set of $\{L_a, L_b, R_a, R_b\}$.

Main questions considered during the talk

- For which combinatorial properties, does a similar characterization hold? Many examples will be given.
- \bullet What can be said on the structure of the stable set of a given set ${\mathcal S}$ of substitutions?

What are the links with S-adicity, another notion related to desubstitution?

(人間) とうきょうきょう

Questions for the end of the talk

Previous starting result

The set of infinite binary balanced words = the stable set of $\{L_a, L_b, R_a, R_b\}$.

Main questions considered during the talk

- For which combinatorial properties, does a similar characterization hold? Many examples will be given.
- \bullet What can be said on the structure of the stable set of a given set ${\mathcal S}$ of substitutions?

What are the links with \mathcal{S} -adicity, another notion related to desubstitution?

• Does there exist any general link with property preserving morphisms?

(日) (四) (日) (日) (日)

Contents

Introduction

2 Structural aspects

Combinatorial families that are stable sets

- Sturmian words
- Lyndon Sturmian words
- Standard words
- LSP words
- Episturmian words and sub-families

4 Conclusion

A generalization of fixed points of morphisms

Let \mathcal{S} be a set of substitutions.

Stab(S) is the greatest set X (w.r.t. the inclusion) such that $X = \bigcup_{f \in S} f(X)$.

(日) (四) (日) (日) (日)

A generalization of fixed points of morphisms

Let \mathcal{S} be a set of substitutions.

Stab(S) is the greatest set X (w.r.t. the inclusion) such that $X = \bigcup_{f \in S} f(X)$.

Proposition [Godelle 2010]

Let f be a substitution (non erasing morphism). $\mathbf{w} \in Stab(\{f\})$ if and only \mathbf{w} is a fixed point of f^n for some n.

- 4 回 ト 4 三 ト

A generalization of fixed points of morphisms

Let \mathcal{S} be a set of substitutions.

Stab(S) is the greatest set X (w.r.t. the inclusion) such that $X = \bigcup_{f \in S} f(X)$.

Proposition [Godelle 2010]

Let f be a substitution (non erasing morphism). $\mathbf{w} \in Stab(\{f\})$ if and only \mathbf{w} is a fixed point of f^n for some n.

イロト イボト イヨト イヨト

\mathcal{S} -adicity, a notion related to desubstitution

- [Ferenczi 1996]
 - ► Terminology: S = substitution

イロト イボト イヨト イヨト

э

- [Ferenczi 1996]
 - Terminology: S = substitution
 - ▶ Result: uniformly minimal symbolic systems with sub-affine factor complexity are *S*-adic for a finite set *S* of substitutions.

- [Ferenczi 1996]
 - Terminology: S = substitution
 - ▶ Result: uniformly minimal symbolic systems with sub-affine factor complexity are *S*-adic for a finite set *S* of substitutions.
- S-adic conjecture: there exists a condition C such that an infinite word have an at most linear factor complexity if and only if it is S-adic and satisfies C.

イロト イヨト イヨト イヨト

- [Ferenczi 1996]
 - Terminology: S = substitution
 - ▶ Result: uniformly minimal symbolic systems with sub-affine factor complexity are S-adic for a finite set S of substitutions.
- *S*-adic conjecture: there exists a condition C such that an infinite word have an at most linear factor complexity if and only if it is *S*-adic and satisfies C.
- [Berthé, Delecroix 2014]

Expansions of S-adic nature have now proved their efficiency for yielding convenient descriptions for highly structured symbolic dynamical systems [...] an S-adic system is a system that can be indefinitely desubstituted

< □ > < 同 > < 三 > < 三 >

- [Ferenczi 1996]
 - Terminology: S = substitution
 - ▶ Result: uniformly minimal symbolic systems with sub-affine factor complexity are *S*-adic for a finite set *S* of substitutions.
- S-adic conjecture: there exists a condition C such that an infinite word have an at most linear factor complexity if and only if it is S-adic and satisfies C.
- [Berthé, Delecroix 2014]

Expansions of S-adic nature have now proved their efficiency for yielding convenient descriptions for highly structured symbolic dynamical systems [...] an S-adic system is a system that can be indefinitely desubstituted

- Many interesting examples of S-adic words:
 - Morphic words, Sturmian words, 3-Interval exchange transformations, Arnoux-Rauzy words, episturmian words...

イロト 不得 トイヨト イヨト

э

- [Ferenczi 1996]
 - Terminology: S = substitution
 - ▶ Result: uniformly minimal symbolic systems with sub-affine factor complexity are S-adic for a finite set S of substitutions.
- S-adic conjecture: there exists a condition C such that an infinite word have an at most linear factor complexity if and only if it is S-adic and satisfies C.
- [Berthé, Delecroix 2014]

Expansions of S-adic nature have now proved their efficiency for yielding convenient descriptions for highly structured symbolic dynamical systems [...] an S-adic system is a system that can be indefinitely desubstituted

- Many interesting examples of S-adic words:
 - Morphic words, Sturmian words, 3-Interval exchange transformations, Arnoux-Rauzy words, episturmian words...
 - Remark: S-adicity = a necessary condition characterizations obtained with additional conditions on the sequence of desubstitutions

イロト 不得 トイヨト イヨト

э

S-adicity, definition

Definition (S-adicity or Substitutive-adicity)

An infinite word **w** is *Substitutive*-adic if there exist $\begin{cases} a \text{ sequence } (\sigma_n)_{n\geq 1}, \ \sigma_n : A_{n+1}^* \to A_n^* \text{ of substitutions} \\ a \text{ sequence of letters } (a_n)_{n\geq 1} \\ \mathbf{w} = \lim_{n\to\infty} \sigma_1 \cdots \sigma_n(a_n) \qquad \text{ with directive sequence } (\sigma_n)_{n\geq 1} \end{cases}$

イロト 不得 トイヨト イヨト

S-adicity, definition

Definition (S-adicity or Substitutive-adicity)

An infinite word **w** is *Substitutive*-adic if there exist $\begin{cases} a \text{ sequence } (\sigma_n)_{n\geq 1}, \ \sigma_n : A_{n+1}^* \to A_n^* \text{ of substitutions} \\ a \text{ sequence of letters } (a_n)_{n\geq 1} \\ \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) & \text{ with directive sequence } (\sigma_n)_{n\geq 1} \end{cases}$

Definition (continued)With $S = \{\sigma_n \mid n \ge 1\}$,w is S-adic.

イロト 不得 トイヨト イヨト 二日

S-adicity, definition

Definition (S-adicity or Substitutive-adicity)

An infinite word **w** is Substitutive-adic if there exist $\begin{cases} a \text{ sequence } (\sigma_n)_{n\geq 1}, \ \sigma_n : A_{n+1}^* \to A_n^* \text{ of substitutions} \\ a \text{ sequence of letters } (a_n)_{n\geq 1} \\ \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n (a_n) & \text{ with directive sequence } (\sigma_n)_{n\geq 1} \end{cases}$

Definition (continued)

With $S = \{\sigma_n \mid n \ge 1\}$, **w** is S-adic.

Remark

In the definition of S-adicity, cardinalities of alphabets may not be bounded contrarily to what happens in the definition of a stable set, where the alphabet is fixed.

イロト 不得 トイヨト イヨト

3

Let \mathcal{S} be a set of substitutions on a fixed alphabet A.

Assume
$$\begin{cases} \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) \\ \text{for all } k, \ \mathbf{w}_k = \lim_{n \to \infty} \sigma_k \cdots \sigma_n(a_n) \text{ exists} \end{cases}$$

Let \mathcal{S} be a set of substitutions on a fixed alphabet A.

Assume
$$\begin{cases} \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) \\ \text{for all } k, \ \mathbf{w}_k = \lim_{n \to \infty} \sigma_k \cdots \sigma_n(a_n) \text{ exists} \end{cases}$$
$$\Rightarrow \begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \text{for all } k, \ \mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1}) \end{cases}$$

Let \mathcal{S} be a set of substitutions on a fixed alphabet A.

Assume
$$\begin{cases} \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) \\ \text{for all } k, \ \mathbf{w}_k = \lim_{n \to \infty} \sigma_k \cdots \sigma_n(a_n) \text{ exists} \end{cases}$$
$$\Rightarrow \begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \text{for all } k, \ \mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1}) \end{cases}$$

But \mathbf{w}_k may not exist.

Example

$$f: \left\{ egin{array}{ccc} a\mapsto a \ b\mapsto a \end{array}
ight. g: \left\{ egin{array}{ccc} a\mapsto bb \ b\mapsto aa \end{array}
ight.$$

Let \mathcal{S} be a set of substitutions on a fixed alphabet A.

Assume
$$\begin{cases} \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) \\ \text{for all } k, \ \mathbf{w}_k = \lim_{n \to \infty} \sigma_k \cdots \sigma_n(a_n) \text{ exists} \end{cases}$$
$$\Rightarrow \begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \text{for all } k, \ \mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1}) \end{cases}$$

But \mathbf{w}_k may not exist.

Example

$$f: \begin{cases} a \mapsto a \\ b \mapsto a \\ \lim_{n \to \infty} fg^n(a) = a^{\omega} \end{cases} g: \begin{cases} a \mapsto bb \\ b \mapsto aa \end{cases}$$

Let \mathcal{S} be a set of substitutions on a fixed alphabet A.

Assume
$$\begin{cases} \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) \\ \text{for all } k, \ \mathbf{w}_k = \lim_{n \to \infty} \sigma_k \cdots \sigma_n(a_n) \text{ exists} \end{cases}$$
$$\Rightarrow \begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \text{for all } k, \ \mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1}) \end{cases}$$

But \mathbf{w}_k may not exist.

Example

$$f: \begin{cases} a \mapsto a \\ b \mapsto a \end{cases} g: \begin{cases} a \mapsto bb \\ b \mapsto aa \end{cases}$$
$$\lim_{n \to \infty} fg^n(a) = a^{\omega} \text{ but } \lim_{n \to \infty} g^n(a) \text{ does not exist} \end{cases}$$

Let \mathcal{S} be a set of substitutions on a fixed alphabet A.

Assume
$$\begin{cases} \mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n) \\ \text{for all } k, \ \mathbf{w}_k = \lim_{n \to \infty} \sigma_k \cdots \sigma_n(a_n) \text{ exists} \end{cases}$$
$$\Rightarrow \begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \text{for all } k, \ \mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1}) \end{cases}$$

But \mathbf{w}_k may not exist.

Example

$$f: \begin{cases} a \mapsto a \\ b \mapsto a \end{cases} g: \begin{cases} a \mapsto bb \\ b \mapsto aa \end{cases}$$
$$\lim_{n \to \infty} fg^n(a) = a^{\omega} \text{ but } \lim_{n \to \infty} g^n(a) \text{ does not exist} \end{cases}$$
Nevertheless $a^{\omega} = f(a^{\omega}) = g(b^{\omega}) \text{ and } b^{\omega} = g(a^{\omega})$
$$\Rightarrow a^{\omega} \in Stab(\{f,g\}).$$

Proposition

For any set S of substitutions on a fixed alphabet A, $\mathbf{w} \ S$ -adic $\Rightarrow \mathbf{w} \in Stab(S)$

Proposition

For any set S of substitutions on a fixed alphabet A, $\mathbf{w} \ S$ -adic $\Rightarrow \mathbf{w} \in Stab(S)$

About the technical proof

• Construction of suitable desubstituted words. Given $\mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n)$ construct words (\mathbf{w}_k) such that $\mathbf{w}_1 = \mathbf{w}$ and $\mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1})$.

< ロ > < 同 > < 回 > < 回 >

Proposition

For any set S of substitutions on a fixed alphabet A, $\mathbf{w} \ S$ -adic $\Rightarrow \mathbf{w} \in Stab(S)$

About the technical proof

• Construction of suitable desubstituted words. Given $\mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n)$ construct words (\mathbf{w}_k) such that $\mathbf{w}_1 = \mathbf{w}$ and $\mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1})$.

The converse does not hold

Example

$$f: \begin{cases} a \mapsto aba\\ b \mapsto b \end{cases} \quad (\text{observe } f(ab) = abab) \\ Stab(\{f\}) = \{b^{\omega}\} \cup b^*(ab)^{\omega} \end{cases}$$

Proposition

For any set S of substitutions on a fixed alphabet A, $\mathbf{w} \ S$ -adic $\Rightarrow \mathbf{w} \in Stab(S)$

About the technical proof

• Construction of suitable desubstituted words. Given $\mathbf{w} = \lim_{n \to \infty} \sigma_1 \cdots \sigma_n(a_n)$ construct words (\mathbf{w}_k) such that $\mathbf{w}_1 = \mathbf{w}$ and $\mathbf{w}_k = \sigma_k(\mathbf{w}_{k+1})$.

The converse does not hold

Example

$$\begin{split} f &: \begin{cases} a \mapsto aba\\ b \mapsto b \end{cases} \quad (\text{observe } f(ab) = abab) \\ Stab(\{f\}) &= \{b^{\omega}\} \cup b^*(ab)^{\omega} \\ \text{But the only } \{f\}\text{-adic word is } (ab)^{\omega} &= \lim_{n \to \infty} f^n(a) \end{split}$$

< ロ > < 同 > < 回 > < 回 >

Definitions, with $\mathbf{s} = (\sigma_n)_{n \ge 1}$ a sequence of substitutions

• *Stab*(s) = set of infinite words that can be indefinitely desubstituted with directive sequence s

that is,
$$\mathbf{w} \in Stab(\mathbf{s})$$
 if $\exists (\mathbf{w}_n)_{n \geq 1} \in A^{\omega}$ s.t.
$$\begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \forall n \geq 1, \mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1}) \end{cases}$$

Definitions, with $\mathbf{s} = (\sigma_n)_{n \ge 1}$ a sequence of substitutions

• Stab(s) = set of infinite words that can be indefinitely desubstituted with directive sequence s

that is,
$$\mathbf{w} \in Stab(\mathbf{s})$$
 if $\exists (\mathbf{w}_n)_{n \ge 1} \in A^{\omega}$ s.t.
$$\begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \forall n \ge 1, \mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1}) \end{cases}$$

• StabFin(s) = set of *nonempty finite* words that can be indefinitely desubstituted with directive sequence s

(日) (四) (日) (日) (日)

Definitions, with $\mathbf{s} = (\sigma_n)_{n \ge 1}$ a sequence of substitutions

• *Stab*(s) = set of infinite words that can be indefinitely desubstituted with directive sequence s

that is,
$$\mathbf{w} \in Stab(\mathbf{s})$$
 if $\exists \ (\mathbf{w}_n)_{n \ge 1} \in A^{\omega}$ s.t.
$$\begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \forall n \ge 1, \mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1}) \end{cases}$$

- StabFin(s) = set of *nonempty finite* words that can be indefinitely desubstituted with directive sequence s
- adic(s) = set of S-adic infinite words with directive sequence s

(日) (四) (日) (日) (日)

Definitions, with $\mathbf{s} = (\sigma_n)_{n \ge 1}$ a sequence of substitutions

• Stab(s) = set of infinite words that can be indefinitely desubstituted with directive sequence s

that is,
$$\mathbf{w} \in Stab(\mathbf{s})$$
 if $\exists (\mathbf{w}_n)_{n \geq 1} \in A^{\omega}$ s.t. $\begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \forall n \geq 1, \mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1}) \end{cases}$

- StabFin(s) = set of nonempty finite words that can be indefinitely desubstituted with directive sequence s
- adic(s) = set of S-adic infinite words with directive sequence s

Proposition

For any sequence of substitutions **s**, $Stab(\mathbf{s}) = \mathsf{StabFin}(\mathbf{s})^{\omega} \cup (\mathsf{StabFin}(\mathbf{s}) \cup \{\varepsilon\})\mathsf{adic}(\mathbf{s})$

イロト イボト イヨト イヨト

Definitions, with $\mathbf{s} = (\sigma_n)_{n \ge 1}$ a sequence of substitutions

• Stab(s) = set of infinite words that can be indefinitely desubstituted with directive sequence s

that is,
$$\mathbf{w} \in Stab(\mathbf{s})$$
 if $\exists (\mathbf{w}_n)_{n \geq 1} \in A^{\omega}$ s.t. $\begin{cases} \mathbf{w} = \mathbf{w}_1 \\ \forall n \geq 1, \mathbf{w}_n = \sigma_n(\mathbf{w}_{n+1}) \end{cases}$

- StabFin(s) = set of nonempty finite words that can be indefinitely desubstituted with directive sequence s
- adic(s) = set of S-adic infinite words with directive sequence s

Proposition

For any sequence of substitutions **s**, $Stab(\mathbf{s}) = StabFin(\mathbf{s})^{\omega} \cup (StabFin(\mathbf{s}) \cup \{\varepsilon\})adic(\mathbf{s})$

Example

$$f: \left\{ \begin{array}{c} a \mapsto aba \\ b \mapsto b \end{array} \right.$$

$$\mathsf{Stab}(\{f\}) = \mathsf{Stab}(f^\omega) = \{b^\omega\} \cup b^*(ab)^\omega$$

$$\mathsf{StabFin}(f^\omega) = b^+ \text{ and } \mathsf{adic}(f^\omega) = \{(ab)^\omega\}$$

Corollary

If StabFin(\mathbf{s}) = \emptyset then $Stab(\mathbf{s}) = adic(\mathbf{s})$.

Corollary

If StabFin(\mathbf{s}) = \emptyset then $Stab(\mathbf{s}) = adic(\mathbf{s})$.

But the converse does not hold

Example

Remember $L_a(a) = a$ and $L_a(b) = ab$

- StabFin $(L_a^{\omega}) = \{a^n \mid n \ge 1\} \neq \emptyset$
- $Stab(L_a^{\omega}) = \{a^{\omega}\}$

Corollary

If StabFin(\mathbf{s}) = \emptyset then $Stab(\mathbf{s}) = adic(\mathbf{s})$.

But the converse does not hold

Example

Remember $L_a(a) = a$ and $L_a(b) = ab$

• StabFin
$$(L^{\omega}_{a}) = \{a^{n} \mid n \geq 1\} \neq \emptyset$$

•
$$Stab(L_a^{\omega}) = \{a^{\omega}\} = adic(L_a^{\omega})$$

since $a^{\omega} = \lim_{n \to \infty} L^n_a(b) = \lim_{n \to \infty} a^n b$

Corollary

If StabFin(\mathbf{s}) = \emptyset then $Stab(\mathbf{s}) = adic(\mathbf{s})$.

But the converse does not hold

Example

Remember $L_a(a) = a$ and $L_a(b) = ab$

• StabFin
$$(L^{\omega}_{a}) = \{a^{n} \mid n \geq 1\} \neq \emptyset$$

•
$$Stab(L^{\omega}_{a}) = \{a^{\omega}\} = adic(L^{\omega}_{a})$$

since
$$a^{\omega} = \lim_{n \to \infty} L^n_a(b) = \lim_{n \to \infty} a^n b$$

イロト イボト イヨト イヨト

э

Remark

Set of infinite binary balanced words =
$$Stab(\{L_a, L_b, R_a, R_b\})$$

= $adic(\{L_a, L_b, R_a, R_b\})$

$$\mathsf{Stab}(\{L_a, L_b, R_a, R_b\}) = \cup \begin{cases} \mathsf{the set of Sturmian words} \\ \bigcup_{f \in \{L_a, L_b, R_a, R_b\}^*} f(\{a^\omega, ab^\omega, ba^\omega, b^\omega\}) \end{cases}$$

Remark. Given a set S of substitutions on a fixed alphabet A, one can decide whether StabFin(s) is empty for all sequences of substitutions over S.

イロト イボト イヨト イヨト

Remark. Given a set S of substitutions on a fixed alphabet A, one can decide whether StabFin(s) is empty for all sequences of substitutions over S. **Main reason:** If StabFin(s) is not empty, then there exists a letter a and a suffix s' of s such that $a \in \text{StabFin}(s')$

イロト イボト イヨト イヨト
Remark. Given a set S of substitutions on a fixed alphabet A, one can decide whether StabFin(s) is empty for all sequences of substitutions over S. **Main reason:** If StabFin(s) is not empty, then there exists a letter a and a suffix s' of s such that $a \in \text{StabFin}(s')$

Open problem

Can we decide whether Stab(S) = adic(S) (set of S-adic words)?

イロト イポト イヨト イヨト

Remark. Given a set S of substitutions on a fixed alphabet A, one can decide whether StabFin(s) is empty for all sequences of substitutions over S. **Main reason:** If StabFin(s) is not empty, then there exists a letter a and a suffix s' of s such that $a \in \text{StabFin}(s')$

Open problem

Can we decide whether Stab(S) = adic(S) (set of S-adic words)?

Open problem

Can we decide whether there exists S' such that Stab(S) = adic(S')?

イロト 不得 トイヨト イヨト

э

Remark. Given a set S of substitutions on a fixed alphabet A, one can decide whether StabFin(s) is empty for all sequences of substitutions over S. **Main reason:** If StabFin(s) is not empty, then there exists a letter a and a suffix s' of s such that $a \in \text{StabFin}(s')$

Open problem

Can we decide whether Stab(S) = adic(S) (set of S-adic words)?

Open problem

Can we decide whether there exists S' such that Stab(S) = adic(S')?

Example

Let Id_A be the identity on A (of cardinality at least 2).

•
$$Stab(\{Id_A\}) = A^{\omega}$$

• There is no set ${\mathcal S}$ of substitutions over A such that $A^\omega = \operatorname{adic}({\mathcal S})$

イロト 不得 トイヨト イヨト

э

Remark. Given a set S of substitutions on a fixed alphabet A, one can decide whether StabFin(s) is empty for all sequences of substitutions over S. **Main reason:** If StabFin(s) is not empty, then there exists a letter a and a suffix s' of s such that $a \in \text{StabFin}(s')$

Open problem

Can we decide whether Stab(S) = adic(S) (set of S-adic words)?

Open problem

Can we decide whether there exists S' such that Stab(S) = adic(S')?

Example

Let Id_A be the identity on A (of cardinality at least 2).

- $Stab(\{Id_A\}) = A^{\omega}$
- There is no set ${\mathcal S}$ of substitutions over A such that $A^\omega = \operatorname{adic}({\mathcal S})$

Remark (Cassaigne's example). A^{ω} is a subset of adic words over a finite set of substitutions defined on $A \cup \{\ell\}$ with $\ell \notin A$.

Contents

Introduction

Structural aspects

3 Combinatorial families that are stable sets

- Sturmian words
- Lyndon Sturmian words
- Standard words
- LSP words
- Episturmian words and sub-families

4 Conclusion

A basic property

For any $\varphi \in S$: $\varphi(Stab(S)) \subseteq Stab(S)$ Substitutions of S preserve elements of Stab(S).

イロト 不得 トイヨト イヨト

э

A basic property

For any $\varphi \in S$: $\varphi(Stab(S)) \subseteq Stab(S)$ Substitutions of S preserve elements of Stab(S).

Example

The set of infinite binary overlap-free words is not a stable set. (Overlap-free words = no factor on the form $\alpha u \alpha u \alpha$, $\alpha \in A$, $u \in A^*$)

A basic property

For any $\varphi \in S$: $\varphi(Stab(S)) \subseteq Stab(S)$ Substitutions of S preserve elements of Stab(S).

Example

The set of infinite binary overlap-free words is not a stable set. (Overlap-free words = no factor on the form $\alpha u \alpha u \alpha$, $\alpha \in A$, $u \in A^*$) **Proof**

• [Thue1912] { overlap-free preserving morphims } = $\{\mu, E\}^*$

$$\mu = \left\{ \begin{array}{ll} \mathbf{a} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{b} \mapsto \mathbf{b}\mathbf{a} \end{array} \right. \quad \mathbf{E} = \left\{ \begin{array}{ll} \mathbf{a} \mapsto \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$$

A basic property

For any $\varphi \in S$: $\varphi(Stab(S)) \subseteq Stab(S)$ Substitutions of S preserve elements of Stab(S).

Example

The set of infinite binary overlap-free words is not a stable set. (Overlap-free words = no factor on the form $\alpha u \alpha u \alpha$, $\alpha \in A$, $u \in A^*$) **Proof**

• [Thue1912] { overlap-free preserving morphims } = $\{\mu, E\}^*$

$$\mu = \left\{ \begin{array}{ll} \mathbf{a} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{b} \mapsto \mathbf{b}\mathbf{a} \end{array} \right. \quad \mathbf{E} = \left\{ \begin{array}{ll} \mathbf{a} \mapsto \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$$

• If $E \in \mathcal{S}$ or if $E^2(= \mathit{Id}) \in \mathcal{S}$, then $\mathit{Stab}(\mathcal{S}) = \{a, b\}^\omega$

A basic property

For any $\varphi \in S$: $\varphi(Stab(S)) \subseteq Stab(S)$ Substitutions of S preserve elements of Stab(S).

Example

The set of infinite binary overlap-free words is not a stable set. (Overlap-free words = no factor on the form $\alpha u \alpha u \alpha$, $\alpha \in A$, $u \in A^*$) **Proof**

• [Thue1912] { overlap-free preserving morphims } = $\{\mu, E\}^*$

$$\mu = \left\{ \begin{array}{ll} \mathbf{a} \mapsto \mathbf{a} \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{b} \mathbf{a} \end{array} \right. \quad \mathbf{E} = \left\{ \begin{array}{ll} \mathbf{a} \mapsto \mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$$

• If $E \in S$ or if $E^2(=Id) \in S$, then $Stab(S) = \{a, b\}^{\omega}$

• $Stab(\{\mu, E\}^* \setminus \{E, Id\}) = \{M, E(M)\}$

 ${\sf M}={
m Thue}{
m -Morse}$ word $=\mu^{\omega}(a)=abbabaabbaabbabbab\cdots$

Already mentioned

• Sturmian words = aperiodic binary balanced words

メロト メロト メヨト メヨト

2

Already mentioned

- Sturmian words = aperiodic binary balanced words
- A Sturmian word is an $\{L_a, L_b, R_a, R_b\}$ -adic words having a directive sequence with $\begin{cases} \text{ infinitely many elements of } \{L_a, R_a\} \text{ and } \\ \text{ infinitely many elements of } \{L_b, R_b\}. \end{cases}$

イロト 不得 トイヨト イヨト

3

Already mentioned

- Sturmian words = aperiodic binary balanced words
- A Sturmian word is an $\{L_a, L_b, R_a, R_b\}$ -adic words having a directive sequence with $\begin{cases} \text{ infinitely many elements of } \{L_a, R_a\} \text{ and} \\ \text{ infinitely many elements of } \{L_b, R_b\}. \end{cases}$ \Rightarrow the sequence can be viewed as a concatenation of elements in $\mathcal{S}_{\text{Sturm}} = \{L_a, R_a\}^+ \{L_b, R_b\} \cup \{L_b, R_b\}^+ \{L_a, R_a\}.$

イロト 不得 トイヨト イヨト

Already mentioned

- Sturmian words = aperiodic binary balanced words
- A Sturmian word is an $\{L_a, L_b, R_a, R_b\}$ -adic words having a directive sequence with $\begin{cases} \text{ infinitely many elements of } \{L_a, R_a\} \text{ and} \\ \text{ infinitely many elements of } \{L_b, R_b\}. \end{cases}$ \Rightarrow the sequence can be viewed as a concatenation of elements in $\mathcal{S}_{\text{Sturm}} = \{L_a, R_a\}^+ \{L_b, R_b\} \cup \{L_b, R_b\}^+ \{L_a, R_a\}.$

Example

 $\mathbf{s} = L_a R_a L_a R_b L_b R_b R_b R_b L_a R_b L_a L_b R_a L_a R_b L_a R_b \cdots$

イロト 不得 トイヨト イヨト

Already mentioned

- Sturmian words = aperiodic binary balanced words
- A Sturmian word is an $\{L_a, L_b, R_a, R_b\}$ -adic words having a directive sequence with $\begin{cases} \text{ infinitely many elements of } \{L_a, R_a\} \text{ and} \\ \text{ infinitely many elements of } \{L_b, R_b\}. \end{cases}$ \Rightarrow the sequence can be viewed as a concatenation of elements in $\mathcal{S}_{\text{Sturm}} = \{L_a, R_a\}^+ \{L_b, R_b\} \cup \{L_b, R_b\}^+ \{L_a, R_a\}.$

Example

 $\mathbf{s} = L_a R_a L_a R_b L_b R_b R_b R_b L_a R_b L_a L_b R_a L_a R_b L_a R_b \cdots$ $\mathbf{s} = L_a R_a L_a R_b L_b R_b R_b R_b L_a R_b L_a L_b R_a L_a R_b L_a R_b \cdots$

< 日 > < 同 > < 三 > < 三 > 、

Already mentioned

- Sturmian words = aperiodic binary balanced words
- A Sturmian word is an $\{L_a, L_b, R_a, R_b\}$ -adic words having a directive sequence with $\begin{cases} \text{ infinitely many elements of } \{L_a, R_a\} \text{ and} \\ \text{ infinitely many elements of } \{L_b, R_b\}. \end{cases}$ \Rightarrow the sequence can be viewed as a concatenation of elements in $\mathcal{S}_{\text{Sturm}} = \{L_a, R_a\}^+ \{L_b, R_b\} \cup \{L_b, R_b\}^+ \{L_a, R_a\}.$

Example

$$\mathbf{s} = L_a R_a L_a R_b L_b R_b R_b R_b L_a R_b L_a L_b R_a L_a R_b L_a R_b \cdots$$

$$\mathbf{s} = L_a R_a L_a R_b L_b R_b R_b R_b L_a R_b L_a L_b R_a L_a R_b L_a R_b \cdots$$

Proposition

A word is Sturmian if and only if it belongs to $Stab(S_{Sturm})$.

(日) (四) (注) (注) (正)

(日) (四) (日) (日) (日)

Proof. Assume Sturm = Stab(S) for some finite set S of substitutions.

- $\forall f \in \mathcal{S}$, f preserves the family of Sturmian words
- Property. { Morphisms that preserve Sturmian words } = $\{L_a, L_b, R_a, R_b, E\}^*$.

< 回 > < 三 > < 三 >

Proof. Assume Sturm = Stab(S) for some finite set S of substitutions.

- $\forall f \in \mathcal{S}$, f preserves the family of Sturmian words
- Property. { Morphisms that preserve Sturmian words } = $\{L_a, L_b, R_a, R_b, E\}^*$.
- Hence $S \subseteq \{L_a, L_b, R_a, R_b\}^* \{Id, E\}$ as $L_a E = EL_b$ et $R_a E = ER_b$

< 回 > < 三 > < 三 >

Proof. Assume Sturm = Stab(S) for some finite set S of substitutions.

- $\forall f \in \mathcal{S}$, f preserves the family of Sturmian words
- Property. { Morphisms that preserve Sturmian words } = $\{L_a, L_b, R_a, R_b, E\}^*$.
- Hence $S \subseteq \{L_a, L_b, R_a, R_b\}^* \{Id, E\}$ as $L_a E = EL_b$ et $R_a E = ER_b$

•
$$\forall \mathbf{w}, \ L_a^n R_a^m L_b(\mathbf{w}) = a^n b \cdots$$
 $(L_a R_a = R_a L_a)$

< 回 > < 三 > < 三 >

Proof. Assume Sturm = Stab(S) for some finite set S of substitutions.

- $\forall f \in \mathcal{S}$, f preserves the family of Sturmian words
- Property. { Morphisms that preserve Sturmian words } = $\{L_a, L_b, R_a, R_b, E\}^*$.

• Hence
$$S \subseteq \{L_a, L_b, R_a, R_b\}^* \{Id, E\}$$

as $L_a E = EL_b$ et $R_a E = ER_b$

•
$$\forall \mathbf{w}, \ L_a^n R_a^m L_b(\mathbf{w}) = a^n b \cdots$$
 $(L_a R_a = R_a L_a)$

• but \exists Sturmian words with arbitrary numbers of initial occurrences of a $\Rightarrow \exists L_a^n R_a^m \in S$

A (1) > A (2) > A (2) >

Proof. Assume Sturm = Stab(S) for some finite set S of substitutions.

- $\forall f \in \mathcal{S}$, f preserves the family of Sturmian words
- Property. { Morphisms that preserve Sturmian words } = $\{L_a, L_b, R_a, R_b, E\}^*$.

• Hence
$$S \subseteq \{L_a, L_b, R_a, R_b\}^* \{Id, E\}$$

as $L_a E = EL_b$ et $R_a E = ER_b$

•
$$\forall \mathbf{w}, \ L_a^n R_a^m L_b(\mathbf{w}) = a^n b \cdots$$
 $(L_a R_a = R_a L_a)$

- but \exists Sturmian words with arbitrary numbers of initial occurrences of $a \Rightarrow \exists L_a^n R_a^m \in S$
- Contradiction as a^{ω} is directed by $(L^n_a R^m_a)^{\omega}$ and is not Sturmian

イロト イヨト イヨト イヨト

3

Infinite Lyndon word: word smaller than all its suffixes

(w.r.t. the lexicographic order)

イロト イヨト イヨト

э

Infinite Lyndon word: word smaller than all its suffixes

(w.r.t. the lexicographic order)

Theorem [Levé, R. 2007]

A Sturmian word w is a Lyndon word over $\{a < b\}$ if and only if it can be infinitely decomposed over $\{L_a, R_b\}$ with infinitely many occurrences of L_a and infinitely many occurrences of R_b in the directive sequence.

(日) (四) (日) (日) (日)

Infinite Lyndon word: word smaller than all its suffixes

(w.r.t. the lexicographic order)

Theorem [Levé, R. 2007]

A Sturmian word w is a Lyndon word over $\{a < b\}$ if and only if it can be infinitely decomposed over $\{L_a, R_b\}$ with infinitely many occurrences of L_a and infinitely many occurrences of R_b in the directive sequence.

Set
$$S_{Lynd} = \{L_a^n R_b, R_b^n L_a \mid n \ge 1\}.$$

Corollary

A word is a Lyndon Sturmian word if and only if it belongs to $Stab(S_{Lynd})$

Infinite Lyndon word: word smaller than all its suffixes

(w.r.t. the lexicographic order)

Theorem [Levé, R. 2007]

A Sturmian word w is a Lyndon word over $\{a < b\}$ if and only if it can be infinitely decomposed over $\{L_a, R_b\}$ with infinitely many occurrences of L_a and infinitely many occurrences of R_b in the directive sequence.

Set
$$S_{Lynd} = \{L_a^n R_b, R_b^n L_a \mid n \ge 1\}.$$

Corollary

A word is a Lyndon Sturmian word if and only if it belongs to $Stab(S_{Lynd})$

Proposition

The set of Lyndon Sturmian words is not the stable set of a finite set of substitutions.

イロト イボト イヨト イヨト

Definition (Infinite standard words)

Binary words having all its left special factors as prefixes and exactly one left special factor of each length. (*u* is a *left special factor* of **w**: if *au* and *bu* are factors of **w** for $a \neq b$ letters)

(日) (四) (日) (日) (日)

Definition (Infinite standard words)

Binary words having all its left special factors as prefixes and exactly one left special factor of each length. (*u* is a *left special factor* of **w**: if *au* and *bu* are factors of **w** for $a \neq b$ letters)

Property

An infinite word is standard if and only if it is $\{L_a, L_b\}$ -adic and each morphism L_a and L_b occurs infinitely often in the sequence.

オポト イモト イモト

Definition (Infinite standard words)

Binary words having all its left special factors as prefixes

and exactly one left special factor of each length.

(*u* is a *left special factor* of **w**: if *au* and *bu* are factors of **w** for $a \neq b$ letters)

Property

An infinite word is standard if and only if it is $\{L_a, L_b\}$ -adic and each morphism L_a and L_b occurs infinitely often in the sequence.

Proposition

• { Infinite standard words } = $Stab(\{L_a^n L_b, L_b^n L_a \mid n \ge 1\})$

(日) (四) (日) (日) (日)

Definition (Infinite standard words)

Binary words having all its left special factors as prefixes

and exactly one left special factor of each length.

(*u* is a *left special factor* of **w**: if *au* and *bu* are factors of **w** for $a \neq b$ letters)

Property

An infinite word is standard if and only if it is $\{L_a, L_b\}$ -adic and each morphism L_a and L_b occurs infinitely often in the sequence.

Proposition

- { Infinite standard words } = $Stab(\{L_a^n L_b, L_b^n L_a \mid n \ge 1\})$
- The set of standard words is not the stable set of a finite set of substitutions.

(日) (四) (日) (日) (日)

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

< □ > < □ > < □ > < □ > < □ >

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

• Such a word w cannot contain both *aa* and *bb* as factors

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

- Such a word w cannot contain both aa and bb as factors
- If aa is a factor, w begins with a

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

- Such a word \mathbf{w} cannot contain both aa and bb as factors
- If aa is a factor, w begins with a
- Thus $\mathbf{w} = f(\mathbf{w}')$ with $f \in \{L_a, L_b\}$.

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

- Such a word \mathbf{w} cannot contain both aa and bb as factors
- If aa is a factor, w begins with a
- Thus $\mathbf{w} = f(\mathbf{w}')$ with $f \in \{L_a, L_b\}$.
- The word \mathbf{w}' is LSP (as L_a and L_b preserve left special factors)
- Hence $\mathbf{w} \in Stab(\{L_a, L_b\})$

(日) (四) (日) (日) (日)

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

- Such a word \mathbf{w} cannot contain both aa and bb as factors
- If aa is a factor, w begins with a
- Thus $\mathbf{w} = f(\mathbf{w}')$ with $f \in \{L_a, L_b\}$.
- The word \mathbf{w}' is LSP (as L_a and L_b preserve left special factors)
- Hence $\mathbf{w} \in Stab(\{L_a, L_b\})$
- Conversely any element in $Stab(\{L_a, L_b\})$ is LSP.

(日) (四) (日) (日) (日)
Binary LSP words

Definition (LSP words (Fici 2011))

Words having all its left special factors as prefixes

- Such a word \mathbf{w} cannot contain both aa and bb as factors
- If aa is a factor, w begins with a

• Thus
$$\mathbf{w} = f(\mathbf{w}')$$
 with $f \in \{L_a, L_b\}$.

- The word \mathbf{w}' is LSP (as L_a and L_b preserve left special factors)
- Hence $\mathbf{w} \in Stab(\{L_a, L_b\})$
- Conversely any element in $Stab(\{L_a, L_b\})$ is LSP.

To summarize:

• { binary LSP words } = $Stab(\{L_a, L_b\})$

イロト イポト イヨト イヨト

LSP infinite words over alphabet with at least 3 letters

[R. 2017-2019]

Given an alphabet A (#A ≥ 3),
 ∃ a finite set S_{LSP} s.t. { LSP infinite words over A} ⊊ Stab(S_{LSP}).

< □ > < 同 > < 回 > < 回 >

LSP infinite words over alphabet with at least 3 letters

[R. 2017-2019]

- Given an alphabet $A \ (\#A \ge 3)$, \exists a finite set S_{LSP} s.t. { LSP infinite words over A} $\subsetneq Stab(S_{LSP})$.
- A characterization of directive sequences in *Stab*(*S*_{LSP}) with a complex condition (allowed paths in a huge automaton/graph).

< ロ > < 同 > < 回 > < 回 >

LSP infinite words over alphabet with at least 3 letters

[R. 2017-2019]

- Given an alphabet $A \ (\#A \ge 3)$, \exists a finite set S_{LSP} s.t. { LSP infinite words over A} $\subsetneq Stab(S_{LSP})$.
- A characterization of directive sequences in $Stab(S_{LSP})$ with a complex condition (allowed paths in a huge automaton/graph).
- No set S such that { LSP words over A} = Stab(S).
 Proof based on a characterization of morphisms preserving LSP infinite words.

< ロ > < 同 > < 回 > < 回 >

Episturmian words

- Words introduced by Droubay, Justin and Pirillo in 2001 as a generalization of Sturmian words on arbitrary alphabets
- Many characteristic properties: *for instance*, infinite words having at most one right special factor of each length, and, whose set of factors is closed under mirror image

イロト イヨト イヨト

Episturmian words

- Words introduced by Droubay, Justin and Pirillo in 2001 as a generalization of Sturmian words on arbitrary alphabets
- Many characteristic properties: *for instance*, infinite words having at most one right special factor of each length, and, whose set of factors is closed under mirror image
- A generalization of balanced words [R. 2007] For a *recurrent* infinite word w, the following assertions are equivalent:
 - **w** is episturmian;
 - **2** for each factor *u* of **w**, a letter *a* exists such that $AuA \cap Fact(w) \subseteq auA \cup Aua$.

イロト 不得 トイヨト イヨト

э

Episturmian words

- Words introduced by Droubay, Justin and Pirillo in 2001 as a generalization of Sturmian words on arbitrary alphabets
- Many characteristic properties: *for instance*, infinite words having at most one right special factor of each length, and, whose set of factors is closed under mirror image
- A generalization of balanced words [R. 2007] For a *recurrent* infinite word w, the following assertions are equivalent:
 - **w** is episturmian;
 - **2** for each factor *u* of **w**, a letter *a* exists such that $AuA \cap Fact(\mathbf{w}) \subseteq auA \cup Aua$.

Remark. Proof obtained using a desubstitution property of episturmian words

イロト 不得 トイヨト イヨト

э

Episturmian words and desubstitutions

$$L_{\alpha}: \left\{ \begin{array}{c} \alpha \mapsto \alpha \\ \beta \mapsto \alpha\beta \text{ for } \beta \neq \alpha \end{array} \right. \qquad R_{\alpha}: \left\{ \begin{array}{c} \alpha \mapsto \alpha \\ \beta \mapsto \beta\alpha \text{ for } \beta \neq \alpha \end{array} \right.$$

Characterization using desubstitutions [Justin, Pirillo 2002]

w is episturmian if and only if $\mathbf{w} \in Stab(\{L_{\alpha}, R_{\alpha} \mid \alpha \in A\})$ and it has a sequence $(\mathbf{w}_n)_{n>0}$ of **recurrent** desubstituted words.

Can be transformed to:

Episturmian words = **recurrent** elements of $Stab(\{L_{\alpha}, R_{\alpha} \mid \alpha \in A\})$

イロト イボト イヨト イヨト

Episturmian words and desubstitutions

$$L_{\alpha}: \left\{ \begin{array}{c} \alpha \mapsto \alpha \\ \beta \mapsto \alpha\beta \text{ for } \beta \neq \alpha \end{array} \right. \qquad R_{\alpha}: \left\{ \begin{array}{c} \alpha \mapsto \alpha \\ \beta \mapsto \beta\alpha \text{ for } \beta \neq \alpha \end{array} \right.$$

Characterization using desubstitutions [Justin, Pirillo 2002]

w is episturmian if and only if $\mathbf{w} \in Stab(\{L_{\alpha}, R_{\alpha} \mid \alpha \in A\})$ and it has a sequence $(\mathbf{w}_n)_{n>0}$ of **recurrent** desubstituted words.

Can be transformed to:

Episturmian words = **recurrent** elements of $Stab(\{L_{\alpha}, R_{\alpha} \mid \alpha \in A\})$

Remark: elements of $Stab(\{L_{\alpha}, R_{\alpha} \mid \alpha \in A\})$ not episturmian = $f(ba^{\omega})$ with a, $b \in A$, $f \in \{L_{\alpha}, R_{\alpha} \mid \alpha \in A\}^*$

イロト イボト イヨト イヨト

Episturmian words and stable sets

Let:

- $\mathcal{L} = \{ L_{\alpha} \mid \alpha \in A \}$
- $\mathcal{R} = \{L_{\alpha} \mid \alpha \in A\}$

Proposition

set of episturmian words = $Stab(\mathcal{R}^*\mathcal{L})$

Idea of the proof = in any infinite desubstitution of a recurrent element of $Stab(\mathcal{L} \cup \mathcal{R})$, infinitely many elements of \mathcal{L} occur.

イロト イヨト イヨト

Episturmian words and stable sets

Let:

- $\mathcal{L} = \{ L_{\alpha} \mid \alpha \in A \}$
- $\mathcal{R} = \{L_{\alpha} \mid \alpha \in A\}$

Proposition

set of episturmian words = $Stab(\mathcal{R}^*\mathcal{L})$

Idea of the proof = in any infinite desubstitution of a recurrent element of $Stab(\mathcal{L} \cup \mathcal{R})$, infinitely many elements of \mathcal{L} occur.

Proposition

There is no finite set S of substitutions such that the set of episturmian words is Stab(S).

Proof:

- Similarly as for Sturmian sets
- Need the characterization of morphisms that preserve episturmian words.

- 4 回 ト 4 三 ト

Morphisms that preserve episturmian words

A morphism preserves episturmian words on Aif and only if it is a composition of elements of the following sets

- $\mathcal{L} = \{ \mathcal{L}_{\alpha} \mid \alpha \in \mathcal{A} \}$
- $\mathcal{R} = \{L_{\alpha} \mid \alpha \in A\}$
- set of permutations: $\{f|f(A) = A\}$
- $\{\pi_a | a \in A, \forall b, \pi_a(b) \in a^+\}$ $(\forall w, \pi_a(w) = a^{\omega})$

- 4 回 ト 4 三 ト

Morphisms that preserve episturmian words

A morphism preserves episturmian words on *A* if and only if it is a composition of elements of the following sets

- $\mathcal{L} = \{ \mathcal{L}_{\alpha} \mid \alpha \in A \}$
- $\mathcal{R} = \{L_{\alpha} \mid \alpha \in A\}$
- set of permutations: $\{f|f(A) = A\}$
- $\{\pi_a | a \in A, \forall b, \pi_a(b) \in a^+\}$ $(\forall w, \pi_a(w) = a^{\omega})$

Remark. Morphisms π_a do not occur usually: a^{ω} is also directed by L^{ω}_a (R^{ω}_a , ...)

・ 何 ト ・ ヨ ト ・ ヨ ト

• Standard episturmian words = episturmian + all left special factors as prefixes

イロト イヨト イヨト

• Standard episturmian words = episturmian + all left special factors as prefixes

[Droubay, Justin, Pirillo 2001; Justin, Pirillo 2002]

set of standard episturmian words = $Stab(\{L_{\alpha} \mid \alpha \in A\})$

イロト 不得 トイヨト イヨト

э

• Standard episturmian words = episturmian + all left special factors as prefixes

[Droubay, Justin, Pirillo 2001; Justin, Pirillo 2002]

set of standard episturmian words = $Stab(\{L_{\alpha} \mid \alpha \in A\})$

 strict-episturmian words = Arnoux-Rauzy words = having one right special factor of each length, and, whose set of factors is closed under mirror image

• Standard episturmian words = episturmian + all left special factors as prefixes

[Droubay, Justin, Pirillo 2001; Justin, Pirillo 2002]

set of standard episturmian words = $Stab(\{L_{\alpha} \mid \alpha \in A\})$

- strict-episturmian words = Arnoux-Rauzy words = having one right special factor of each length, and, whose set of factors is closed under mirror image
 - The set of A-strict episturmian words is $Stab(S_{strictepi})$ with $S_{strictepi} = (\mathcal{L} \cup \mathcal{R})^* \mathcal{L}(\mathcal{L} \cup \mathcal{R}) \cap \cap_{\alpha \in A} (\mathcal{L} \cup \mathcal{R})^* \{L_{\alpha}, R_{\alpha}\} (\mathcal{L} \cup \mathcal{R})^*$
- It is not the stable set of a finite set of substitutions.

イロト 不得 ト イヨト イヨト

• Standard episturmian words = episturmian + all left special factors as prefixes

[Droubay, Justin, Pirillo 2001; Justin, Pirillo 2002]

set of standard episturmian words = $Stab(\{L_{\alpha} \mid \alpha \in A\})$

- strict-episturmian words = Arnoux-Rauzy words = having one right special factor of each length, and, whose set of factors is closed under mirror image
 - The set of A-strict episturmian words is $Stab(S_{strictepi})$ with $S_{strictepi} = (\mathcal{L} \cup \mathcal{R})^* \mathcal{L}(\mathcal{L} \cup \mathcal{R}) \cap \bigcap_{\alpha \in A} (\mathcal{L} \cup \mathcal{R})^* \{L_{\alpha}, R_{\alpha}\} (\mathcal{L} \cup \mathcal{R})^*$
- It is not the stable set of a finite set of substitutions.
- A-strict epistandard words (epistandard = standard episturmian)
 - The set of A-strict epistandard words is the stable sets of $\mathcal{S}_{strictepi} \cap \mathcal{L}^*$.
 - It is not the stable set of a finite set of substitutions.

< ロ > < 同 > < 回 > < 回 >

Contents

Introduction

2 Structural aspects

3 Combinatorial families that are stable sets

- Sturmian words
- Lyndon Sturmian words
- Standard words
- LSP words
- Episturmian words and sub-families

4 Conclusion

< □ > < □ > < □ > < □ > < □ >

The main studied problem

For which known families \mathcal{F} of words, does there exists a set \mathcal{S} of substitutions such that

$$\mathcal{F} = Stab(\mathcal{S})$$
 ?

Answers of this talk

finite sets ${\cal S}$	only infinite sets ${\cal S}$	no set
A^{ω}		overlap-free words
balanced finite words	Sturmian words	
LSP binary words		LSP words $\#A \ge 3$
	Lyndon Sturmian words	
standard episturmian words	standard Sturmian words	
	episturmian words	
	strict episturmian words	
	strict epistandard words	

Question

Others ?

Remark

For each of the previous families *F* for which there is only infinite sets *S* s.t.
 F = *Stab*(*S*), there exists a characterization of *F* as a *subset* of the stable set of a finite set of substitutions.

The characterization concerns the forms of the directive sequences.

< □ > < 同 > < 回 > < 回 >

Remark

For each of the previous families *F* for which there is only infinite sets *S* s.t.
 F = *Stab*(*S*), there exists a characterization of *F* as a *subset* of the stable set of a finite set of substitutions.

The characterization concerns the forms of the directive sequences.

• There exist also characterizations of some families using an automaton/a graph to determine which are the allowed directive sequences

・ 同 ト ・ ヨ ト ・ ヨ ト

Remark

For each of the previous families *F* for which there is only infinite sets *S* s.t.
 F = *Stab*(*S*), there exists a characterization of *F* as a *subset* of the stable set of a finite set of substitutions.

The characterization concerns the forms of the directive sequences.

• There exist also characterizations of some families using an automaton/a graph to determine which are the allowed directive sequences

For LSP Words over alphabets of cardinality at least 3 [Richomme 2019]

(人間) とうきょうきょう

Remark

For each of the previous families *F* for which there is only infinite sets *S* s.t.
 F = *Stab*(*S*), there exists a characterization of *F* as a *subset* of the stable set of a finite set of substitutions.

The characterization concerns the forms of the directive sequences.

- There exist also characterizations of some families using an automaton/a graph to determine which are the allowed directive sequences
 - For LSP Words over alphabets of cardinality at least 3 [Richomme 2019]
 - For many characterizations of families of words using S-adicity [...]

< ロ > < 同 > < 回 > < 回 >

Similar question for \mathcal{S} -adicity

For which known families ${\mathcal F}$ of words, does there exists ${\mathcal S}$ of substitutions such that

$$\mathcal{F} = adic(\mathcal{S})$$
 ?

With the same set of substitutions than for stable sets:

finite sets	infinite sets	no sets
balanced finite words	Sturmian words	A^{ω}
LSP binary words	Lyndon Sturmian words	
Standard episturmian words	Standard Sturmian words	overlap-free words
	episturmian words	
	strict episturmian words	
	strict epistandard words	

イロト イヨト イヨト

Similar question for \mathcal{S} -adicity

For which known families ${\mathcal F}$ of words, does there exists ${\mathcal S}$ of substitutions such that

$$\mathcal{F} = adic(\mathcal{S})$$
 ?

With the same set of substitutions than for stable sets:

finite sets	(only?) infinite sets	no sets
balanced finite words	Sturmian words	A^{ω}
LSP binary words	Lyndon Sturmian words	
Standard episturmian words	Standard Sturmian words	overlap-free words
	episturmian words	
	strict episturmian words	
	strict epistandard words	

Problems

- Others ?
- If F is S-adic for some finite set S, does it implies that F = Stab(S') for some finite set S'?

Thanks for your attention!

Reference: On sets of indefinitely desubstitutable words, Theoretical Computer Science 857, 97-113, 2021

< ロ > < 同 > < 回 > < 回 >

э