Recent advances around Nivat's conjecture

Etienne Moutot

Combinatorics on Words seminar

31 May 2021

Nivat's Conjecture

$$P_w(1) = 4$$

$$P_w(1) = 4$$

$$P_w(2) = 11$$

$$P_w(1) = 4$$

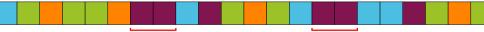
$$P_w(2) = 11$$

$$P_w(1) = 4$$

$$P_w(2) = 11$$

$$P_w(1) = 4$$

$$P_w(2) = 11$$



$$P_w(1) = 4$$

$$P_w(2) = 11$$

$$P_w(1) = 4$$

$$P_w(2) = 11$$

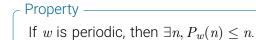
$$P_w(4) = 18$$

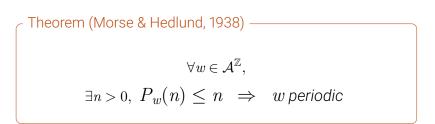
Pattern Complexity – 1D: Periodicity

 $P_w(1) = 2$ $P_w(2) = 3$ $P_w(3) = 5$ $P_w(4) = 5$ $P_w(5) = 5$ $P_w(6) = 5$

÷

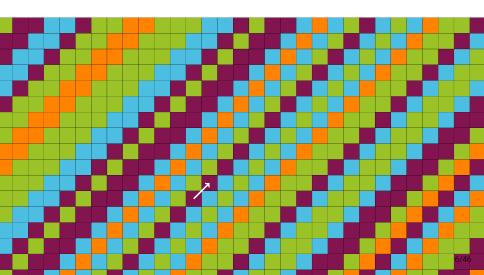
Pattern Complexity – 1D: Periodicity





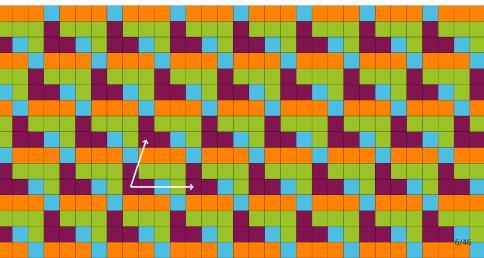
Periodic Configuration – 2D $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

1-periodic / weakly periodic: $\exists \mathbf{u}, \forall \mathbf{v}, c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$



Periodic Configuration – 2D $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

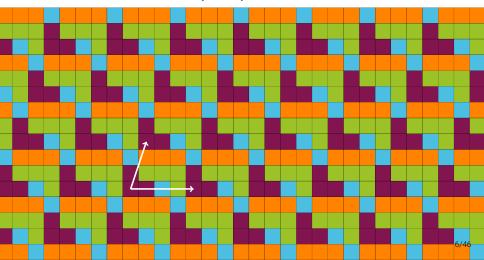
- **1**-periodic / weakly periodic: $\exists \mathbf{u}, \forall \mathbf{v}, c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$
- 2-periodic / strongly periodic: c is 1-periodic along u₁, u₂ not colinear



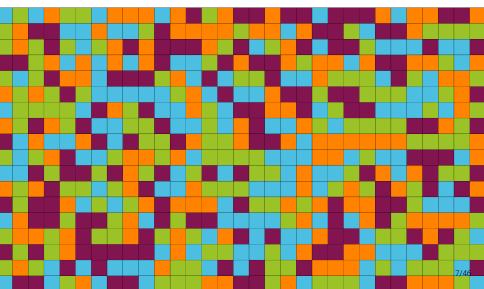
Periodic Configuration – 2D $c \in \mathcal{A}^{\mathbb{Z}^2}$ is:

1-periodic / weakly periodic: $\exists \mathbf{u}, \forall \mathbf{v}, \ c_{\mathbf{v}-\mathbf{u}} = c_{\mathbf{v}}$

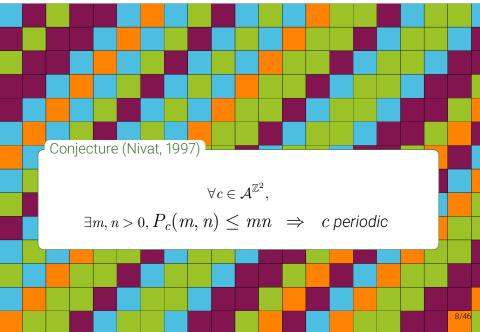
2-periodic / **strongly periodic**: c is 1-periodic along $\mathbf{u}_1, \mathbf{u}_2$ not colinear \Rightarrow Finitely many different translations of c



 $P_c(m, n) =$ number of rectangular patterns of size $m \times n$



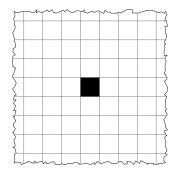
2D: Nivat's conjecture



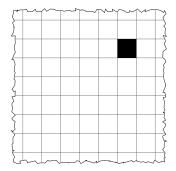
2D: no equivalence

There exists $c \in \{0,1\}^{\mathbb{Z}^2}$ periodic s.t. $P_c(m,n) = 2^{m+n-1}$

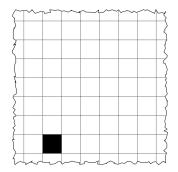
Theorem $\exists c \in \mathcal{A}^{\mathbb{Z}^2},$ $\exists m, n > 0, P_c(m, n) = mn + 1 \text{ and } c \text{ not periodic}$



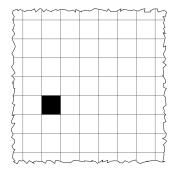
Theorem $\exists c \in \mathcal{A}^{\mathbb{Z}^2},$ $\exists m, n > 0, P_c(m, n) = mn + 1 \text{ and } c \text{ not periodic}$



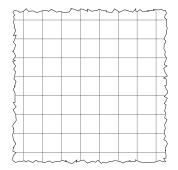
Theorem $\exists c \in \mathcal{A}^{\mathbb{Z}^2},$ $\exists m, n > 0, \ P_c(m, n) = mn + 1 \ and \ c \ not \ periodic$



Theorem $\exists c \in \mathcal{A}^{\mathbb{Z}^2},$ $\exists m, n > 0, \ P_c(m, n) = \mathbf{mn} + 1 \ \text{and} \ c \text{ not periodic}$



Theorem $\exists c \in \mathcal{A}^{\mathbb{Z}^2},$ $\exists m, n > 0, P_c(m, n) = mn + \mathbf{1} \text{ and } c \text{ not periodic}$

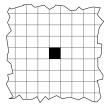


c is **uniformly recurrent** if all patterns of c appear everywhere:

 $\forall p \sqsubset c, \exists n_p, p \text{ appears in all balls of size } n_p$

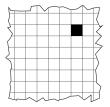
c is **uniformly recurrent** if all patterns of c appear everywhere:

 $\forall p \sqsubset c, \exists n_p, p \text{ appears in all balls of size } n_p$



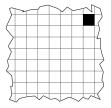
c is **uniformly recurrent** if all patterns of c appear everywhere:

 $\forall p \sqsubset c, \exists n_p, p \text{ appears in all balls of size } n_p$



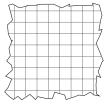
c is **uniformly recurrent** if all patterns of c appear everywhere:

 $\forall p \sqsubset c, \exists n_p, p \text{ appears in all balls of size } n_p$



c is **uniformly recurrent** if all patterns of c appear everywhere:

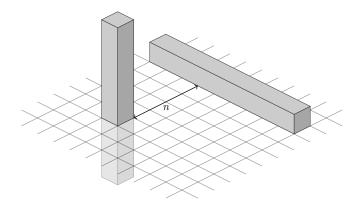
 $\forall p \sqsubset c, \exists n_p, p \text{ appears in all balls of size } n_p$



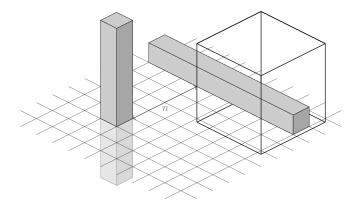
The same result does not hold in 3D and above:

$$\exists c \in \mathcal{A}^{\mathbb{Z}^3},$$

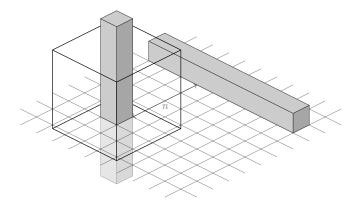
 $\exists n > 0, P_c(n, n, n) \leq n^3 \text{ and } c \text{ not } periodic$



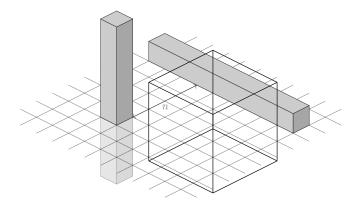
$$P_c(n, n, n) = 2n^2 + 1 < n^3$$



$$P_c(n, n, n) = \mathbf{n^2} + n^2 + 1 < n^3$$



$$P_c(n, n, n) = n^2 + \mathbf{n^2} + 1 < n^3$$



$$P_c(n, n, n) = n^2 + n^2 + \mathbf{1} < n^3$$

Getting closer to the conjecture

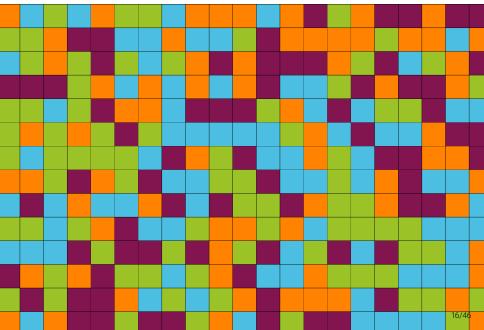
■ $P_c(2, n) \leq 2n$ [Sanders & Tijdeman 2002]

■ $P_c(3, n) \le 3n$ [Cyr & Kra, 2016]

- $P_c(m, n) \leq \frac{mn}{144}$ [Epifanio, Koskas & Mignosi, 2003]
- $P_c(m,n) \leq \frac{mn}{16}$ [Quas & Zamboni, 2004]
- $P_c(m, n) \le \frac{mn}{2}$ [Cyr & Kra, 2015]
- $P_c(m,n) \leq \frac{mn}{2} + |\mathcal{A}| 1$ [Colle & Garibaldi, 2019]

Algebraic Tools

Configurations are (Laurent) series



Configurations are (Laurent) series

																		-		
3	1	1	1	0	3	1	2	1	1	0	1	1	0	2	3	2	1	1	2	3
1	1	2	0	0	0	1	2	0	1	3	0	0	1	0	2	1	3	3	2	1
2	1	1	0	0	1	1	1	0	0	3	0	1	1	3	0	3	1	1	1	3
1	3	0	1	1	3	3	1	0	2	1	3	2	0	0	2	0	2	0	0	3
3	0	0	1	1	0	1	0	3	2	1	3	1	3	0	3	2	3	2	0	1
2	1	1	2	3	1	2	0	2	1	2	1	2	1	1	2	0	0	2	2	1
1	0	3	1	3	2	3	0	2	3	3	0	2	0	2	1	2	2	3	1	2
2	2	2	3	1	1	1	0	3	1	2	2	0	3	1	3	0	2	1	1	0
1	1	1	0	3	1	2	3	2	3	0	3	3	1	0	1	1	0	3	2	0
0	3	0	3	2	3	3	1	1	3	1	0	2	0	1	2	1	0	1	0	2
1	0	1	2	1	3	2	3	1	2	1	2	0	0	1	0	2	3	3	2	2
3	1	1	1	0	2	2	1	3	1	0	1	2	0	2	3	3	0	3	2	0
1	1	3	0	2	0	3	0	0	1	1	0	0	2	0	3	3	3	2	1	3
2	2	1	3	3	1	2	2	3	0	0	2	2	0	2	0	3	0	0	16/46 0	2

Configurations are (Laurent) series

											_									
-10,5	C-9,5	C-8,5	$c_{-7,5}$	$c_{-6,5}$	$c_{-5,5}$	$c_{-4,5}$	$c_{-3,5}$	$c_{-2,5}$	$c_{-1,5}$	$c_{0,5}$	$c_{1,5}$	$c_{2,5}$	$c_{3,5}$	$c_{4,5}$	$c_{5,5}$	$c_{6,5}$	$c_{7,5}$	$c_{8,5}$	$c_{9,5}$	$c_{10},$
-10,4	$c_{-9,4}$	$c_{-8,4}$	$c_{-7,4}$	$c_{-6,4}$	$c_{-5,4}$	$c_{-4,4}$	$c_{-3,4}$	$c_{-2,4}$	$c_{-1,4}$	$c_{0,4}$	$c_{1,4}$	$c_{2,4}$	$c_{3,4}$	$c_{4,4}$	$c_{5,4}$	$c_{6,4}$	$c_{7,4}$	$c_{8,4}$	$c_{9,4}$	c_{10} ,
-10,3	C-9,3	$c_{-8,3}$	$c_{-7,3}$	$c_{-6,3}$	$c_{-5,3}$	$c_{-4,3}$	$c_{-3,3}$	$c_{-2,3}$	$c_{-1,3}$	$c_{0,3}$	$c_{1,3}$	$c_{2,3}$	$c_{3,3}$	$c_{4,3}$	$c_{5,3}$	$c_{6,3}$	c _{7,3}	c _{8,3}	$c_{9,3}$	c_{10} ,
-10,2	C-9,2	$c_{-8,2}$	$c_{-7,2}$	$c_{-6,2}$	$c_{-5,2}$	$c_{-4,2}$	$c_{-3,2}$	$c_{-2,2}$	$c_{-1,2}$	$c_{0,2}$	$c_{1,2}$	$c_{2,2}$	$c_{3,2}$	$c_{4,2}$	$c_{5,2}$	$c_{6,2}$	c _{7,2}	c _{8,2}	$c_{9,2}$	c_{10} ,
-10,1	C-9,1	$c_{-8,1}$	$c_{-7,1}$	$c_{-6,1}$	$c_{-5,1}$	$c_{-4,1}$	$c_{-3,1}$	$c_{-2,1}$	$c_{-1,1}$	$c_{0,1}$	$c_{1,1}$	$c_{2,1}$	$c_{3,1}$	$c_{4,1}$	$c_{5,1}$	$c_{6,1}$	$c_{7,1}$	$c_{8,1}$	$c_{9,1}$	c_{10} ,
-10,0	C-9,0	$c_{-8,0}$	<i>c</i> _{-7,0}	$c_{-6,0}$	$c_{-5,0}$	$c_{-4,0}$	$c_{-3,0}$	$c_{-2,0}$	$c_{-1,0}$	$c_{0,0}$	$c_{1,0}$	c _{2,0}	$c_{3,0}$	$c_{4,0}$	$c_{5,0}$	C _{6,0}	c _{7,0}	c _{8,0}	$c_{9,0}$	c_{10} ,
-10,-1	$c_{-9,-1}$	$c_{-8,-1}$	c _{-7,-1}	$c_{-6,-1}$	$c_{-5,-1}$	$c_{-4,-1}$	$c_{-3,-1}$	$c_{-2,-1}$	$c_{-1,-1}$	$c_{0,-1}$	$c_{1,-1}$	$c_{2,-1}$	$c_{3,-1}$	$c_{4,-1}$	$c_{5,-1}$	$c_{6,-1}$	c _{7,-1}	$c_{8,-1}$	$c_{9,-1}$	$c_{10,-}$
-10,-2	$c_{-9,-2}$	$c_{-8,-2}$	$C_{-7,-2}$	$c_{-6,-2}$	$c_{-5,-2}$	$c_{-4,-2}$	$c_{-3,-2}$	$c_{-2,-2}$	$c_{-1,-2}$	$c_{0,-2}$	$c_{1,-2}$	$c_{2,-2}$	$c_{3,-2}$	$c_{4,-2}$	$c_{5,-2}$	$c_{6,-2}$	$c_{7,-2}$	$c_{8,-2}$	<i>c</i> _{9,-2}	$c_{10,-}$
-10,-3	c_9,-3	C-8,-3	$c_{-7,-3}$	$c_{-6,-3}$	$c_{-5,-3}$	$c_{-4,-3}$	<i>c</i> _{-3,-3}	$c_{-2,-3}$	$c_{-1,-3}$	$c_{0,-3}$	$c_{1,-3}$	$c_{2,-3}$	$c_{3,-3}$	$c_{4,-3}$	$c_{5,-3}$	$c_{6,-3}$	$c_{7,-3}$	$c_{8,-3}$	<i>c</i> _{9,-3}	$c_{10,-}$
-10,-4	c_9,-4	$c_{-8,-4}$	$c_{-7,-4}$	$c_{-6,-4}$	$c_{-5,-4}$	$c_{-4,-4}$	$c_{-3,-4}$	$c_{-2,-4}$	$c_{-1,-4}$	$c_{0,-4}$	$c_{1,-4}$	$c_{2,-4}$	$c_{3,-4}$	$c_{4,-4}$	$c_{5,-4}$	$c_{6,-4}$	c _{7,-4}	c _{8,-4}	$c_{9,-4}$	$c_{10,-}$
-10,-5	$c_{-9,-}$						(V	т <i>л</i>		$\sum_{n=1}^{\infty}$		vi	<i>vi</i>					5	$c_{9,-5}$	$c_{10,-}$
-10,-6	c_9,_	$c(X, Y) = \sum_{i,j=-\infty} c_{i,j} X^i Y^j$														5	c _{9,-6}	$c_{10,-}$		
-10,-7	c_9,_	<i>i</i> , <i>j</i> ∞														7	<i>c</i> _{9,-7}	c _{10,-}		
-10,-8	$C_{-9,-8}$	C-8,-8	$c_{-7,-8}$	c _{-6,-8}	$c_{-5,-8}$	$c_{-4,-8}$	$c_{-3,-8}$	$c_{-2,-8}$	$c_{-1,-8}$	$c_{0,-8}$	$c_{1,-8}$	$c_{2,-8}$	$c_{3,-8}$	$c_{4,-8}$	$c_{5,-8}$	$c_{6,-8}$	c _{7,-8}	c _{8,-8}	16/4 c _{9,-8}	

Operations: Sum

$$c + d = \sum_{i,j=-\infty}^{\infty} \left(c_{i,j} + d_{i,j} \right) X^{i} Y^{j}$$

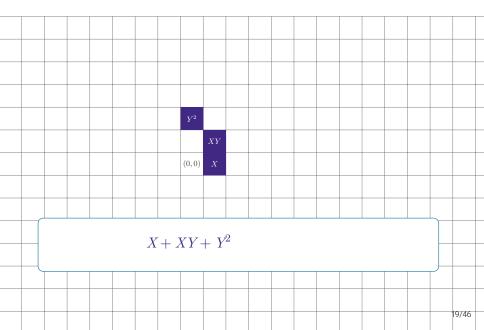
Formal sum \leftrightarrow Sum of configurations

Operations: Multiplication

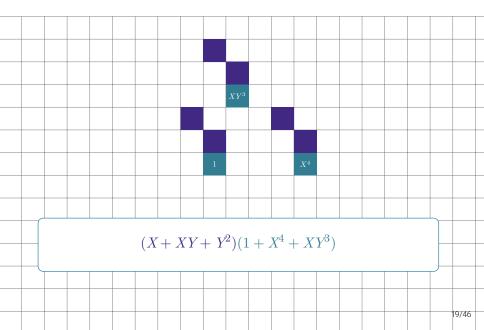
$$X^{a} Y^{b} c = \sum_{i,j=-\infty}^{\infty} c_{i,j} X^{i+a} Y^{j+b} = \sum_{i,j=-\infty}^{\infty} c_{i-a,j-b} X^{i} Y^{j}$$

Multiplication by $X^a Y^b \leftrightarrow$ Translation of vector (a, b)

(Parenthesis: see your polynomials like you never did)



(Parenthesis: see your polynomials like you never did)



Expressing periodicity

c periodic of period (a, b)

 \Leftrightarrow $c = X^{a} Y^{b} c$ \Leftrightarrow $(X^{a} Y^{b} - 1) c = 0$ \Leftrightarrow $(X^{a} Y^{b} - 1) \in \operatorname{Ann}(c)$

Polynomial Ideal

$$\operatorname{Ann}(c) = \{p \mid pc = 0\} \subset \mathbb{R}[X^{\pm}, Y^{\pm}]$$

 $c \text{ periodic } \Leftrightarrow \exists a, b \in \mathbb{Z} \setminus \{\mathbf{0}\}, (X^a Y^b - 1) \in Ann(c)$

Polynomial Ideal

$$\operatorname{Ann}(c) = \{p \mid pc = 0\} \subset \mathbb{R}[X^{\pm}, Y^{\pm}]$$

 $c \text{ periodic } \Leftrightarrow \exists a, b \in \mathbb{Z} \setminus \{\mathbf{0}\}, (X^a Y^b - 1) \in Ann(c)$

Ann(c) is a **polynomial ideal** \rightarrow a lot of tools to understand its structure !

First results

c of low complexity : $\exists m, n, P_c(m, n) \leq mn$

```
Theorem (Kari & Szabados, 2015) —
\exists p \neq 0 \in Ann(c)
```

First results

c of low complexity : $\exists m, n, P_c(m, n) \leq mn$

```
Theorem (Kari & Szabados, 2015) - \exists p \neq 0 \in Ann(c)
```

```
Theorem (Kari & Szabados, 2015)

\exists a_1, b_1, a_2, b_2 \dots, a_r, b_r \in \mathbb{Z}
\left(X^{a_1} Y^{b_1} - 1\right) \left(X^{a_2} Y^{b_2} - 1\right) \cdots \left(X^{a_r} Y^{b_r} - 1\right) \in Ann(c)
```

Periodic Decomposition

c of low complexity : $\exists m, n, P_c(m, n) \leq mn$

$$\overline{ \begin{array}{c} \quad \text{Theorem (Kari \& Szabados, 2015)} \\ \exists a_1, b_1, a_2, b_2 \dots, a_r, b_r \in \mathbb{Z} \\ \left(X^{a_1} Y^{b_1} - 1 \right) \left(X^{a_2} Y^{b_2} - 1 \right) \cdots \left(X^{a_r} Y^{b_r} - 1 \right) \in \operatorname{Ann}(c)$$

Theorem (Kari & Szabados, 2015) – There exist periodic c_1, \ldots, c_r ,

$$c = c_1 + \dots + c_r$$

Periodic Decomposition: any dimension !

c in dimension d with a non-trivial annihilator

Theorem (Kari & Szabados, 2015)

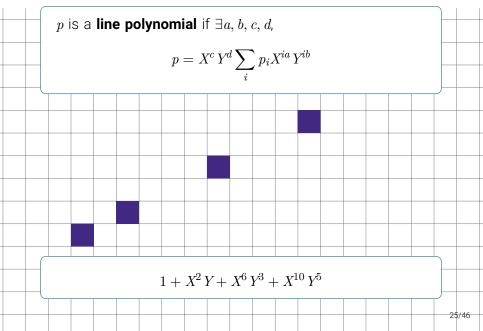
$$\exists \mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{Z}^d$$

 $(X^{\mathbf{u}_1} - 1) (X^{\mathbf{u}_2} - 1) \cdots (X^{\mathbf{u}_r} - 1) \in Ann(c)$

Theorem (Kari & Szabados, 2015) — There exist periodic c_1, \ldots, c_r ,

$$c = c_1 + \dots + c_r$$

Line Polynomial



Annihilator Ideal Decomposition (2D)

- Theorem (Kari & Szabados, 2015) -

 $c \in \mathcal{A}^{\mathbb{Z}^2}$ w. non-trivial annihilator. Then there are line polynomials $\phi_1, \ldots \phi_r$ and ideal H s.t.

 $\operatorname{Ann}(c) = \phi_1 \cdots \phi_r H,$

H intersection of maximal ideals, $\langle \phi_1 \cdots \phi_r \rangle$ and H comaximal, $\phi_1, \ldots, \phi_r, H$, unique

Periodic Decomposition

- Theorem (Kari & Szabados, 2015) –

If $c = c_1 + c_2$, c_1 and c_2 periodic, and $P_c(m, n) \leq mn$, then c is periodic.

Theorem (Cyr & Kra, 2015) — If $\exists m, n \in \mathbb{N}, P_c(m, n) \leq \frac{mn}{2}$, then *c* is periodic.

Asymptotic Version

- Theorem (Kari & Szabados, 2015) If \exists infinitely many $m, n \in \mathbb{N}, P_c(m, n) \leq mn$, then c is periodic.

Uniformly Recurrent Case

Uniformly recurrent configurations

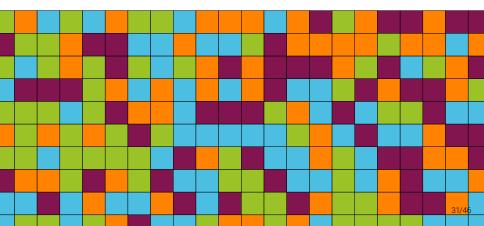
- Theorem (Kari & M. 2020)

Nivat's conjecture holds for uniformly recurrent configurations

Subshifts of Finite Type - Configurations

Finite alphabet:
$$\mathcal{A} = \left\{ \square \square \square \square \right\}$$

Configuration: $c \in \mathcal{A}^{\mathbb{Z}^2}$

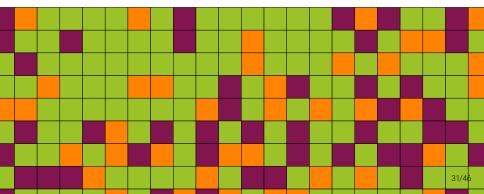


Finite alphabet:
$$\mathcal{A} = \left\{ \square \square \square \square \right\}$$

Set of forbidden patterns: $F = \{\square\}$

:

Subshift

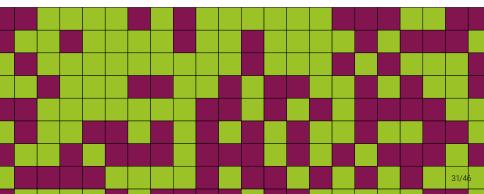


Finite alphabet:
$$A = \left\{ \square \square \square \square \right\}$$

Set of forbidden patterns: $F = \left\{ \square \square \right\}$

:

Subshift

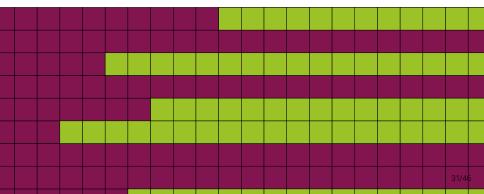


Finite alphabet:
$$A = \{ \blacksquare \blacksquare \blacksquare \} \}$$

Set of forbidden patterns: $F = \{ \blacksquare \blacksquare \blacksquare \} \}$

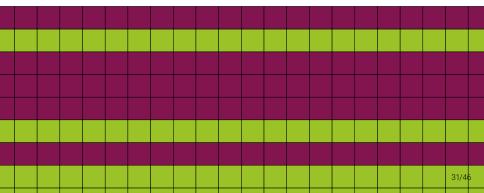
:

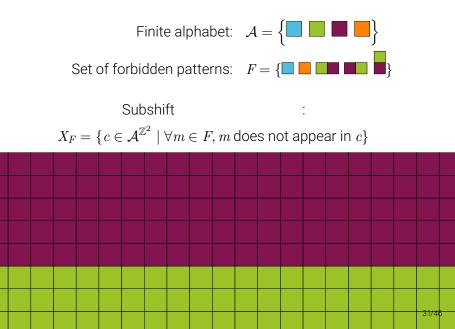
Subshift



:

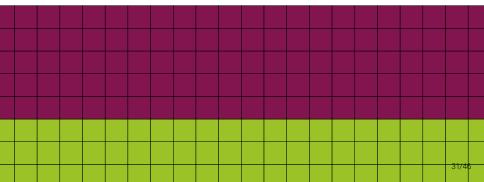
Subshift



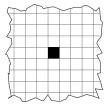


Finite alphabet: $\mathcal{A} = \left\{ \square \square \square \square \right\}$ Finite Set of forbidden patterns: $F = \left\{ \square \square \square \square \square \square \square \right\}$

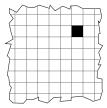
Subshift of Finite Type (SFT):



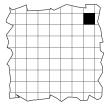
Orbit of c: $\mathcal{O}(c) = \{\mathbf{u} \cdot c \mid \mathbf{u} \in \mathbb{Z}^2\}$



Orbit of c: $\mathcal{O}(c) = \{\mathbf{u} \cdot c \mid \mathbf{u} \in \mathbb{Z}^2\}$

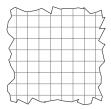


Orbit of c: $\mathcal{O}(c) = \{\mathbf{u} \cdot c \mid \mathbf{u} \in \mathbb{Z}^2\}$



Orbit of c: $\mathcal{O}(c) = \{\mathbf{u} \cdot c \mid \mathbf{u} \in \mathbb{Z}^2\}$

Orbit closure of c: $\overline{\mathcal{O}(c)}$, topological closure of $\mathcal{O}(c)$ (a subshift)



Orbit of c: $\mathcal{O}(c) = {\mathbf{u} \cdot c \mid \mathbf{u} \in \mathbb{Z}^2}$

Orbit closure of c: $\overline{\mathcal{O}(c)}$, topological closure of $\mathcal{O}(c)$ (a subshift)

c unifomly recurrent $\Leftrightarrow \forall d \in \overline{\mathcal{O}(c)}, \overline{\mathcal{O}(d)} = \overline{\mathcal{O}(c)}$

Main Theorem

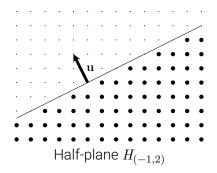
```
Theorem (Kari & M. 2020)

c such that \exists m, n, P_c(m, n) \leq mn,

\exists d \in \overline{\mathcal{O}(c)} which is periodic
```

Key: determinism

Determinism



X is **u**-deterministic:

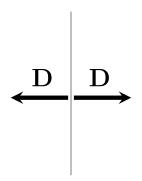
$$\forall c, c' \in X,$$
$$c|_{H_{\mathbf{u}}} = c'|_{H_{\mathbf{u}}} \Longrightarrow c = c'$$

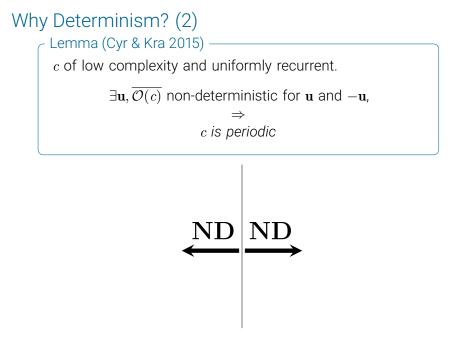
Why Determinism? (1)

- Lemma (Corollary from [Boyle & Lind 1997])

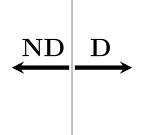
 $\overline{\mathcal{O}(c)}$ is deterministic in all directions

 \Rightarrow *c* is (two-)periodic





One-sided Determinism



Last case: One-sided Determinism

.. can be eliminated

- Theorem (Kari & M. 2020) -

c 2D with non-trivial annihilator.

 $\exists d \in \overline{\mathcal{O}(c)}$ such that $\overline{\mathcal{O}(d)}$ has no direction of one-sided determinism.

Main Theorem

Theorem (Kari & M. 2020) c such that $\exists m, n, P_c(m, n) \leq mn$, $\exists d \in \overline{\mathcal{O}(c)}$ which is periodic

Proof sketch:

- "Eliminate" all one-sided deterministic directions $\rightarrow d \in \overline{\mathcal{O}(c)}$
- *d* is periodic ! ([Boyle & Lind 1997] + [Cyr & Kra, 2015])

Consequence 1: Uniform Recurrence

- Corollary (Kari & M. 2020)

Nivat's conjecture holds for c uniformly recurrent

Proof.

$$c \in \mathcal{A}^{\mathbb{Z}^2}, P_c(m, n) \leq mn.$$

There exists $d \in \overline{\mathcal{O}(c)}$ periodic.
 c uniformly recurrent $\Rightarrow \overline{\mathcal{O}(c)} = \overline{\mathcal{O}(d)}.$
 $\overline{\mathcal{O}(d)}$ contains only periodic configurations $\Rightarrow c$ periodic.

What's next?

Nivat's Conjecture

 \rightarrow Nivat's Conjecture

Non uniformly recurrent configurations: contains arbitrarily large periodic regions

What is the geometry of these regions?

Nivat's Conjecture

 \rightarrow Nivat's Conjecture Non uniformly recurrent configurations: contains arbitrarily large periodic regions

What is the geometry of these regions?

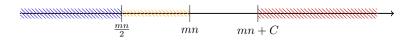
 \rightarrow What complexity can have aperiodic SFTs?

- Theorem (Kari & M. 2020) -

For all **aperiodic** subshifts $X, \forall c \in X, \forall m, n \in \mathbb{N}$,

 $P_c(m,n) > mn$

 $\forall X, \forall c \in X, \ c \ \text{periodic} \qquad \forall X, \exists c \in X, \ c \ \text{periodic} \qquad \exists X, \forall c \in X, \ c \ \text{not periodic}$



 $\forall X, \forall c \in X, \ c \ \text{periodic} \qquad \forall X, \exists c \in X, \ c \ \text{periodic} \qquad \exists X, \forall c \in X, \ c \ \text{not periodic}$

What is the smallest possible C? (we know C > 0)

 $\forall X, \forall c \in X, \ c \ \text{periodic} \qquad \forall X, \exists c \in X, \ c \ \text{periodic} \qquad \exists X, \forall c \in X, \ c \ \text{not periodic}$

What is the smallest possible C? (we know C > 0)

 $\forall X, \forall c \in X, \ c \ \text{periodic} \qquad \forall X, \exists c \in X, \ c \ \text{periodic} \qquad \exists X, \forall c \in X, \ c \ \text{not periodic}$

Theorem (M. & Petit-Jean 2021) $\sigma : \mathcal{A} \to \mathcal{A}^{\{1,...,n\}^2}$ primitive substitution with **determining position**. If X^{σ} is aperiodic, then $\exists C > 1, \forall c \in X^{\sigma}, \forall n,$ $P_c(n, n) > Cn^2$

45/46

 $\forall X, \forall c \in X, \ c \ \text{periodic} \qquad \forall X, \exists c \in X, \ c \ \text{periodic} \qquad \exists X, \forall c \in X, \ c \ \text{not periodic}$

Theorem (M. & Petit-Jean 2021) $\sigma : \mathcal{A} \to \mathcal{A}^{\{1,...,n\}^2}$ primitive substitution with **determining position**. If X^{σ} is aperiodic, then $\exists C > 1, \forall c \in X^{\sigma}, \forall n$,

 $P_c(n,n) \ge Cn^2$

- Conjecture

True without the determining position assumption

Thank you !