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Nivat’s Conjecture

1/46



Pattern Complexity – 1D

A = { }

w ∈ AZ
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Pattern Complexity – 1D

Pw(n) = number of patterns of size n

Pw(1) = 4

Pw(2) = 11

Pw(4) = 18
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Pattern Complexity – 1D: Periodicity

Pw(1) = 2

Pw(2) = 3

Pw(3) = 5

Pw(4) = 5

Pw(5) = 5

Pw(6) = 5

...
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Pattern Complexity – 1D: Periodicity

If w is periodic, then ∃n,Pw(n) ≤ n.
Property
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Pattern Complexity – 1D

∀w ∈ AZ,

∃n > 0, Pw(n) ≤ n ⇒ w periodic

Theorem (Morse & Hedlund, 1938)
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Periodic Configuration – 2D
c ∈ AZ2 is:

1-periodic / weakly periodic: ∃u, ∀v, cv−u = cv

2-periodic / strongly periodic: c is 1-periodic along u1,u2

not colinear

⇒ Finitely many different translations of c
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Pattern Complexity – 2D

Pc(m,n) = number of rectangular patterns of size m × n
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2D: Nivat’s conjecture

∀c ∈ AZ2
,

∃m,n > 0,Pc(m, n) ≤ mn ⇒ c periodic

Conjecture (Nivat, 1997)
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2D: no equivalence

There exists c ∈ {0, 1}Z2 periodic s.t.

Pc(m,n) = 2m+n−1

Property
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Nivat’s conjecture is optimal

∃c ∈ AZ2
,

∃m,n > 0, Pc(m,n) = mn + 1 and c not periodic

Theorem
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Uniform Recurrence

c is uniformly recurrent if all patterns of c appear everywhere:

∀p ⊏ c, ∃np, p appears in all balls of size np

is not uniformly recurrent
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Higher dimension?

The same result does not hold in 3D and above:

∃c ∈ AZ3
,

∃n > 0, Pc(n,n,n) ≤ n3 and c not periodic
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Higher dimension?

n

Pc(n,n,n) = 2n2 + 1 < n3
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Getting closer to the conjecture

Pc(2,n) ≤ 2n [Sanders & Tijdeman 2002]
Pc(3,n) ≤ 3n [Cyr & Kra, 2016]

Pc(m,n) ≤ mn
144 [Epifanio, Koskas & Mignosi, 2003]

Pc(m,n) ≤ mn
16 [Quas & Zamboni, 2004]

Pc(m,n) ≤ mn
2 [Cyr & Kra, 2015]

Pc(m,n) ≤ mn
2 + |A| − 1 [Colle & Garibaldi, 2019]
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Algebraic Tools
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Configurations are (Laurent) series

c(X,Y) =

∞∑
i,j=−∞

ci,jXiYj
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Operations: Sum

c + d =

∞∑
i,j=−∞

(ci,j + di,j)XiYj

Formal sum ↔ Sum of configurations
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Operations: Multiplication

XaYbc =
∞∑

i,j=−∞
ci,jXi+aYj+b =

∞∑
i,j=−∞

ci−a,j−bXiYj

Multiplication by XaYb ↔ Translation of vector (a, b)

18/46



(Parenthesis: see your polynomials like you never did)

(0, 0) X

XY

Y 2

(

X + XY + Y2

)(1 + X4 + XY3)
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(Parenthesis: see your polynomials like you never did)

1 X4

XY 3

(X + XY + Y2)(1 + X4 + XY3)
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Expressing periodicity

c periodic of period (a, b)

⇔

c = XaYbc

⇔

(XaYb − 1)c = 0

⇔

(XaYb − 1) ∈ Ann(c)
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Polynomial Ideal

Ann(c) = {p | pc = 0} ⊂ R[X±,Y±]

c periodic ⇔ ∃a, b ∈ Z\{0}, (XaYb − 1) ∈ Ann(c)

Ann(c) is a polynomial ideal
→ a lot of tools to understand its structure !
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First results

c of low complexity : ∃m,n,Pc(m,n) ≤ mn

∃p ̸= 0 ∈ Ann(c)
Theorem (Kari & Szabados, 2015)

∃a1, b1, a2, b2 . . . , ar, br ∈ Z(
Xa1Yb1 − 1

)(
Xa2Yb2 − 1

)
· · ·

(
XarYbr − 1

)
∈ Ann(c)

Theorem (Kari & Szabados, 2015)
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Periodic Decomposition

c of low complexity : ∃m,n,Pc(m,n) ≤ mn

∃a1, b1, a2, b2 . . . , ar, br ∈ Z(
Xa1Yb1 − 1

)(
Xa2Yb2 − 1

)
· · ·

(
XarYbr − 1

)
∈ Ann(c)

Theorem (Kari & Szabados, 2015)

There exist periodic c1, . . . , cr,

c = c1 + · · ·+ cr

Theorem (Kari & Szabados, 2015)
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Periodic Decomposition: any dimension !

c in dimension d with a non-trivial annihilator

∃u1, . . . , ur ∈ Zd

(Xu1 − 1) (Xu2 − 1) · · · (Xur − 1) ∈ Ann(c)

Theorem (Kari & Szabados, 2015)

There exist periodic c1, . . . , cr,

c = c1 + · · ·+ cr

Theorem (Kari & Szabados, 2015)
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Line Polynomial

p is a line polynomial if ∃a, b, c, d,

p = XcYd
∑

i
piXiaYib

1 + X2Y + X6Y3 + X10Y5
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Annihilator Ideal Decomposition (2D)

c ∈ AZ2 w. non-trivial annihilator. Then there are line
polynomials ϕ1, . . . ϕr and ideal H s.t.

Ann(c) = ϕ1 · · ·ϕrH,

H intersection of maximal ideals, ⟨ϕ1 · · ·ϕr⟩ and H co-
maximal, ϕ1, . . . , ϕr,H, unique

Theorem (Kari & Szabados, 2015)
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Periodic Decomposition

If c = c1 + c2, c1 and c2 periodic, and Pc(m,n) ≤ mn, then
c is periodic.

Theorem (Kari & Szabados, 2015)

If ∃m,n ∈ N,Pc(m,n) ≤ mn
2 , then c is periodic.

Theorem (Cyr & Kra, 2015)
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Asymptotic Version

If ∃ infinitely many m,n ∈ N,Pc(m,n) ≤ mn, then c is pe-
riodic.

Theorem (Kari & Szabados, 2015)
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Uniformly Recurrent Case
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Uniformly recurrent configurations

Nivat’s conjecture holds for uniformly recurrent configu-
rations

Theorem (Kari & M. 2020)

30/46



Subshifts of Finite Type – Configurations

Finite alphabet: A =
{ }

Configuration: c ∈ AZ2
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Subshifts of Finite Type

Finite alphabet: A =
{ }

Finite

Set of forbidden patterns: F = { }

Subshift

of Finite Type (SFT)

:

XF = {c ∈ AZ2 | ∀m ∈ F,m does not appear in c}
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Orbits

Orbit of c: O(c) = {u · c | u ∈ Z2}
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Orbits
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Orbits

Orbit of c: O(c) = {u · c | u ∈ Z2}

Orbit closure of c: O(c), topological closure of O(c) (a subshift)

c unifomly recurrent ⇔ ∀d ∈ O(c),O(d) = O(c)
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Main Theorem

c such that ∃m,n,Pc(m,n) ≤ mn,

∃d ∈ O(c) which is periodic

Theorem (Kari & M. 2020)

Key: determinism
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Determinism

uu

Half-plane H(−1,2)

X is u-deterministic:
∀c, c′ ∈ X,

c|Hu = c′|Hu =⇒ c = c′
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Why Determinism? (1)

O(c) is deterministic in all directions
⇒

c is (two-)periodic

Lemma (Corollary from [Boyle & Lind 1997])

D D
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Why Determinism? (2)

c of low complexity and uniformly recurrent.

∃u,O(c) non-deterministic for u and −u,
⇒

c is periodic

Lemma (Cyr & Kra 2015)

ND ND
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One-sided Determinism

ND D

Last case: One-sided Determinism
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.. can be eliminated

c 2D with non-trivial annihilator.

∃d ∈ O(c) such that O(d) has no direction of one-
sided determinism.

Theorem (Kari & M. 2020)
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Main Theorem

c such that ∃m,n,Pc(m,n) ≤ mn,

∃d ∈ O(c) which is periodic

Theorem (Kari & M. 2020)

Proof sketch:
“Eliminate” all one-sided deterministic directions→ d ∈ O(c)
d is periodic ! ([Boyle & Lind 1997] + [Cyr & Kra, 2015])
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Consequence 1: Uniform Recurrence

Nivat’s conjecture holds for c uniformly recurrent
Corollary (Kari & M. 2020)

c ∈ AZ2
,Pc(m,n) ≤ mn.

There exists d ∈ O(c) periodic.
c uniformly recurrent ⇒ O(c) = O(d).
O(d) contains only periodic configurations ⇒ c peri-
odic.

Proof.
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What’s next ?
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Nivat’s Conjecture

→ Nivat’s Conjecture
Non uniformly recurrent configurations: contains arbitrarily large
periodic regions

What is the geometry of these regions?

→ What complexity can have aperiodic SFTs?
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What complexity can have aperiodic SFTs?

For all aperiodic subshifts X, ∀c ∈ X, ∀m,n ∈ N,

Pc(m,n) > mn

Theorem (Kari & M. 2020)
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What complexity can have aperiodic SFTs?

∀X,∀c ∈ X, c periodic ∀X,∃c ∈ X, c periodic ∃X,∀c ∈ X, c not periodic

mn
2 mn mn+ C

What is the smallest possible C? (we know C > 0)

C > 1

Conjecture
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What complexity can have aperiodic SFTs?
∀X,∀c ∈ X, c periodic ∀X,∃c ∈ X, c periodic ∃X,∀c ∈ X, c not periodic

mn
2 mn mn+ C

σ : A → A{1,...,n}2 primitive substitution with determining
position. If Xσ is aperiodic, then ∃C > 1,∀c ∈ Xσ, ∀n,

Pc(n,n) ≥ Cn2

Theorem (M. & Petit-Jean 2021)

True without the determining position assumption
Conjecture
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Thank you !

46/46


	Nivat's Conjecture
	1D
	2D

	Algebra
	Uniformly recurrent configurations
	What's next ?

