Initial nonrepetitive complexity of regular episturmian words and their Diophantine exponents

Jarkko Peltomäki

The Turku Collegium for Science, Medicine and Technology Department of Mathematics and Statistics University of Turku

21.6.2021

- Intercepts of episturmian words.
- Initial nonrepetitive complexity of episturmian words.
- Diophantine exponents of episturmian words.
- Results on irrationality exponents

• We suppose that Δ is an infinite word, a *directive word*, over a *d*-letter alphabet and write $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ with $a_k \ge 1$ and $x_k \ne x_{k+1}$.

- We suppose that Δ is an infinite word, a *directive word*, over a *d*-letter alphabet and write $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ with $a_k \ge 1$ and $x_k \ne x_{k+1}$.
- The sequence (a_k) is the sequence of *partial quotients*

- We suppose that Δ is an infinite word, a *directive word*, over a *d*-letter alphabet and write $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ with $a_k \ge 1$ and $x_k \ne x_{k+1}$.
- The sequence (a_k) is the sequence of *partial quotients*
- Δ is regular if $x_1 x_2 \cdots$ is of the form $(01 \cdots (d-1))^{\omega}$.

• Let $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ be regular.

• Let
$$\Delta = x_1^{a_1} x_2^{a_2} \cdots$$
 be regular.
• Set $s_{1-d} = x_2, s_{2-d} = x_3, \dots, s_{-1} = x_d, s_0 = x_1$.
• Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_0^{a_1} x_{k+1}, 1 \le k < d$.
• Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_{k-(d-1)}^{a_{k-(d-2)}} s_{k-d}$ for $k \ge d$.
• When $\Delta = (012)^{\omega}$, then

▶
$$s_0 = 0$$
, $s_1 = 01$, $s_2 = 0102$, and $s_k = s_{k-1}s_{k-2}s_{k-3}$ for $k \ge 3$.

 The sequence (s_k) is the sequence of (generalized) standard words associated with Δ.

- Let $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ be regular. • Set $s_{1-d} = x_2, s_{2-d} = x_3, \dots, s_{-1} = x_d, s_0 = x_1$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_0^{a_1} x_{k+1}, 1 \le k < d$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_{k-(d-1)}^{a_{k-(d-2)}} s_{k-d}$ for $k \ge d$. • When $\Delta = (012)^{\omega}$, then
 - ▶ $s_0 = 0$, $s_1 = 01$, $s_2 = 0102$, and $s_k = s_{k-1}s_{k-2}s_{k-3}$ for $k \ge 3$.
- The sequence (s_k) is the sequence of (generalized) standard words associated with Δ.
- The limit c_Δ of (s_k) is called the *regular standard episturmian word* with directive word Δ.

- Let $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ be regular. • Set $s_{1-d} = x_2, s_{2-d} = x_3, \dots, s_{-1} = x_d, s_0 = x_1$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_0^{a_1} x_{k+1}, 1 \le k < d$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_{k-(d-1)}^{a_{k-(d-2)}} s_{k-d}$ for $k \ge d$. • When $\Delta = (012)^{\omega}$, then
 - ▶ $s_0 = 0$, $s_1 = 01$, $s_2 = 0102$, and $s_k = s_{k-1}s_{k-2}s_{k-3}$ for $k \ge 3$.
- The sequence (*s_k*) is the sequence of (generalized) *standard words* associated with Δ.
- The limit c_Δ of (s_k) is called the *regular standard episturmian word* with directive word Δ.
- An infinite word is a *regular episturmian word* if it has the same language as some regular standard episturmian word.

• Let $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ be regular. • Set $s_{1-d} = x_2, s_{2-d} = x_3, \dots, s_{-1} = x_d, s_0 = x_1$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_0^{a_1} x_{k+1}, 1 \le k < d$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_{k-(d-1)}^{a_{k-(d-2)}} s_{k-d}$ for $k \ge d$. • When $\Delta = (012)^{\omega}$, then

▶ $s_0 = 0$, $s_1 = 01$, $s_2 = 0102$, and $s_k = s_{k-1}s_{k-2}s_{k-3}$ for $k \ge 3$.

- The sequence (*s_k*) is the sequence of (generalized) *standard words* associated with Δ.
- The limit c_Δ of (s_k) is called the *regular standard episturmian word* with directive word Δ.
- An infinite word is a *regular episturmian word* if it has the same language as some regular standard episturmian word.
- Combinatorial generalizations of Sturmian words.

• Let $\Delta = x_1^{a_1} x_2^{a_2} \cdots$ be regular. • Set $s_{1-d} = x_2, s_{2-d} = x_3, \dots, s_{-1} = x_d, s_0 = x_1$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_0^{a_1} x_{k+1}, 1 \le k < d$. • Define $s_k = s_{k-1}^{a_k} s_{k-2}^{a_{k-1}} \cdots s_{k-(d-1)}^{a_{k-(d-2)}} s_{k-d}$ for $k \ge d$. • When $\Delta = (012)^{\omega}$, then

▶ $s_0 = 0$, $s_1 = 01$, $s_2 = 0102$, and $s_k = s_{k-1}s_{k-2}s_{k-3}$ for $k \ge 3$.

- The sequence (*s_k*) is the sequence of (generalized) *standard words* associated with Δ.
- The limit c_Δ of (s_k) is called the *regular standard episturmian word* with directive word Δ.
- An infinite word is a *regular episturmian word* if it has the same language as some regular standard episturmian word.
- Combinatorial generalizations of Sturmian words.
- Remark: if Δ is not regular, then we need to use morphisms.

Generalized Ostrowski Numeration Systems

• Set $q_k = |s_k|$ and view (q_k) as a numeration system, that is, greedily express each positive integer as a sum according to the sequence (q_k) .

- Set $q_k = |s_k|$ and view (q_k) as a numeration system, that is, greedily express each positive integer as a sum according to the sequence (q_k) .
- When $\Delta = (012)^{\omega}$, then $(q_k) = (1, 2, 4, 7, 13, 21, ...)$ (the Tribonacci numbers) and 10 = 7 + 3 = 7 + 2 + 1, so rep(10) = 1101 (we write least significant digit first).

- Set $q_k = |s_k|$ and view (q_k) as a numeration system, that is, greedily express each positive integer as a sum according to the sequence (q_k) .
- When $\Delta = (012)^{\omega}$, then $(q_k) = (1, 2, 4, 7, 13, 21, ...)$ (the Tribonacci numbers) and 10 = 7 + 3 = 7 + 2 + 1, so rep(10) = 1101 (we write least significant digit first).
- This is the (generalized) Ostrowski numeration system associated with Δ.

Theorem (Droubay-Justin-Pirillo (2001))

Let **t** be a regular episturmian word with directive word Δ . Then there exists a unique word $c_1c_2\cdots$ such that for all k, the word $c_1\cdots c_k$ is the Ostrowski expansion of an integer ℓ_k and

$$\mathbf{t} = \lim_{k \to \infty} T^{\ell_k}(\mathbf{c}_\Delta)$$

 $= \lim_{k \to \infty} T^{\operatorname{val}(c_1 \cdots c_k)}(\mathbf{c}_\Delta).$

Theorem (Droubay-Justin-Pirillo (2001))

Let **t** be a regular episturmian word with directive word Δ . Then there exists a unique word $c_1c_2\cdots$ such that for all k, the word $c_1\cdots c_k$ is the Ostrowski expansion of an integer ℓ_k and

$$\mathbf{t} = \lim_{k \to \infty} T^{\ell_k}(\mathbf{c}_\Delta)$$

 $= \lim_{k \to \infty} T^{\operatorname{val}(c_1 \cdots c_k)}(\mathbf{c}_\Delta).$

• The word $c_1 c_2 \cdots$ is called the *intercept* of **t**.

Theorem (Droubay-Justin-Pirillo (2001))

Let **t** be a regular episturmian word with directive word Δ . Then there exists a unique word $c_1c_2\cdots$ such that for all k, the word $c_1\cdots c_k$ is the Ostrowski expansion of an integer ℓ_k and

$$\mathbf{t} = \lim_{k \to \infty} T^{\ell_k}(\mathbf{c}_\Delta) \ = \lim_{k \to \infty} T^{\operatorname{val}(c_1 \cdots c_k)}(\mathbf{c}_\Delta).$$

- The word $c_1 c_2 \cdots$ is called the *intercept* of **t**.
- In the Sturmian case, this coincides with the usual notion of intercept via Ostrowski expansions of real numbers.

Theorem (Droubay-Justin-Pirillo (2001))

Let **t** be a regular episturmian word with directive word Δ . Then there exists a unique word $c_1c_2\cdots$ such that for all k, the word $c_1\cdots c_k$ is the Ostrowski expansion of an integer ℓ_k and

$$\mathbf{t} = \lim_{k \to \infty} T^{\ell_k}(\mathbf{c}_\Delta) \ = \lim_{k \to \infty} T^{\operatorname{val}(c_1 \cdots c_k)}(\mathbf{c}_\Delta).$$

- The word $c_1 c_2 \cdots$ is called the *intercept* of **t**.
- In the Sturmian case, this coincides with the usual notion of intercept via Ostrowski expansions of real numbers.
- Important point: it is in principle possible to reduce the study of a property of episturmian words to studying the property on standard episturmian words.

Definition

Let **x** be an infinite word. Its *initial nonrepetitive complexity function* $inrc(\mathbf{x}, n)$ is defined as

$$\operatorname{inrc}(\mathbf{x}, n) = \max\{m : \mathbf{x}[i, i+n-1] \neq \mathbf{x}[j, j+n-1]$$
for all i, j with $1 \le i < j \le m\}$.

• I.e.: inrc(x, n) is the maximum number of factors of length n seen when x is read from left to right prior to the first repeated factor of length n.

Definition

Let **x** be an infinite word. Its *initial nonrepetitive complexity function* $inrc(\mathbf{x}, n)$ is defined as

$$\operatorname{inrc}(\mathbf{x}, n) = \max\{m : \mathbf{x}[i, i+n-1] \neq \mathbf{x}[j, j+n-1]$$
for all i, j with $1 \le i < j \le m\}$

- I.e.: inrc(x, n) is the maximum number of factors of length n seen when x is read from left to right prior to the first repeated factor of length n.
- Introduced by Moothatu (2012), studied further by Nicholson and Rampersad (2016) and Medková et al. (2020).

- Wojcik (2020) finds a formula for inrc(t, n) for an arbitrary Sturmian word t based on its intercept.
- I generalize this to all **regular** episturmian words, but this formula is too complicated to display here.

- Why find complicated formulas for the initial nonrepetitive complexity?
- Answer: they can be used to determine Diophantine exponents.

Definition

Let **x** be an infinite word. We let its *Diophantine exponent*, denoted by $dio(\mathbf{x})$, to be the supremum of all real numbers ρ for which there exist arbitrarily long prefixes of **x** of the form UV^e , where U and V are finite words and e is a real number, such that

$$\frac{|UV^e|}{|UV|} \ge \rho.$$

Proposition (Bugeaud-Kim (2019)) If **x** is an infinite word, then $\operatorname{dio}(\mathbf{x}) = 1 + \limsup_{n \to \infty} \frac{n}{\operatorname{inrc}(\mathbf{x}, n)}.$

```
Proposition (Bugeaud-Kim (2019))
If x is an infinite word, then
```

$$\operatorname{dio}(\mathbf{x}) = 1 + \limsup_{n \to \infty} \frac{n}{\operatorname{inrc}(\mathbf{x}, n)}.$$

- Thus we may in principle compute the Diophantine exponent of a given regular episturmian word.
- In practice, this is doable only when the intercept and Δ are "nice".

Theorem (P. (2021))

Let **t** be a regular episturmian word. Then $dio(\mathbf{t}) < \infty$ if and only if the sequence (a_k) of partial quotients in bounded.

• Proved for Sturmian words by Adamczewski and Bugeaud (2011).

Theorem (P. (2021))

Let **t** be a regular episturmian word of period d. If d = 2 or $\limsup_k a_k \ge 3$, then $\operatorname{dio}(\mathbf{t}) > 2$.

• For Sturmian words follows from Adamczewski (2010) and Berthé et al. (2006).

Results

Proposition (P. (2021))

Let t be the episturmian word with directive word $(001122)^\omega$ having intercept $1^\omega.$ Then

$$dio(\mathbf{t}) = 1 + \frac{1}{2}(\beta - 1) \approx 1.9156$$

where $\beta \approx 2.8312$ is the real root of the polynomial $x^3 - 2x^2 - 2x - 1$.

Proposition (P. (2021))

Let t be the episturmian word with directive word $(0123)^{\omega}$ having intercept $(001)^{\omega}$, $(010)^{\omega}$, or $(100)^{\omega}$. Then

$$\operatorname{dio}(\mathbf{t}) = 1 + \frac{1}{27}(-7\zeta^3 + 15\zeta^2 + 13\zeta - 4) \approx 1.9873$$

where $\zeta \approx 1.9276$ is the positive real root of the polynomial $x^4 - x^3 - x^2 - x - 1$.

Jarkko Peltomäki

• If **x** is an infinite word over the alphabet $\{0, 1, \ldots, b-1\}$, $b \ge 2$, let ξ_x be the real number with **x** as a fractional part.

• If **x** is an infinite word over the alphabet $\{0, 1, \ldots, b-1\}$, $b \ge 2$, let $\xi_{\mathbf{x}}$ be the real number with **x** as a fractional part.

Problem

What can we infer about the arithmetic properties of ξ_x given combinatorial properties of x?

• If **x** is an infinite word over the alphabet $\{0, 1, \ldots, b-1\}$, $b \ge 2$, let $\xi_{\mathbf{x}}$ be the real number with **x** as a fractional part.

Problem

What can we infer about the arithmetic properties of ξ_x given combinatorial properties of x?

• Here we consider the irrationality exponent of $\xi_{\mathbf{x}}$.

Irrationality Exponents

Definition

The *irrationality exponent* $\mu(\xi)$ of a real number ξ is the supremum of the real numbers ρ such that the inequality

$$\left|\xi-rac{p}{q}
ight|<rac{1}{q^{
ho}}$$

has infinitely many rational solutions p/q. If $\mu(\xi) = \infty$, then we say that ξ is a *Liouville number*.

Irrationality Exponents

Definition

The *irrationality exponent* $\mu(\xi)$ of a real number ξ is the supremum of the real numbers ρ such that the inequality

$$\left|\xi-rac{p}{q}
ight|<rac{1}{q^{
ho}}$$

has infinitely many rational solutions p/q. If $\mu(\xi) = \infty$, then we say that ξ is a *Liouville number*.

- $\mu(\xi) = 2$ for almost all ξ
- $\mu(\xi) < 2$ if and only if ξ is rational
- $\mu(\xi) = 2$ if ξ is an algebraic irrational (Roth's Theorem)

```
Proposition (Adamczewski (2010))
\mu(\xi_{\mathbf{x}}) \ge \operatorname{dio}(\mathbf{x})
```

Proof Sketch.

The definition of dio provides arbitrarily long prefixes of **x** of the form UV^e with $|UV^e|/|UV|$ arbitrarily close to dio(**x**). Select the rational p/q to have fractional part UV^{ω} and work out the details.

Theorem

Let **t** be a regular episturmian word with directive word Δ . Then ξ_t is a Liouville number if and only if the sequence (a_k) of partial quotients is bounded.

• Proved for Sturmian words by Komatsu (1996).

Theorem

Let **t** be a regular episturmian word of period d. If d = 2 or $\limsup_k a_k \ge 3$, then $\mu(\xi_t) > 2$.

- ξ_t is transcendental (follows from Bugeaud-Adamczewski (2007)).
- ξ_t is an atypical number (belongs to a set of measure 0).

Thank you for your attention!

J. Peltomäki.

Initial nonrepetitive complexity of regular episturmian words and their Diophantine exponents

Preprint (2021), arXiv:2103.08351