On Minimal Critical Exponent of Balanced Sequences

Ľubomíra Dvořáková joint work with Daniela Opočenská, Edita Pelantová and Arseny M. Shur

FNSPE Czech Technical University in Prague

January, 10, 2022

Rational powers

Definition

Let $e \in \mathbb{Q}$. A word z is an e-th power of a word u if z is a prefix of $u^{\omega} = uuuuu \dots$ and $e = \frac{|z|}{|u|}$. We write $z = u^{e}$.

Example

$$abbabb = (abb)^2$$

 $abbcabbcabbc = (abbc)^3$
 $abbabbab = (abb)^{8/3}$
 $starosta = (staro)^{8/5}$

Critical exponent

Definition

Let **u** be a sequence. The critical exponent of **u** $E(\mathbf{u}) = \sup\{e \in \mathbb{Q} : u^e \text{ is a non-empty factor of } \mathbf{u}\}.$

Example

The Thue–Morse sequence $\mathbf{u}_{TM} = abbabaabbaabaabaabaab...$ $\mathbf{u}_{TM} = \varphi(\mathbf{u}_{TM})$, where $\varphi : \mathbf{a} \to \mathbf{ab}$, $\mathbf{b} \to \mathbf{ba}$ \mathbf{u}_{TM} does not contain overlaps: *xwxwx*, where *w* is a factor and *x* is a letter. Hence $E(\mathbf{u}_{TM}) = 2$.

Minimal critical exponent

Dejean's theorem (conjecture), 1972 – 2011:

(proven by Dejean, Pansiot, Moulin Ollagnier, Mohammad-Noori, Carpi, Currie, Rampersad, Rao) the least critical exponent of sequences over an alphabet of size d

the least critical exponent of sequences over an alphabet of size d:

- 2 for d = 2;
- 7/4 for *d* = 3;
- 7/5 for d = 4;
- $\frac{d}{d-1}$ for $d \ge 5$.

Conjecture for balanced sequences

• Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size *d* equals $\frac{d-2}{d-3}$ for $d \ge 5$

• proven for $5 \le d \le 8$

• Dolce, D., Pelantová, 2021:

• proven for $9 \le d \le 10$

• disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$

Conjecture for balanced sequences

- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size *d* equals $\frac{d-2}{d-3}$ for $d \ge 5$
 - proven for $5 \le d \le 8$
- Dolce, D., Pelantová, 2021:
 - proven for $9 \le d \le 10$
 - disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$
- D., Opočenská, Pelantová, Shur, 2021:
 - new bound $\frac{d-1}{d-2}$ for $d \ge 12, d$ even
 - new conjecture: $\frac{d-1}{d-2}$ for $d \ge 11$

Conjecture for balanced sequences

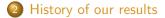
- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size d equals $\frac{d-2}{d-3}$ for $d \ge 5$
 - proven for $5 \le d \le 8$
- Dolce, D., Pelantová, 2021:
 - proven for $9 \le d \le 10$
 - disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$
- D., Opočenská, Pelantová, Shur, 2021:
 - new bound $\frac{d-1}{d-2}$ for $d \ge 12, d$ even
 - new conjecture: $\frac{d-1}{d-2}$ for $d \ge 11$

$$\frac{d}{d-1} < \frac{d-1}{d-2} < \frac{d-2}{d-3}$$

Conjecture for balanced sequences

- Rampersad, Shallit, Vandomme, 2019: the least critical exponent of balanced sequences over an alphabet of size *d* equals $\frac{d-2}{d-3}$ for $d \ge 5$
 - proven for $5 \le d \le 8$
- Dolce, D., Pelantová, 2021:
 - proven for $9 \le d \le 10$
 - disproven: new bound $\frac{d-1}{d-2}$ for $11 \le d \le 12$
- D., Opočenská, Pelantová, Shur, 2021:
 - new bound $\frac{d-1}{d-2}$ for $d \ge 12, d$ even
 - new conjecture: $\frac{d-1}{d-2}$ for $d \ge 11$

$$\frac{d}{d-1} < \frac{d-1}{d-2} < \frac{d-2}{d-3}$$



L Dvořáková Minimal Critical Exponent

Program

2 History of our results

L Dvořáková Minimal Critical Exponent

Definitions CoW

- bispecial factor of u
- Parikh vector $\vec{V}(u)$ of a factor u of **u**

Example

 $\mathbf{u}_F = ab\mathbf{a}ababaabaabaabaabaa...$ $\mathbf{u}_F = \varphi(\mathbf{u}_F)$, where $\varphi : \mathbf{a} \to \mathbf{a}b$, $\mathbf{b} \to \mathbf{a}$ aba is a bispecial factor since $\mathbf{a}aba$, $\mathbf{b}aba$ and $\mathbf{a}bab$, $\mathbf{a}baa$ are factors of \mathbf{u}_F $\vec{V}(\mathbf{a}ba) = (\frac{1}{2})$

Definitions CoW

- return word to a factor u of u
- derived sequence $\mathbf{d}_{\mathbf{u}}(u)$ to a factor u of \mathbf{u}

Example

 $\mathbf{u}_F = \underline{aba}\underline{aba}\underline{baaba}\underline{aba}\underline{a}\dots$

r = aba and s = ab are return words to the factor u = aba

(Asymptotic) critical exponent

critical exponent of u
 E(u) = sup{e ∈ Q : u^e is a non-empty factor of u}

 asymptotic critical exponent of u
 E^{*}(u) = lim_{n→∞} sup{e ∈ Q : u^e is a factor of u and |u| ≥ n}

 Evidently, E^{*}(u) ≤ E(u).

Proposition (D., Medková, Pelantová, 2020)

Let **u** be a uniformly recurrent aperiodic sequence. Let w_n be the n-th bispecial of **u** and v_n a shortest return word to w_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$.

(Asymptotic) critical exponent

- critical exponent of u
 E(u) = sup{e ∈ Q : u^e is a non-empty factor of u}
- asymptotic critical exponent of u
 E^{*}(u) = lim_{n→∞} sup{e ∈ Q : u^e is a factor of u and |u| ≥ n}

 Evidently, E^{*}(u) ≤ E(u).

Proposition (D., Medková, Pelantová, 2020)

Let **u** be a uniformly recurrent aperiodic sequence. Let w_n be the *n*-th bispecial of **u** and v_n a shortest return word to w_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$.

Example

 $|w_n| = F_{n+2} + F_{n+1} - 2$ and $|v_n| = F_{n+1}$ with $F_0 = 0, F_1 = 1$ $E(\mathbf{u}_F) = 2 + \tau = 2 + \frac{1+\sqrt{5}}{2} = E^*(\mathbf{u}_F)$ – minimal for Sturmian

(Asymptotic) critical exponent

- critical exponent of u
 E(u) = sup{e ∈ Q : u^e is a non-empty factor of u}
- asymptotic critical exponent of u
 E^{*}(u) = lim_{n→∞} sup{e ∈ Q : u^e is a factor of u and |u| ≥ n}

 Evidently, E^{*}(u) ≤ E(u).

Proposition (D., Medková, Pelantová, 2020)

Let **u** be a uniformly recurrent aperiodic sequence. Let w_n be the *n*-th bispecial of **u** and v_n a shortest return word to w_n . Then $E(\mathbf{u}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ and $E^*(\mathbf{u}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$.

Example

$$|w_n| = F_{n+2} + F_{n+1} - 2$$
 and $|v_n| = F_{n+1}$ with $F_0 = 0, F_1 = 1$
 $E(\mathbf{u}_F) = 2 + \tau = 2 + \frac{1+\sqrt{5}}{2} = E^*(\mathbf{u}_F)$ – minimal for Sturmian

Balanced sequences

Definition

u over ${\cal A}$ balanced if $|u|=|v|\Rightarrow |u|_a-|v|_a\leq 1$ for all $a\in {\cal A}$

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over {a,b} by replacing

- a with a constant gap sequence \mathbf{y} over \mathcal{A} ,
- b with a constant gap sequence \mathbf{y}' over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Balanced sequences

Definition

u over $\mathcal A$ balanced if $|u|=|v|\Rightarrow |u|_a-|v|_a\leq 1$ for all $a\in \mathcal A$

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a with a constant gap sequence \mathbf{y} over \mathcal{A} ,
- b with a constant gap sequence \mathbf{y}' over \mathcal{B} ,

where A and B disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

Example

$$\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \mathbf{y}')$$
, where $\mathbf{y} = (0102)^{\omega}$ and $\mathbf{y}' = (34)^{\omega}$

- u_F = abaabaabaabaabaab...
 - v = 031042301402304...

$$\pi(423) = bab$$

Balanced sequences

Definition

u over $\mathcal A$ balanced if $|u|=|v|\Rightarrow |u|_a-|v|_a\leq 1$ for all $a\in \mathcal A$

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian sequence u over $\{a,b\}$ by replacing

- a with a constant gap sequence \mathbf{y} over \mathcal{A} ,
- b with a constant gap sequence \mathbf{y}' over \mathcal{B} ,

where \mathcal{A} and \mathcal{B} disjoint. We write $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$.

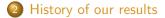
Example

$$\mathbf{v} = \operatorname{colour}(\mathbf{u}_F, \mathbf{y}, \mathbf{y}')$$
, where $\mathbf{y} = (0102)^\omega$ and $\mathbf{y}' = (34)^\omega$

- \mathbf{u}_F = abaabaabaabaabab...
 - v = 031042301402304...

$$\pi(423) = \texttt{bab}$$

Program



L Dvořáková Minimal Critical Exponent

Motivation

- **Rampersad**, May 2020, One World Numeration Seminar: *Ostrowski numeration and repetitions in words*
 - question by Cassaigne: "What about the asymptotic version?"
- **D., Medková, Pelantová**, 2020: Complementary symmetric Rote sequences: the critical exponent and the recurrence function

Motivation

- **Rampersad**, May 2020, One World Numeration Seminar: *Ostrowski numeration and repetitions in words*
 - question by Cassaigne: "What about the asymptotic version?"
- D., Medková, Pelantová, 2020:

Complementary symmetric Rote sequences: the critical exponent and the recurrence function

- **Rote sequence**: binary sequence with complexity 2*n*
- complementary symmetric sequence: language closed under exchange of 0 and 1

 $S(\mathbf{v}) = S(v_0 v_1 v_2 v_3 v_4...) = (v_0 + v_1 \mod 2)(v_1 + v_2 \mod 2)(v_2 + v_3 \mod 2)...$ $S(\mathbf{v}_F) = S(00111001110001...) = 0100101001001...$

- **Rote sequence**: binary sequence with complexity 2*n*
- complementary symmetric sequence: language closed under exchange of 0 and 1

 $S(\mathbf{v})=S(v_0v_1v_2v_3v_4...)=(v_0+v_1 \mod 2)(v_1+v_2 \mod 2)(v_2+v_3 \mod 2)...$

 $S(\mathbf{v}_F) = S(00111001110001...) = 0100101001001...$

Theorem (Rote 1994)

Let **u** and **v** be two binary sequences such that $\mathbf{u} = S(\mathbf{v})$. Then **v** is a CS Rote sequence iff **u** is a Sturmian sequence.

- **Rote sequence**: binary sequence with complexity 2*n*
- complementary symmetric sequence: language closed under exchange of 0 and 1

 $S(\mathbf{v})=S(v_0v_1v_2v_3v_4...)=(v_0+v_1 \mod 2)(v_1+v_2 \mod 2)(v_2+v_3 \mod 2)...$

 $S(\mathbf{v}_F) = S(00111001110001...) = 0100101001001...$

Theorem (Rote 1994)

Let **u** and **v** be two binary sequences such that $\mathbf{u} = S(\mathbf{v})$. Then **v** is a CS Rote sequence iff **u** is a Sturmian sequence.

- E^{*}(v) = E^{*}(v̂), where v is a CS Rote sequence associated with u and v̂ = colour(u, y, y') by y = 0^ω and y' = (12)^ω.
- The minimal critical exponent of ternary balanced sequences is the same as the minimal critical exponent of CS Rote sequences, and it equals $2 + \frac{1}{\sqrt{2}}$.

- **Rote sequence**: binary sequence with complexity 2*n*
- complementary symmetric sequence: language closed under exchange of 0 and 1

 $S(\mathbf{v})=S(v_0v_1v_2v_3v_4...)=(v_0+v_1 \mod 2)(v_1+v_2 \mod 2)(v_2+v_3 \mod 2)...$

 $S(\mathbf{v}_F) = S(00111001110001...) = 0100101001001...$

Theorem (Rote 1994)

Let **u** and **v** be two binary sequences such that $\mathbf{u} = S(\mathbf{v})$. Then **v** is a CS Rote sequence iff **u** is a Sturmian sequence.

- $E^*(\mathbf{v}) = E^*(\hat{\mathbf{v}})$, where \mathbf{v} is a CS Rote sequence associated with \mathbf{u} and $\hat{\mathbf{v}} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$ by $\mathbf{y} = 0^{\omega}$ and $\mathbf{y}' = (12)^{\omega}$.
- The minimal critical exponent of ternary balanced sequences is the same as the minimal critical exponent of CS Rote sequences, and it equals $2 + \frac{1}{\sqrt{2}}$.

Computation of asymptotic critical exponent

Recall $E^*(\mathbf{v}) = 1 + \limsup_{n \to \infty} \frac{|w_n|}{|v_n|}$

Proposition (Dolce, D., Pelantová, 2020)

Let $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$. For a sufficiently long bispecial w in \mathbf{v} its projection $\mathbf{u} = \pi(w)$ is a bispecial in \mathbf{u} . The shortest return word to w is of length min $\{k|\mathbf{r}| + \ell|s|\}$, where

$$k \vec{V}(r) + \ell \vec{V}(s) = \begin{pmatrix} 0 \mod \operatorname{Per}(y) \\ 0 \mod \operatorname{Per}(y') \end{pmatrix};$$

2 $\binom{\ell}{k}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(\mathbf{u})$.

Program implemented by Daniela Opočenská: Input: slope α quadratic irrational, $Per(\mathbf{y})$, $Per(\mathbf{y'})$ Output: $E^*(\mathbf{v})$, where $\mathbf{v} = colour(\mathbf{u}, \mathbf{y}, \mathbf{y'})$

Completion of table

d	α	у	y ′	<i>E</i> (v)	<i>E</i> *(v)
3	[0, 2]	$(01)^{\omega}$	2^{ω}	$2 + \frac{1}{\sqrt{2}}$	$2 + \frac{1}{\sqrt{2}}$
4	$[0, 2, \overline{1}]$	$(01)^{\omega}$	$(23)^{\omega}$	$1 + \frac{1 + \sqrt{5}}{4}$	$1 + \frac{1 + \sqrt{5}}{4}$
5	$[0, \overline{2}]$	$(0102)^{\omega}$	$(34)^{\omega}$	<u>3</u> 2	<u>3</u> 2
6	$[0, 1, 2, 1, 1, \overline{1, 1, 1, 2}]$	0^{ω}	$(123415321435)^{\omega}$	4 3	4 <u>3</u>
7	$[0,1,1,3,\overline{1,2,1}]$	$(01)^{\omega}$	$(234526432546)^{\omega}$	54	<u>5</u> 4
8	$[0, 1, 3, 1, \overline{2}]$	$(01)^{\omega}$	$(234526732546237526432576)^{\omega}$	$\frac{6}{5} = 1.2$	$\frac{12+3\sqrt{2}}{14} \doteq 1.16$
9	$[0, 1, 2, 3, \overline{2}]$	$(01)^{\omega}$	$(234567284365274863254768)^{\omega}$	$\frac{7}{6}$?	$1 + \frac{2\sqrt{2}-1}{14} \doteq 1.13$
10	$[0, 1, 4, 2, \overline{3}]$	$(01)^{\omega}$	$(234567284963254768294365274869)^{\omega}$	<u>8</u> ?	$1 + \frac{\sqrt{13}}{26} \doteq 1.139$

Table: Baranwal, Rampersad, Shallit, Vandomme: *d*-ary balanced sequences with the least critical exponent.

Computation of critical exponent

Recall $E(\mathbf{v}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ Our result: $E(\mathbf{v}) = \max\{E^*(\mathbf{v}), 1 + \frac{|w_i|}{|v_i|}\}$ for finitely many *i*

Computation of critical exponent

Recall $E(\mathbf{v}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ Our result: $E(\mathbf{v}) = \max\{E^*(\mathbf{v}), 1 + \frac{|w_i|}{|v_i|}\}$ for finitely many *i*

Proposition (Dolce, D., Pelantová, 2020)

Let $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$. Let w be a bispecial factor of \mathbf{v} with projection $\mathbf{u} = \pi(w)$ in \mathbf{u} . The shortest return word to w is of length min $\{k|r| + \ell|s|\}$, where

- $k\vec{V}(\mathbf{r}) + \ell\vec{V}(s) = \begin{pmatrix} 0 \mod n \\ 0 \mod n' \end{pmatrix}$, where $n \in \operatorname{gap}(\mathbf{y}, |u|_{a})$ and $n' \in \operatorname{gap}(\mathbf{y}', |u|_{b})$;
- **2** $\binom{\ell}{k}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(u)$.

Example

For $\mathbf{y} = (0102)^{\omega}$, we have gap $(\mathbf{y}, 1) = \{2, 4\}$ and gap $(\mathbf{y}, m) = \{4\}$ for $m \ge 2$.

Computation of critical exponent

Recall $E(\mathbf{v}) = 1 + \sup\{\frac{|w_n|}{|v_n|} : n \in \mathbb{N}\}$ Our result: $E(\mathbf{v}) = \max\{E^*(\mathbf{v}), 1 + \frac{|w_i|}{|v_i|}\}$ for finitely many *i*

Proposition (Dolce, D., Pelantová, 2020)

Let $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$. Let w be a bispecial factor of \mathbf{v} with projection $\mathbf{u} = \pi(w)$ in \mathbf{u} . The shortest return word to w is of length min $\{k|r| + \ell|s|\}$, where

- $k\vec{V}(r) + \ell\vec{V}(s) = \begin{pmatrix} 0 \mod n \\ 0 \mod n' \end{pmatrix}$, where $n \in gap(\mathbf{y}, |u|_{a})$ and $n' \in gap(\mathbf{y}', |u|_{b})$;
- **2** $\binom{\ell}{k}$ is the Parikh vector of a factor in $\mathbf{d}_{\mathbf{u}}(\mathbf{u})$.

Example

For $\mathbf{y} = (0102)^{\omega}$, we have $gap(\mathbf{y}, 1) = \{2, 4\}$ and $gap(\mathbf{y}, m) = \{4\}$ for $m \ge 2$.

Computation of critical exponent

Program implemented by Opočenská: Input: slope α quadratic irrational, y, y'

Output: $E(\mathbf{v})$, where $\mathbf{v} = \operatorname{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$

Description of algorithms for computation of (asymptotic) critical exponent published:

Dolce, D., Pelantová: *On balanced sequences and their critical exponent*, arXiv 2021

Computation of critical exponent

Program implemented by Opočenská:

Input: slope α quadratic irrational, y, y' Output: $E(\mathbf{v})$, where $\mathbf{v} = \text{colour}(\mathbf{u}, \mathbf{y}, \mathbf{y}')$

Description of algorithms for computation of (asymptotic) critical exponent published:

Dolce, D., Pelantová: On balanced sequences and their critical exponent, arXiv 2021

Completion of table – continued

d	α	у	y'	<i>E</i> (v)	<i>E</i> *(v)
3	[0, 2]	$(01)^{\omega}$	2^{ω}	$2 + \frac{1}{\sqrt{2}}$	$2 + \frac{1}{\sqrt{2}}$
4	$[0,2,\overline{1}]$	$(01)^{\omega}$	$(23)^{\omega}$	$1+\tfrac{1+\sqrt{5}}{4}$	$1 + \frac{1 + \sqrt{5}}{4}$
5	[0, 2]	$(0102)^{\omega}$	$(34)^{\omega}$	<u>3</u> 2	3 2
6	$[0,1,2,1,1,\overline{1,1,1,2}]$	0^{ω}	$(123415321435)^{\omega}$	4 3	4 3
7	$[0,1,1,3,\overline{1,2,1}]$	$(01)^{\omega}$	$(234526432546)^{\omega}$	<u>5</u> 4	<u>5</u> 4
8	$\left[0,1,3,1,\overline{2} ight]$	$(01)^{\omega}$	$(234526732546237526432576)^{\omega}$	$\frac{6}{5} = 1.2$	$\frac{12+3\sqrt{2}}{14} \doteq 1.16$
9	$\left[0,1,2,3,\overline{2} ight]$	$(01)^{\omega}$	$(234567284365274863254768)^{\omega}$	$rac{7}{6}\doteq 1.167$	$1 + \frac{2\sqrt{2}-1}{14} \doteq 1.13$
10	$\left[0, 1, 4, 2, \overline{3} ight]$	$(01)^{\omega}$	$(234567284963254768294365274869)^{\omega}$	$rac{8}{7}\doteq 1.14$	$1 + \frac{\sqrt{13}}{26} \doteq 1.139$
11	$[0,1,5,1,\overline{1,1,1,2}]$	(01) ^ω	$(234567892\texttt{A}436587294\texttt{A}638527496\texttt{A}83254769\texttt{B}\texttt{A})^\omega$	$\frac{10}{9} \doteq 1.11$	$\frac{415+5\sqrt{105}}{424}\doteq 1.0996$
12	$\left[0,1,1,3,\overline{2} ight]$	$(012345)^{\omega}$	$(6789AB)^{\omega}$	$\tfrac{11}{10}=1.1$	$\frac{8-\sqrt{2}}{6} \doteq 1.0976$

Table: Baranwal, Rampersad, Shallit, Vandomme: *d*-ary balanced sequences with the least critical exponent.

Towards a new conjecture

- **Dvořáková**, September 2021, WORDS 2021: *Critical exponent of balanced sequences*
 - conjecture $\frac{d-2}{d-3}$ refuted by examples over 11 and 12 letters
 - new conjecture: $\frac{d-1}{d-2}$ or $\frac{d}{d-1}$?
 - **Shur**: the lower bound $\frac{d-1}{d-2}$
- D., Opočenská, Pelantová, Shur, 2021: On minimal critical exponent of balanced sequences, arXiv 2021
 - new conjecture $\frac{d-1}{d-2}$ for $d \ge 11$
 - proven for even $d \ge 12$

Lower bounds

Observation 7 If $4 \in gap(\mathbf{y}, 1)$ and $a_1 = 1$ and $a_2 \ge 2$, then $E(\mathbf{v}) \ge \frac{10}{9}$.

Proof. Use Proposition 5 with u = a and $f = ababab^2ab$.

Observation 8 If $6 \in \operatorname{gap}(\mathbf{y}', 2)$ and $a_1 = 1, a_2 = 2$ and $a_3 \ge 2$, then $E(\mathbf{v}) \ge \frac{6}{5}$.

Proof. We use Proposition 5 with $u = b^2$ and $f = b^2 a b a b^2 a b a$.

Observation 9 If $7 \in gap(\mathbf{y}', 2)$ and $a_1 \ge 2$, then $E(\mathbf{v}) \ge \frac{6}{5}$.

Proof. We apply Proposition 5 with $u = b^2$ and the following f:

- If $a_1 \ge 4$, then $f = b^5 a b^2$. - If $a_1 = 3$, then $f = b^3 a b^4 a$. - If $a_1 = 2$ and $a_2 \ge 2$, then $f = b^2 a b^2 a b^2 a b$. - If $a_1 = 2$ and $a_2 = 1$, then $f = b^2 a b^3 a b^2 a$.

Observation 10 If $8 \in gap(\mathbf{y}', 2)$ and $a_1 \ge 2$, then $E(\mathbf{v}) \ge \frac{7}{6}$.

Proof. We apply Proposition 5 with $u = b^2$ and the following f:

 $\begin{array}{l} - \mbox{ If } a_1 \geq 5, \mbox{ then } f = b^5 a b^3. \\ - \mbox{ If } a_1 \in \{3,4\}, \mbox{ then } f = b^3 a b^4 a b. \\ - \mbox{ If } a_1 = 2 \mbox{ and } a_2 \geq 3, \mbox{ then } f = b^2 a b^2 a b^2 a b^2 a. \\ - \mbox{ If } a_1 = 2 \mbox{ and } a_2 \in \{1,2\}, \mbox{ then } f = b^2 a b^3 a b^2 a b. \end{array}$

Completion of table – continued

d	α	у	y '	E(v)	E*(v)
3	[0, 2]	$(01)^{\omega}$	2^{ω}	$2 + \frac{1}{\sqrt{2}}$	$2 + \frac{1}{\sqrt{2}}$
4	$[0, 2, \overline{1}]$	$(01)^{\omega}$	$(23)^{\omega}$	$1 + \frac{1 + \sqrt{5}}{4}$	$1 + \frac{1 + \sqrt{5}}{4}$
5	[0, 2]	(0102) ^ω	$(34)^{\omega}$	32	32
6	$[0,1,2,1,1,\overline{1,1,1,2}]$	0 ^ω	$(123415321435)^{\omega}$	<u>4</u> 3	<u>4</u> 3
7	$[0,1,1,3,\overline{1,2,1}]$	$(01)^{\omega}$	$(234526432546)^{\omega}$	54	54
8	$[0, 1, 3, 1, \overline{2}]$	$(01)^{\omega}$	$(234526732546237526432576)^{\omega}$	$\frac{6}{5} = 1.2$	$\frac{12+3\sqrt{2}}{14} \doteq 1.16$
9	$[0, 1, 2, 3, \overline{2}]$	(01) ^ω	$(234567284365274863254768)^{\omega}$	$rac{7}{6}\doteq 1.167$	$1 + \frac{2\sqrt{2}-1}{14} \doteq 1.13$
10	$[0, 1, 4, 2, \overline{3}]$	$(01)^{\omega}$	$(234567284963254768294365274869)^{\omega}$	$rac{8}{7}\doteq 1.14$	$1 + \frac{\sqrt{13}}{26} \doteq 1.139$
11	$[0,1,5,1,\overline{1,1,1,2}]$	(01) ^ω	$(234567892\texttt{A}436587294\texttt{A}63852749\texttt{G}\texttt{A}83254769\texttt{B}\texttt{A})^{\omega}$	$rac{10}{9}\doteq 1.11$	$\frac{415+5\sqrt{105}}{424} \doteq 1.0996$
12	$\left[0,1,1,3,\overline{2} ight]$	$(012345)^{\omega}$	$(6789AB)^{\omega}$	$\frac{11}{10} = 1.1$	$\frac{8-\sqrt{2}}{6} \doteq 1.0976$
$d \ge 14$ even	$[0, 1, 1, \lfloor d/4 \rfloor, \overline{1}]$	$(12\ldots d/2)^{\omega}$	$(1'2'\ldots d/2')^\omega$	$\frac{d-1}{d-2}$	$1 + \frac{2}{d\tau^{N-1}} ,$
					where $\tau^{\textit{N}+1} < \textit{d}/2 < \tau^{\textit{N}+2}$

Table: Baranwal, Rampersad, Shallit, Vandomme: *d*-ary balanced sequences with the least critical exponent.

- Proof of conjecture $\frac{d-1}{d-2}$ for odd $d \ge 13$
 - using our computer program done for $13 \leq d \leq 33$
- Minimal asymptotic critical exponent of *d*-ary balanced sequences
 - Is there an analogy of Dejean's conjecture for E^* ?

- Proof of conjecture $\frac{d-1}{d-2}$ for odd $d \ge 13$
 - ullet using our computer program done for $13 \leq d \leq 33$
- Minimal asymptotic critical exponent of *d*-ary balanced sequences
 - Is there an analogy of Dejean's conjecture for E^* ?
 - Is there a better lower bound than $E^*(\mathbf{v}) \geq 1 + \frac{1}{\operatorname{Per}(\mathbf{v})\operatorname{Per}(\mathbf{v}')}$?

- Proof of conjecture $\frac{d-1}{d-2}$ for odd $d \ge 13$
 - ullet using our computer program done for $13 \leq d \leq 33$
- Minimal asymptotic critical exponent of *d*-ary balanced sequences
 - Is there an analogy of Dejean's conjecture for E*?
 - Is there a better lower bound than $E^*(\mathbf{v}) \ge 1 + \frac{1}{\operatorname{Per}(\mathbf{v})\operatorname{Per}(\mathbf{v}')}$?
- What is the minimal critical exponent of a *d*-ary 2-balanced sequence?

- Proof of conjecture $\frac{d-1}{d-2}$ for odd $d \ge 13$
 - $\bullet\,$ using our computer program done for $13 \leq d \leq 33$
- Minimal asymptotic critical exponent of *d*-ary balanced sequences
 - Is there an analogy of Dejean's conjecture for E^* ?
 - Is there a better lower bound than $E^*(\mathbf{v}) \ge 1 + \frac{1}{\operatorname{Per}(\mathbf{v})\operatorname{Per}(\mathbf{v}')}$?
- What is the minimal critical exponent of a *d*-ary 2-balanced sequence?
- What is the critical exponent of colourings of non-Sturmian sequences by constant gap sequences?

- Proof of conjecture $\frac{d-1}{d-2}$ for odd $d \ge 13$
 - ${\scriptstyle \bullet}\,$ using our computer program done for $13 \leq d \leq 33$
- Minimal asymptotic critical exponent of *d*-ary balanced sequences
 - Is there an analogy of Dejean's conjecture for E^* ?
 - Is there a better lower bound than $E^*(\mathbf{v}) \ge 1 + \frac{1}{\operatorname{Per}(\mathbf{v})\operatorname{Per}(\mathbf{v}')}$?
- What is the minimal critical exponent of a *d*-ary 2-balanced sequence?
- What is the critical exponent of colourings of non-Sturmian sequences by constant gap sequences?

Thank you for attention