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Rational powers

Definition

Let e ∈ Q. A word z is an e-th power of a word u if z is a prefix of
uω = uuuuu . . . and e = |z|

|u| . We write z = ue .

Example

abbabb = (abb)2

abbcabbcabbc = (abbc)3

abbabbab = (abb)8/3

starosta = (staro)8/5
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Critical exponent

Definition

Let u be a sequence. The critical exponent of u
E (u) = sup{e ∈ Q : ue is a non-empty factor of u}.

Example

The Thue–Morse sequence uTM = abbabaabbaababbabaab . . .
uTM = ϕ(uTM), where ϕ : a→ ab, b→ ba

uTM does not contain overlaps: xwxwx , where w is a factor and x
is a letter. Hence E (uTM) = 2.
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Minimal critical exponent

Dejean’s theorem (conjecture), 1972 – 2011:
(proven by Dejean, Pansiot, Moulin Ollagnier, Mohammad-Noori,
Carpi, Currie, Rampersad, Rao)
the least critical exponent of sequences over an alphabet of size d :

2 for d = 2;

7/4 for d = 3;

7/5 for d = 4;
d

d−1 for d ≥ 5.
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Conjecture for balanced sequences

Rampersad, Shallit, Vandomme, 2019:
the least critical exponent of balanced sequences over an
alphabet of size d equals d−2

d−3 for d ≥ 5

proven for 5 ≤ d ≤ 8

Dolce, D., Pelantová, 2021:

proven for 9 ≤ d ≤ 10
disproven: new bound d−1

d−2 for 11 ≤ d ≤ 12

D., Opočenská, Pelantová, Shur, 2021:

new bound d−1
d−2 for d ≥ 12, d even

new conjecture: d−1
d−2 for d ≥ 11

d

d − 1
<

d − 1

d − 2
<

d − 2

d − 3
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Definitions CoW

bispecial factor of u

Parikh vector ~V (u) of a factor u of u

Example

uF = abaababaabaababaa . . .
uF = ϕ(uF ), where ϕ : a→ ab, b→ a

aba is a bispecial factor since aaba, baba and abab, abaa are
factors of uF
~V (aba) = ( 1

2 )
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Definitions CoW

return word to a factor u of u

derived sequence du(u) to a factor u of u

Example

uF = abaababaabaababaa . . .
r = aba and s = ab are return words to the factor u = aba

duF
(u) = abaababaabaababa · · · = rsrrsr . . .
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(Asymptotic) critical exponent

critical exponent of u
E (u) = sup{e ∈ Q : ue is a non-empty factor of u}
asymptotic critical exponent of u
E ∗(u) = limn→∞ sup{e ∈ Q : ue is a factor of u and |u| ≥ n}

Evidently, E ∗(u) ≤ E (u).

Proposition (D., Medková, Pelantová, 2020)

Let u be a uniformly recurrent aperiodic sequence. Let wn

be the n-th bispecial of u and vn a shortest return word to wn. Then
E (u) = 1 + sup{ |wn|

|vn| : n ∈ N} and E ∗(u) = 1 + lim supn→∞
|wn|
|vn| .

Example

|wn| = Fn+2 + Fn+1 − 2 and |vn| = Fn+1 with F0 = 0,F1 = 1

E (uF ) = 2 + τ = 2 + 1+
√

5
2 = E ∗(uF ) – minimal for Sturmian

L’. Dvǒráková Minimal Critical Exponent



Preliminaries
History of our results

(Asymptotic) critical exponent

critical exponent of u
E (u) = sup{e ∈ Q : ue is a non-empty factor of u}
asymptotic critical exponent of u
E ∗(u) = limn→∞ sup{e ∈ Q : ue is a factor of u and |u| ≥ n}

Evidently, E ∗(u) ≤ E (u).

Proposition (D., Medková, Pelantová, 2020)

Let u be a uniformly recurrent aperiodic sequence. Let wn

be the n-th bispecial of u and vn a shortest return word to wn. Then
E (u) = 1 + sup{ |wn|

|vn| : n ∈ N} and E ∗(u) = 1 + lim supn→∞
|wn|
|vn| .

Example

|wn| = Fn+2 + Fn+1 − 2 and |vn| = Fn+1 with F0 = 0,F1 = 1

E (uF ) = 2 + τ = 2 + 1+
√

5
2 = E ∗(uF ) – minimal for Sturmian
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Balanced sequences

Definition

u over A balanced if |u| = |v | ⇒ |u|a − |v |a ≤ 1 for all a ∈ A

Theorem (Graham 1973, Hubert 2000)

v recurrent aperiodic is balanced iff v obtained from a Sturmian
sequence u over {a, b} by replacing

a with a constant gap sequence y over A,

b with a constant gap sequence y′ over B,

where A and B disjoint. We write v = colour(u, y, y′).

Example

v = colour(uF , y, y
′), where y = (0102)ω and y′ = (34)ω

uF = abaababaabaabab . . .
v = 031042301402304 . . . π(423) = bab
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Motivation

Rampersad, May 2020, One World Numeration Seminar:
Ostrowski numeration and repetitions in words

question by Cassaigne: “What about the asymptotic version?”

D., Medková, Pelantová, 2020:
Complementary symmetric Rote sequences: the critical
exponent and the recurrence function
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Complementary symmetric Rote sequences

Rote sequence: binary sequence with complexity 2n

complementary symmetric sequence: language closed
under exchange of 0 and 1

S(v)=S(v0v1v2v3v4... )=(v0+v1 mod 2)(v1+v2 mod 2)(v2+v3 mod 2)...

S(vF )=S(00111001110001... )=0100101001001...

Theorem (Rote 1994)

Let u and v be two binary sequences such that u = S(v). Then v
is a CS Rote sequence iff u is a Sturmian sequence.

E ∗(v) = E ∗(v̂), where v is a CS Rote sequence associated
with u and v̂ = colour(u, y, y′) by y = 0ω and y′ = (12)ω.

The minimal critical exponent of ternary balanced sequences
is the same as the minimal critical exponent of CS Rote
sequences, and it equals 2 + 1√

2
.

L’. Dvǒráková Minimal Critical Exponent



Preliminaries
History of our results

Complementary symmetric Rote sequences

Rote sequence: binary sequence with complexity 2n

complementary symmetric sequence: language closed
under exchange of 0 and 1

S(v)=S(v0v1v2v3v4... )=(v0+v1 mod 2)(v1+v2 mod 2)(v2+v3 mod 2)...

S(vF )=S(00111001110001... )=0100101001001...

Theorem (Rote 1994)

Let u and v be two binary sequences such that u = S(v). Then v
is a CS Rote sequence iff u is a Sturmian sequence.

E ∗(v) = E ∗(v̂), where v is a CS Rote sequence associated
with u and v̂ = colour(u, y, y′) by y = 0ω and y′ = (12)ω.

The minimal critical exponent of ternary balanced sequences
is the same as the minimal critical exponent of CS Rote
sequences, and it equals 2 + 1√

2
.
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Computation of asymptotic critical exponent

Recall E ∗(v) = 1 + lim supn→∞
|wn|
|vn|

Proposition (Dolce, D., Pelantová, 2020)

Let v = colour(u, y, y′). For a sufficiently long bispecial w in v its
projection u = π(w) is a bispecial in u. The shortest return word
to w is of length min{k |r |+ `|s|}, where

1 k ~V (r) + ` ~V (s) =
(

0 mod Per(y)
0 mod Per(y′)

)
;

2
(
`
k

)
is the Parikh vector of a factor in du(u).

Program implemented by Daniela Opočenská:
Input: slope α quadratic irrational, Per(y), Per(y′)
Output: E ∗(v), where v = colour(u, y, y′)
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Completion of table

d α y y′ E (v) E ∗(v)

3 [0, 2] (01)ω 2ω 2 + 1√
2

2 + 1√
2

4 [0, 2, 1] (01)ω (23)ω 1 + 1+
√

5
4 1 + 1+

√
5

4

5 [0, 2] (0102)ω (34)ω 3
2

3
2

6 [0, 1, 2, 1, 1, 1, 1, 1, 2] 0ω (123415321435)ω 4
3

4
3

7 [0, 1, 1, 3, 1, 2, 1] (01)ω (234526432546)ω 5
4

5
4

8 [0, 1, 3, 1, 2] (01)ω (234526732546237526432576)ω 6
5 = 1.2 12+3

√
2

14
.

= 1.16

9 [0, 1, 2, 3, 2] (01)ω (234567284365274863254768)ω 7
6 ? 1 + 2

√
2−1

14
.

= 1.13

10 [0, 1, 4, 2, 3] (01)ω (234567284963254768294365274869)ω 8
7 ? 1 +

√
13

26
.

= 1.139

Table: Baranwal, Rampersad, Shallit, Vandomme: d-ary balanced
sequences with the least critical exponent.
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Computation of critical exponent

Recall E (v) = 1 + sup{ |wn|
|vn| : n ∈ N}

Our result: E (v) = max
{
E ∗(v), 1 + |wi |

|vi |

}
for finitely many i

Proposition (Dolce, D., Pelantová, 2020)

Let v = colour(u, y, y′). Let w be a bispecial factor of v with
projection u = π(w) in u. The shortest return word to w is of
length min{k|r |+ `|s|}, where

1 k ~V (r) + ` ~V (s) =
(

0 mod n
0 mod n′

)
, where n ∈ gap(y, |u|a) and

n′ ∈ gap(y′, |u|b);

2
(
`
k

)
is the Parikh vector of a factor in du(u).

Example

For y = (0102)ω, we have gap(y, 1) = {2, 4} and gap(y,m) = {4}
for m ≥ 2.
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Computation of critical exponent

Program implemented by Opočenská:
Input: slope α quadratic irrational, y, y′

Output: E (v), where v = colour(u, y, y′)

Description of algorithms for computation of (asymptotic) critical
exponent published:
Dolce, D., Pelantová: On balanced sequences and their critical
exponent, arXiv 2021
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Completion of table – continued

d α y y′ E (v) E ∗(v)

3 [0, 2] (01)ω 2ω 2 + 1√
2

2 + 1√
2

4 [0, 2, 1] (01)ω (23)ω 1 + 1+
√

5
4 1 + 1+

√
5

4

5 [0, 2] (0102)ω (34)ω 3
2

3
2

6 [0, 1, 2, 1, 1, 1, 1, 1, 2] 0ω (123415321435)ω 4
3

4
3

7 [0, 1, 1, 3, 1, 2, 1] (01)ω (234526432546)ω 5
4

5
4

8 [0, 1, 3, 1, 2] (01)ω (234526732546237526432576)ω 6
5 = 1.2 12+3

√
2

14
.

= 1.16

9 [0, 1, 2, 3, 2] (01)ω (234567284365274863254768)ω 7
6
.

= 1.167 1 + 2
√

2−1
14

.
= 1.13

10 [0, 1, 4, 2, 3] (01)ω (234567284963254768294365274869)ω 8
7
.

= 1.14 1 +
√

13
26

.
= 1.139

11 [0, 1, 5, 1, 1, 1, 1, 2] (01)ω (234567892A436587294A638527496A832547698A)ω 10
9
.

= 1.11 415+5
√

105
424

.
= 1.0996

12 [0, 1, 1, 3, 2] (012345)ω (6789AB)ω 11
10 = 1.1 8−

√
2

6
.

= 1.0976

Table: Baranwal, Rampersad, Shallit, Vandomme: d-ary balanced
sequences with the least critical exponent.
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Towards a new conjecture

Dvǒráková, September 2021, WORDS 2021:
Critical exponent of balanced sequences

conjecture d−2
d−3 refuted by examples over 11 and 12 letters

new conjecture: d−1
d−2 or d

d−1 ?

Shur: the lower bound d−1
d−2

D., Opočenská, Pelantová, Shur, 2021:
On minimal critical exponent of balanced sequences, arXiv
2021

new conjecture d−1
d−2 for d ≥ 11

proven for even d ≥ 12
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Lower bounds
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= 1.11 415+5
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.
= 1.0996

12 [0, 1, 1, 3, 2] (012345)ω (6789AB)ω 11
10 = 1.1 8−

√
2

6
.

= 1.0976

d ≥ 14 even [0, 1, 1, bd/4c, 1] (12 . . . d/2)ω (1′2′ . . . d/2′)ω d−1
d−2 1 + 2

dτN−1 ,

where τN+1 < d/2 < τN+2

Table: Baranwal, Rampersad, Shallit, Vandomme: d-ary balanced
sequences with the least critical exponent.
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Open problems

Proof of conjecture d−1
d−2 for odd d ≥ 13

using our computer program done for 13 ≤ d ≤ 33

Minimal asymptotic critical exponent of d-ary balanced
sequences

Is there an analogy of Dejean’s conjecture for E∗?

Is there a better lower bound than E∗(v) ≥ 1 + 1
Per(y)Per(y′) ?

What is the minimal critical exponent of a d-ary 2-balanced
sequence?

What is the critical exponent of colourings of non-Sturmian
sequences by constant gap sequences?
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Thank you for attention
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