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Modeling software systems

Does this program work correctly?

# Decomposing into simple
blocks

# Modeling blocks separately
# Correctness of each part

ensures correctness of the
program

Does this while loop
terminate/halt?
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Loops as Dynamical Systems

Algorithm
x := 1
y := 2
z := 3
while (x, y, z) ≠ (2, 1, 0) do

x′ := 2x + y
y′ := x − y + 3z
z′ := 2x − y + 2z
x := x′
y := y′
z := z′

end while

®x0 =
©«
1
2
3

ª®¬ , M =
©«
2 1 0
1 −1 3
2 −1 2

ª®¬
Loop halts ⇐⇒∃n : Mn

( 1
2
3

)
=

( 2
1
0

)
.

©«
x
y
z

ª®¬ := ©«
2 1 0
1 −1 3
2 −1 2

ª®¬ ©«
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y
z

ª®¬
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Linear Dynamical Systems (LDS)

# Given a starting point x ∈ Rd.
# A linear update map M ∈ Rd×d

# Defines an orbit
⟨x,Mx,M2x,M3x, . . .⟩

# A target point y ∈ Rd.

Orbit Problem
Does the orbit contain the target?
∃n : Mnx = y?

x

(
0.69 −0.84
0.92 0.63

)

Mx
M2x

M3x y
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# Given a starting point x ∈ Rd.
# A linear update map M ∈ Rd×d

# Defines an orbit
⟨x,Mx,M2x,M3x, . . .⟩

# A target point y ∈ Rd.

Orbit Problem
Does the orbit contain the target?
∃n : Mnx = y?

Theorem (Kannan–Lipton’86)
Orbit Problem is decidable for x, y,M
with algebraic entries.
In PTIME for x, y,M over Q.
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Reachability in LDS



Halting of Linear Dynamical Systems

Skolem’s problem
Given x, u, M, decide

∃n ∈ N such that u⊺Mnx = 0?

"Reaching a hyperplane."

# "Open" since the 1930s
# Decidable for instances with dimension

≤ 4.
◦ Real algebraic entries.

# Open for systems with dimension ≥ 5
# Equivalent to zeros of linear recurrence

sequences.
6/ 30



Halting of Linear Dynamical Systems

Skolem’s problem
Given x, u, M, decide

∃n ∈ N such that u⊺Mnx = 0?

"Reaching a hyperplane."

“It is faintly outrageous that this problem is still open; it is
saying that we do not know how to decide the Halting Problem
even for ‘linear’ automata!”

Terence Tao
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So what can we do?

Reachability problems

Given x ∈ Qd, M ∈ Qd×d, and a set T ⊆ Rd, decide: ∃n ∈ N such that Mnx ∈ T?

Linear loops: T encodes the halting condition.

Reasonable targets T: semialgebraic sets.

Example (Skolem’s problem; Not known to be decidable)

T is a hyperplane defined by u ∈ Qd: {z ∈ Rd : (z, u) = 0}

Have to restrict T!

7/ 30



So what can we do?

Reachability problems

Given x ∈ Qd, M ∈ Qd×d, and a set T ⊆ Rd, decide: ∃n ∈ N such that Mnx ∈ T?

Linear loops: T encodes the halting condition.

Reasonable targets T: semialgebraic sets.

Example (Skolem’s problem; Not known to be decidable)

T is a hyperplane defined by u ∈ Qd: {z ∈ Rd : (z, u) = 0}

Have to restrict T!

7/ 30



So what can we do?

Reachability problems

Given x ∈ Qd, M ∈ Qd×d, and a set T ⊆ Rd, decide: ∃n ∈ N such that Mnx ∈ T?

Linear loops: T encodes the halting condition.

Reasonable targets T: semialgebraic sets.

Example (Skolem’s problem; Not known to be decidable)

T is a hyperplane defined by u ∈ Qd: {z ∈ Rd : (z, u) = 0}

Have to restrict T!

7/ 30



So what can we do?

Reachability problems

Given x ∈ Qd, M ∈ Qd×d, and a set T ⊆ Rd, decide: ∃n ∈ N such that Mnx ∈ T?

Linear loops: T encodes the halting condition.

Reasonable targets T: semialgebraic sets.

Example (Skolem’s problem; Not known to be decidable)

T is a hyperplane defined by u ∈ Qd: {z ∈ Rd : (z, u) = 0}

Example (Positivity problem; Provably mathematically hard!1)

T is a halfspace defined by u ∈ Qd: {z ∈ Rd : (z, u) ≥ 0}.

Have to restrict T!

1Decidability entails major breakthroughs in field of Diophantine approximation.
Ouaknine, Worrell: Positivity problems for low-order linear recurrence sequences. (SODA2014) 7/ 30
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Restricting the targets: dimension

Intrinsic dimension

x + y3  z

2 z3 + 2 y  x

In 3D ambient space:
# Surfaces: intrinsic

dimension 2

# Curves: intrinsic
dimension 1
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Examples: Our targets

Example
Consider the semialgebraic sets in ambient dimension 4:

T1 = {(t, u, v,w) : t + u + v − w = 0 ∧ (t3 = u2 ∨ w ≥ 3t2 + u)}
T2 = {(t, u, v,w) : t + u + 2v − 2w = 0 ∧ t3 + v2 + v > w}
T3 = {(t, u, v,w) : t4 − u2 = 3 ∧ 2v2 = w ∧ t2 − 2u3 = 4v}

# T1 and T2 are contained in 3-dimensional subspaces.
# T3 has intrinsic dimension 1.

Example
2D polytopes are semialgebraic sets contained in 3D subspaces.

9/ 30
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Our results

Theorem
The reachability problem is decidable when T is a semialgebraic set
# of intrinsic dimension at most 1; or
# which is contained in a subspace of (linear) dimension 3.

Theorem (Skolem-hardness)
Skolem’s problem at dimension 5 reduces to reachability of T a dimension-2 set.
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Our results

Theorem
The reachability problem is decidable when T is a semialgebraic set
# of intrinsic dimension at most 1; or
# which is contained in a subspace of (linear) dimension 3.

Theorem (Skolem-hardness)
Skolem’s problem at dimension 5 reduces to reachability of T a dimension-2 set.

Theorem (Chonev et al.2)

# Skolem’s problem at dimension 5 reduces to reachability of a 3D polytope in R4.
# Reachability of a 4D polytope in R4 is mathematically hard.

2Chonev, Ouaknine, Worrell: The Polyhedron-Hitting Problem. (SODA2015)
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Semialgebraic targets of dimension 1

Proposition
Given x, M, and semialgebraic T of dimension 1, it is decidable whether
∃n ∈ N such that Mnx ∈ T.

Proof sketch.
We show that ∃ computable N ∈ N such that if such n exists, then ∃n ≤ N.
1. Transform the system into Jordan normal form (M = S−1JS).

◦ Focus on invariant subspaces of M.
◦ Case analysis depending on spectrum of M.

2. (Most cases) Solving instances of the Skolem problem.
3. (Corner cases) The system can be seen as a product of arc hitting

models/codings of rotations.
□
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1. Transformation to Jordan normal form

• M = S−1JS, where S is an invertible matrix and

J =

©«
J1

J2
. . .

Js

ª®®®®¬
with Ji =

©«
𝜆i 1 · · ·

𝜆i 1 · · ·
. . . 1

𝜆i

ª®®®®¬
• 𝜆i an eigenvalue of M.

Mnx ∈ T ⇐⇒ Jny ∈ T′.

Interesting cases: Assume 𝜆i and 𝜆j are multiplicatively independent;
𝜆a

i𝜆
b
j = 1 =⇒ a = b = 0.

Project Jny to the coordinates (𝜆n
i yi,si ,𝜆

n
j yj,sj).
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3. Solving instances of Skolem’s problem

T′ is complex semialgebraic of dimension 1;
There exists a bivariate polynomial P such that: Jny ∈ T′ implies

P(𝜆n
i yi,si ,𝜆

n
j yj,sj) = 0

The sequence P(𝜆n
i yi,si ,𝜆

n
j yj,sj) =

∑d
i,j ai,j(𝜆i

i𝜆
j
j)n is a linear recurrence sequence;

Reaching T′ =⇒ zero of this LRS.
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The sequence P(𝜆n
i yi,si ,𝜆

n
j yj,sj) =

∑d
i,j ai,j(𝜆i

i𝜆
j
j)n is a linear recurrence sequence;

Reaching T′ =⇒ zero of this LRS.

We get lucky: use known technology à la Shorey et al.3 and Vereshchagin4.

# (p-adic) Baker’s theorem on linear forms in logarithms.

3Shorey, Tĳdeman, Mignotte: The distance between terms of an algebraic recurrence sequence, (1984)
4Vereshchagin: Occurrence of zero in a linear recursive sequence (1985)
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4. Corner cases; codings of rotations

Given M = 𝜆 an algebraic number of modulus 1, x = 1, and open arcs I1, . . . , Ik of
unit circle in the complex plain (with algebraic endpoints)

Decide if there exists n ≥ 0 such that 𝜆n ∈ ⋃k
j=1 Ij. (Almost trivial!)

1

𝜆

𝜆2

𝜆3

𝜆4

𝜆5

𝜆6
𝜆7

𝜆8
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Beyond reachability



Beyond reachability

from: Jeannet, Schrammel, Sankaranarayanan: Abstract Acceleration of General Linear Loops, POPL2014
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Beyond reachability

Algorithm
t := 1
u := −1
v := 2
w := 0
while true do

t := 3t + 2u − 5w
u := u + 3w
v := 4u + 3v + w
w := t + u + 2v

end while

Temporal analysis:
Do we get stuck in some set of
bad states?

Define the predicates

P1 : t + u + v − w = 0 ∧ (t3 = u2 ∨ w ≥ 3t2 + u)
P2 : t + u + 2v − 2w = 0 ∧ t3 + v2 + v > w
P3 : t4 − u2 = 3 ∧ 2v2 = w ∧ t2 − 2u3 = 4v

Does the system satisfy the following LTL
formula?

G(P1 ⇒ F¬P2) ∧ F(P3 ∨ ¬P1) .
"whenever P1 holds, then P2 must eventually
subsequently fail, and eventually either P3
will hold or P1 will fail"
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Temporal properties of LDS

Let (M, x) be a LDS, let T1, . . . , Tk be semialgebraic sets.

Definition (The characteristic word of the LDS (M, x) with respect to Ti)

𝜋(M, x, T1 , . . . , Tk) = a0a1a2 · · · ∈ 𝒫({1, . . . , k})N

defined by
an = S ⊆ {1, . . . , k}

if and only if ∀i ∈ S : Mnx ∈ Ti and ∀j ∈ {1, . . . , k} \ S : Mnx ∉ Tj.

Interested in temporal properties of the system; Translate to properties on
𝜋(M, x, T1 , . . . , Tk)

Properties given by formulas from Monadic Second-Order Logic (capture
𝜔-regular properties).
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MSO

MSO: Monadic Second-Order Logic
MSO over the structure (N, <) and a finite collection of predicates P1, . . . , Pk : N→
{true, false}; MSO on infinite words: Predicates Pi describes the indices with
letter i.
The grammar of formulas:

𝜓 := P(i) (where P(i) is a predicate on position i of the word)
𝜓 := ∃i ∈ N : 𝜓 | ∀i ∈ N : 𝜓 (first-order quantification)
𝜓 := ∃X ⊆ N : 𝜓 | ∀X ⊆ N : 𝜓 (monadic second-order quantification)
𝜓 := i ∈ X | i ∉ X (subset membership testing)
𝜓 := i < j | i = j (index comparison)
𝜓 := ¬𝜓 | 𝜓 ∨ 𝜓 | 𝜓 ∧ 𝜓 | 𝜓 ⇒ 𝜓 (standard logical operations)
𝜓 := i = 0 | i = 1 | i = 2 | . . . (fixed values)
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MSO

For us, the predicate Pi corresponds to those n: Mnx ∈ Ti.

Example
Examples of MSO formulas for model checking LDS:
# Reachability of target Ti: ∃n : Pi(n).
# Eventually trapped inside Ti: ∃n∀m : m > n =⇒ Pi(m).
# In target Ti at every odd position (O = the set of odd natural numbers):

∃O ⊆ N : 1 ∈ O ∧ ∀x ∈ O, ∃y, z : (y ∉ O ∧ z ∈ O ∧ x < y < z ∧ �t : x < t <
y ∨ y < t < z) ∧ ∀x : x ∈ O =⇒ Pi(x).

# Whenever Ti is visited Tj is visited some point later:
∀n : Pi(n) =⇒ ∃m > n : Pj(m).

# Any linear temporal logic (LTL) formula over predicates P1 , . . . , Pk.
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The MSO model-checking problem for LDS

Theorem
Let (M, x) be a LDS, T1, . . . , Tk ⊆ Rd each Ti of which is a semialgebraic set
# of (semialgebraic) dimension at most 1; or
# which is contained in a subspace of (linear) dimension 3.
Then it is decidable whether 𝜋(M, x, T1 , . . . , Tk) satisfies a given MSO formula 𝜓.
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Key notion: Effective almost periodicity

Definition (Almost periodic words)
An infinite word w ∈ Σ𝜔 is almost periodic if for every factor u ∈ Σ∗, there exists
p ∈ N such that either:
# u does not occur in w after the position p,
# or u occurs in every factor of w of length p.
Effectively almost periodic word: p can be computed for every factor u.

Theorem (Semënov’84)
Let w be an effectively almost periodic infinite word over alphabet Σ. The MSO theory
over (N, <) extended with the unary predicates {Pa}a∈Σ remains decidable.
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Proof sketch

Analysis from decidability of reachability shows:

Observation
Let (M, x) be a LDS and T be a semialgebraic set of dimension 1 or a semialgebraic set
contained in a subspace of linear dimension 3. There exists a computable ℓ ∈ N such that
for all 0 ≤ r < ℓ the word 𝜋(Mℓ ,Mrx, T) is either
# eventually constant; or
# a coding of a rotation up to a finite computable prefix.

1

𝜆

× 1

𝜆′

× · · · 1

𝜆′′

× ...

...
...
...
...
...
...
...
...
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Proof sketch

Analysis from decidability of reachability shows:

Observation
Let (M, x) be a LDS and T be a semialgebraic set of dimension 1 or a semialgebraic set
contained in a subspace of linear dimension 3. There exists a computable ℓ ∈ N such that
for all 0 ≤ r < ℓ the word 𝜋(Mℓ ,Mrx, T) is either
# eventually constant; or
# a coding of a rotation up to a finite computable prefix.

Corollary

𝜋(M, x, T0 , . . . , Tk) is an interleaving of codings of rotations on Tk (up to a finite prefix).
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Coding of a rotation

Definition (Coding of a rotation on Tk.)

Given a semialgebraic set A1 ⊆ Tk and algebraic point ®𝜆 = (𝜆1 , . . . ,𝜆k) ∈ Tk. Let
A0 = Tk \ A1.
Coding: w = a0a1 · · · ∈ {0, 1}N where an = 1 ⇔ ®𝜆n = (𝜆n

1 , . . . ,𝜆
n
k ) ∈ A1.
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Proof sketch (of effective almost periodicity)

The closure C of {(𝜆n
1 , . . . ,𝜆

n
k )}n∈N is semialgebraic. Representation can be

effectively computed!5

Factor u = b1 · · · bn occurs in w iff
C∩Ab1 ∩ ®𝜆−1Ab2 ∩ . . .∩ ®𝜆−nAbn ≠ ∅

Almost periodicity by
compactness and
guess-and-check.

Effectiveness by Tarski:
First-order theory of the reals is
decidable.

5Ouaknine, Worrell: On the Positivity Problem for Simple Linear Recurrence Sequences, (ICALP 2014)
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Parametric reachability



Parametric Loops as Parametric Dynamical Systems

Algorithm

with Input a1 , . . . , ak ∈ R

®x := ®a

(a1 , . . . , ak)
M := M(a1 , . . . , ak)
®y := ®y(a1 , . . . , ak)

while ®x ≠ ®y do
®x := M®x

end while

Theorem (Kannan–Lipton’86)
Orbit Problem is decidable for
x, y,M with algebraic entries.
In PTIME for x, y,M over Q.

For fixed input ®a = (a1 , . . . , ak):
loop halts ⇐⇒∃n : M(®a )n®x(®a ) = ®y(®a ).
# Halting depends on input.
# Halting on different n for different

inputs.

Problem
Does there exist input a1 , . . . , ak such that the loop halts?

∃a1 , . . . , ak ∈ R, n ∈ N : M(a1 , . . . , ak)n®x(a1 , . . . , ak) = ®y(a1 , . . . , ak)?
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Problem statement

Q(z1 , . . . , zk): Rational functions in variables z1 , . . . , zk

Parametric Orbit Problem
Given
# initial vector x ∈ Q(z1 , . . . , zk)d,
# update matrix M ∈ Q(z1 , . . . , zk)d×d, and
# target vector y ∈ Q(z1 , . . . , zk)d.

do there exist ®a = (a1 , . . . , ak) ∈ Rk and n ∈ N such that

y(®a ) = M(®a )nx(®a )?
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Parametric Linear Dynamical Systems

Input: s ∈ R

x(s) =
(
1
s

)

M(s) =
(
1 s − 1
1 −1

)

y(s) =
(
−5 + 21−s2

1+s2

−5 + 2 2s
1+s2

)

-10 -5 5 10

-10

-5

5

10

x(s)
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Results

Parametric Orbit Problem
Given
# x, y ∈ Q(z1 , . . . , zk)d,
# M ∈ Q(z1 , . . . , zk)d×d,
do there exist ®a = (a1 , . . . , ak) ∈ Rk and n ∈ N such that

y(®a ) = M(®a )nx(®a )?

Theorem
# Univariate systems (k = 1): Problem is decidable.
# Multivariate systems (k ≥ 2): Problem is Skolem hard.
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Thank you!

Talk based on

C. Baier, F. Funke, S. Jantsch, T. Karimov, E. Lefaucheux, F. Luca, J. Ouaknine,
D. Purser, M.A. Whiteland, and J. Worrell:
The Orbit Problem for Parametric Linear Dynamical Systems
CONCUR 2021, #28, doi:10.4230/LIPIcs.CONCUR.2021.28

T. Karimov, E. Lefaucheux, J. Ouaknine, D. Purser, A. Varonka,
M.A. Whiteland, J. Worrell:
What’s Decidable about Linear Loops?
POPL 2022, #65, doi:10.1145/3498727
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The Bivariate Orbit Problem is hard!

∃n ∈ N, a1 , a2 ∈ R : M(a1 , a2)n x(a1 , a2) = y(a1 , a2)

Proposition
Skolem-5 reduces to the Parametric Orbit Problem (with two variables).

Proof sketch.
®uMn®x =

# Construct constant matrix N and initial vector ®x′.

# 2D algebraic target set in C4; T :

{
Ax + By + Cz + Dw + E = 0
x2 + y2 = z2 + w2

◦ the graph of a target vector: T = {y(a1 , a2) : ai ∈ R}
# Then ®uMn®x = 0 if and only if ∃a1 , a2 ∈ R : Nn®x′ = y(a1 , a2). □

30/ 30



The Bivariate Orbit Problem is hard!

∃n ∈ N, a1 , a2 ∈ R : M(a1 , a2)n x(a1 , a2) = y(a1 , a2)

Proposition
Skolem-5 reduces to the Parametric Orbit Problem (with two variables).

Proof sketch.
®uMn®x = 0?

# Construct constant matrix N and initial vector ®x′.

# 2D algebraic target set in C4; T :

{
Ax + By + Cz + Dw + E = 0
x2 + y2 = z2 + w2

◦ the graph of a target vector: T = {y(a1 , a2) : ai ∈ R}
# Then ®uMn®x = 0 if and only if ∃a1 , a2 ∈ R : Nn®x′ = y(a1 , a2). □

30/ 30



The Bivariate Orbit Problem is hard!

∃n ∈ N, a1 , a2 ∈ R : M(a1 , a2)n x(a1 , a2) = y(a1 , a2)

Proposition
Skolem-5 reduces to the Parametric Orbit Problem (with two variables).

Proof sketch.
®uMn®x = a𝜆n + a𝜆n + b𝛾n + b𝛾n + c with 1 ≤ |𝜆| = |𝛾 |.

# Construct constant matrix N and initial vector ®x′.

# 2D algebraic target set in C4; T :

{
Ax + By + Cz + Dw + E = 0
x2 + y2 = z2 + w2

◦ the graph of a target vector: T = {y(a1 , a2) : ai ∈ R}
# Then ®uMn®x = 0 if and only if ∃a1 , a2 ∈ R : Nn®x′ = y(a1 , a2). □

30/ 30



The Bivariate Orbit Problem is hard!

∃n ∈ N, a1 , a2 ∈ R : M(a1 , a2)n x(a1 , a2) = y(a1 , a2)

Proposition
Skolem-5 reduces to the Parametric Orbit Problem (with two variables).

Proof sketch.
®uMn®x = Aℜ(𝜆n) + Bℑ(𝜆n) + Cℜ(𝛾n) + Dℑ(𝛾n) + E with 1 ≤ |𝜆| = |𝛾 |.

# Construct constant matrix N and initial vector ®x′.

# 2D algebraic target set in C4; T :

{
Ax + By + Cz + Dw + E = 0
x2 + y2 = z2 + w2

◦ the graph of a target vector: T = {y(a1 , a2) : ai ∈ R}
# Then ®uMn®x = 0 if and only if ∃a1 , a2 ∈ R : Nn®x′ = y(a1 , a2). □

30/ 30



The Bivariate Orbit Problem is hard!

∃n ∈ N, a1 , a2 ∈ R : M(a1 , a2)n x(a1 , a2) = y(a1 , a2)

Proposition
Skolem-5 reduces to the Parametric Orbit Problem (with two variables).

Proof sketch.
®uMn®x = Aℜ(𝜆n) + Bℑ(𝜆n) + Cℜ(𝛾n) + Dℑ(𝛾n) + E with 1 ≤ |𝜆| = |𝛾 |.
# Construct constant matrix N and initial vector ®x′.

# 2D algebraic target set in C4; T :

{
Ax + By + Cz + Dw + E = 0
x2 + y2 = z2 + w2

◦ the graph of a target vector: T = {y(a1 , a2) : ai ∈ R}
# Then ®uMn®x = 0 if and only if ∃a1 , a2 ∈ R : Nn®x′ = y(a1 , a2). □

30/ 30



The Bivariate Orbit Problem is hard!

∃n ∈ N, a1 , a2 ∈ R : M(a1 , a2)n x(a1 , a2) = y(a1 , a2)

Proposition
Skolem-5 reduces to the Parametric Orbit Problem (with two variables).

Proof sketch.
®uMn®x = Aℜ(𝜆n) + Bℑ(𝜆n) + Cℜ(𝛾n) + Dℑ(𝛾n) + E with 1 ≤ |𝜆| = |𝛾 |.
# Construct constant matrix N and initial vector ®x′.

# 2D algebraic target set in C4; T :

{
Ax + By + Cz + Dw + E = 0
x2 + y2 = z2 + w2

◦ the graph of a target vector: T = {y(a1 , a2) : ai ∈ R}
# Then ®uMn®x = 0 if and only if ∃a1 , a2 ∈ R : Nn®x′ = y(a1 , a2). □
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