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Short Abstract:
How many ways are there to represent a number as a sum of
powers of the golden mean?
Among these, what is the best way to do this?
What is the relation with representing a number as a sum of
Fibonacci numbers?
I will give some answers to these questions in my talk.
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“We’ll have fun hearing this again!”

Short Abstract:
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What is the relation with representing a number as a sum of
Fibonacci numbers?
I will give some answers to these questions in my talk.



Quick answers

How many ways are there to represent a number as a sum of
powers of the golden mean?

Infinitely many.

Among these, what is the best way to do this?

Greedy algorithm ⇒ Bergman expansion, which is NOT the best!

What is the relation with representing a number as a sum of
Fibonacci numbers?

Golden mean shift: 100 7→ 011.



Base phi representations

A base phi representation of a natural number N has the form

N =
∞∑

i=−∞
aiϕ

i ,

ai are arbitrary non-negative numbers,

ϕ := (1 +
√

5)/2: the golden mean.

Similarly to base 10 numbers, we write these representations as

α(N) = aLaL−1 . . . a1a0·a−1a−2 . . . aR+1aR .

Here L is the largest positive, and R is the smallest negative power
of ϕ that occurs (when these exist).



Infinitely many Base phi representations

Even if we only use digits ai from {0, 1} there are infinitely many
finite length representations.

Example One has ϕ3 + ϕ−1 + ϕ−4 = 5.

So α(5) = 1000·1001.

But ϕ−4 = ϕ−5 + ϕ−6, so also

α′(5) = 1000·100011, and

α′′(5) = 1000·10001011, and . . .

Golden mean shift: 100 7→ 011.



Base phi: Bergman representation

A natural number N is written in Bergman base phi if

N =
∞∑

i=−∞
diϕ

i ,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.
Again we write

β(N) = dLdL−1 . . . d1d0·d−1d−2 . . . dR+1dR .

Theorem The Bergman representation of N is unique.



Base phi: canonical representation

A natural number N is written in the canonical base phi
representation if N has the form

N =
∞∑

i=−∞
ciϕ

i ,

with digits ci = 0 or 1, and where ci+1ci = 11 is not allowed,
except that c1c0 = 11, as soon as this is possible. We write

γ(N) = cLcL−1 . . . c1c0 · c−1c−2 . . . cR+1cR .

To obtain this representation one first looks if there exists a
representation of N with c1c0 = 11, and no other ci+1ci = 11, and
if this is not the case, then γ(N) = β(N).

Theorem The canonical representation of N is unique.



Examples

Bergman Canonical

N β(N) γ(N)

1 1·0 1·0
2 10·01 10·01
3 100·01 11·01
4 101·01 101·01
5 1000·1001 1000·1001
6 1010·0001 1010·0001
7 10000·0001 1011·0001
8 10001·0001 10001·0001
9 10010·0101 10010·0101

10 10100·0101 10011·0101
11 10101·0101 10101·0101
12 100000·101001 100000·101001

Theorem γ(N) 6= β(N) ⇔ ∃n, such that N = b(ϕ+ 2)nc.



Why canonical??

ir A.W.W.J.M. van Loon:

“The Golden Ratio: the origin of nature?”

 N Patroon                      Lucaslijnen 1-tjes                                      Lucaslijnen 0-en 

 1  (-L0) ,   0,1 
 2 L∞  ,  1,001 
 3   ,  1,101 
 4  -L-2 ,  10,101 
 5   ,  100,01001 
 6 L0  ,  101,00001 
 7   ,  101,10001 
 8  -L0 ,  1000,10001 
 9 L1  ,  1001,00101 
 10   ,  1001,10101 
 11  -L-4 ,  1010,10101 
 12   ,  10000,0101001 
 13 L2  ,  10001,0001001 
 14   ,  10001,1001001 
 15  -L-1 ,  10010,1001001 
 16   ,  10100,0100001 
 17 L0  ,  10101,0000001 
 18   ,  10101,1000001 
 19  -L0 ,  100000,1000001 
 20 L3  ,  100001,0010001 
 21   ,  100001,1010001 
 22  -L-2 ,  100010,1010001 
 23   ,  100100,0100101 
 24 L0  ,  100101,0000101 
 25   ,  100101,1000101 
 26  -L0 ,  101000,1000101 
 27 L1  ,  101001,0010101 
 28   ,  101001,1010101 
 29  -L-6 ,  101010,1010101 
 30   ,  1000000,010101001 
 31 L4  ,  1000001,000101001 
 32   ,  1000001,100101001 
 33  -L-1 ,  1000010,100101001 
 34   ,  1000100,010001001 
 35 L0  ,  1000101,000001001 
 36   ,  1000101,100001001 
 37  -L0 ,  1001000,100001001 
 38 L1  ,  1001001,001001001 
 39   ,  1001001,101001001 
 40  -L-3 ,  1001010,101001001 
 41   ,  1010000,010100001 
 42 L2  ,  1010001,000100001 
 43   ,  1010001,100100001 
 44  -L-1 ,  1010010,100100001 
 45   ,  1010100,010000001 
 46 L0  ,  1010101,000000001 
 47   ,  1010101,100000001 
 48  -L0 ,  10000000,100000001 
 49 L5  ,  10000001,001000001 
 50   ,  10000001,101000001 



Why canonical? Part 1

Look at the length of the representations.

Base b: length n in the intervals [bn−1, bn − 1].

Lucas numbers: (Ln) given by
L0 := 2, L1 := 1, and Ln = Ln−1 + Ln−2 for n ≥ 2.

What are the intervals of constant expansion length for the
Bergman representation?
Length 4n + 1 in the intervals Λ2n := [L2n, L2n+1],
length 4n + 4 in the intervals Λ2n+1 := [L2n+1 + 1, L2n+2 − 1].

What are the intervals of constant expansion length for the
canonical representation?
Length 2n + 1 for n even, and 2n + 2 for n odd in the intervals
Γn := [Ln + 1, Ln+1].



Why canonical? Part 1 b

Base b: length n in the intervals Bn = [bn−1, bn − 1].

Constant expansion length for the Bergman representation:
In the intervals Λ2n = [L2n, L2n+1], Λ2n+1 = [L2n+1 + 1, L2n+2 − 1].

Constant expansion length for the canonical representation:
In the intervals Γn := [Ln + 1, Ln+1].

What is ‘wrong’ with the Λn compared to the Bn?

Answer: the Λ2n+1 are too small compared to the Λ2n:

|Λ2n| = L2n−1 + 1, and |Λ2n+1| = L2n − 1.

The Γn are more like the Bn.



Why canonical? Part 2 a

Look at the length of the vertical runs in the table of
representations.

Classical base b representations. The case b = 2:

N expansion

0 0
1 1
2 10
3 11
4 100
5 101
6 110
7 111

N expansion

8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

N expansion

16 10000
17 10001
18 10010
19 10011
20 10100
21 10101
22 10110
23 10111

In digit position i , for i ≥ 0, only runs of 2i 1’s occur—separated
by runs of 2i 0’s.



Why canonical? Part 2 b

For the Bergman expansion there is no such regularity: vertical
runs of 1’s of length 1,2,3,4,5,6 and 7 do occur.

This is completely different for the canonical expansion:

Theorem In the canonical base phi expansion of the natural
numbers only vertical runs of 1’s with length a Lucas number
occur, and all Lucas numbers occur as a run length. More
precisely: in digit position i only runs of length Li−1 occur when
i ≥ 1, and only runs of length L−i occur when i ≤ 0.



Next question:

How many ways are there to represent a number as a sum of
powers of the golden mean?

Not much is known about this question.
A lot (dozens of papers) is known about a related question:

How many ways are there to represent a number as a sum of
different Fibonacci numbers?

(Also known as Fibonacci partitions.)

D. A. Klarner (1966), L. Carlitz, (1968),.....,
S.Chow and T. Slattery, arXiv: 17 Sep 2020.



Minimal Fibonacci representations

These are also known as Zeckendorf representations.

Let F0 = 0, F1 = 1, F2 = 1, . . . be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written
uniquely as

N =
∞∑
i=2

diFi ,

with digits di = 0 or 1, and where didi+1 = 11 is not allowed.

We write Z (N) = dL . . . d2.

Example Z (6) = 1001, since F5 = 5,F2 = 1.



Zeckendorf and Bergman

N Z (N) β(N)

1 1 1·
2 10 10·01
3 100 100·01
4 101 101·01
5 1000 1000·1001
6 1001 1010·0001
7 1010 10000·0001
8 10000 10001·0001
9 10001 10010·0101

10 10010 10100·0101
11 10100 10101·0101
12 10101 100000·101001
13 100000 100010·001001
14 100001 100100·001001
15 100010 100101·001001



How many Fibonacci representations?

A000119 Number of representations of n as a sum of distinct
Fibonacci numbers.

TFIB = 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, . . .

Recursions given by Neville Robbins (1966). See also Chow and
Slattery (2020).

Z (8) = 10000.
Other representations: 1100, 1011. So TFIB(8) = 3.



Golden mean shift

Z (8) = 10000.
Other representations: 1100, 1011. So TFIB(8) = 3.

Golden mean shift: a map G = Gm on 0-1-words:

G : w1 . . .wm100wm+4 . . .wk 7→ w1 . . .wm011wm+4 . . .wk .

So G (Z (8)) = G (10000) = 1100, and G (1100) = 1001.

This is the ”word”-version of Fn = Fn−1 + Fn−2.

But it is also the ”word”-version of ϕn = ϕn−1 + ϕn−2. !!



How many base phi representations?

We have seen: there are infinitely many ways!

Proposal by Ron Knott: only count those not ending in 011.

A289749 Number of ways not ending in 011 to write n in base phi.

Tκ = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, 21, 16, . . .

1 all forms: 1

2 all forms: 10·01, 1·11

3 all forms: 100·01, 11·01, 10·1111

4 all forms: 101·01, 100·1111, 11·1111

5 all forms: 1000·1001, 110·1001, 110·0111, 101·1111, 1000·0111

6 all forms: 1010·0001, 1001·1001, 111·1001, 111·0111, 1001·0111



Trimming Knott

3 all forms: 100·01, 11·01, 10·1111

4 all forms: 101·01 , 100·1111, 11·1111

The representations of N = 3,N = 4 are obtained in a special way.

101·01→ 101·0011→ 100·1111.

We remove these all the time, obtaining the total number of base
phi representations

Tϕ = 1, 1, 2, 2, 1, 5, 5, 4, 5, 4, 3, 1, 10, 13, 12, 12, 13, 10, 6, 11, 12, . . .
instead of
Tκ = 1, 1, 2, 3, 3,5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, . . .



Theorem COUNT: Tϕ(N) = TFIB(F−R(N)+2N).

Proof: Suppose that β(N) = dL . . . dR , so N =
∑L

R diϕ
i .

Multiply by ϕ−R+2:

ϕ−R+2N =
L∑

i=R

diϕ
i−R+2 =

L−R+2∑
j=2

dj+R−2ϕ
j =

L−R+2∑
j=2

ejϕ
j

where we substituted j = i − R + 2, and defined ej := j + R − 2.

Next we use the well known equation ϕj = Fjϕ+ Fj−1:

[F−R+2ϕ+ F−R+1]N =
L−R+2∑
j=2

ej [Fjϕ+ Fj−1].

This implies that
F−R+2N =

L−R+2∑
j=2

ejFj .

So left side = Zeckendorf expansion of the number F−R+2N.
But the manipulations above can be made for any 0-1-word of
length L− R + 1 ⇒ golden mean shifts of e2 . . . eL−R+2 are in
1-to-1 correspondence with golden mean shifts of dL . . . dR . 2



Base phi and Lucas numbers

The Lucas numbers (Ln) = (2, 1, 3, 4, 7, 11, 18, 29, . . . ) :

L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2.

From L2n = ϕ2n + ϕ−2n, and L2n+1 = L2n + L2n−1:

β(L2n) = 102n·02n−11, β(L2n+1) = 1(01)n·(01)n.

We read off: R(L2n) = −2n,R(L2n+1) = −2n.

Also clear that Tϕ(L2n) = 2n, and Tϕ(L2n+1) = 1.

So Theorem COUNT gives new (?!) information on the
Fibonacci representations:

TFIB(F2n+2L2n) = 2n, TFIB(F2n+2L2n+1) = 1 for all n ≥ 1.



Fib and Luc

From Miklos Kristof, Mar 19 2007: (Start)

Let L(n) = A000032(n) = Lucas numbers. Then

For a >= b and odd b, F (a + b) + F (a− b) = L(a) ∗ F (b).

For a >= b and even b, F (a + b) + F (a− b) = F (a) ∗ L(b).

For a >= b and odd b, F (a + b)− F (a− b) = F (a) ∗ L(b).

.....(End)

So F2n+2L2n+1 = F4n+3 − F1 = F4n+3 − 1.

But TFIB(Fn − 1) = 1 is a well-known formula!



Stop

THE END


