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Short Abstract:

How many ways are there to represent a number as a sum of
powers of the golden mean?

Among these, what is the best way to do this?

What is the relation with representing a number as a sum of
Fibonacci numbers?

| will give some answers to these questions in my talk.
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Quick answers

How many ways are there to represent a number as a sum of
powers of the golden mean?

Infinitely many.
Among these, what is the best way to do this?
Greedy algorithm =- Bergman expansion, which is NOT the best!

What is the relation with representing a number as a sum of
Fibonacci numbers?

Golden mean shift: 100 — 011.



Base phi representations

A base phi representation of a natural number N has the form
[e.9]
N= D ag
i=—00

a; are arbitrary non-negative numbers,
¢ := (14 +/5)/2: the golden mean.

Similarly to base 10 numbers, we write these representations as
a(N) =4dydr—-1...4140'a—-1d—-2...dRr+14R-

Here L is the largest positive, and R is the smallest negative power
of ¢ that occurs (when these exist).



Infinitely many Base phi representations

Even if we only use digits a; from {0, 1} there are infinitely many
finite length representations.

Example One has 3 + ¢~ 1 + ¢~ =5
So a(5) = 1000-1001.

But =% = ¢ 54+ ¢ so0 also

o/(5) = 1000-100011, and

o (5) = 1000-10001011, and ...

Golden mean shift: 100 — 011.



Base phi: Bergman representation

A natural number N is written in Bergman base phi if
e .
V-3 a
i=—00

with digits d; = 0 or 1, and where d;d;1; = 11 is not allowed.
Again we write

B(N) = deL—l . dldo-d_ld_2 . dR+1dR.

Theorem The Bergman representation of N is unique.



Base phi: canonical representation

A natural number N is written in the canonical base phi
representation if N has the form

00
N = Z Ci90i7
i=—00

with digits ¢; = 0 or 1, and where ¢j;1¢; = 11 is not allowed,
except that c;cg = 11, as soon as this is possible. We write

’)/(N) =CC—-1...CQC¢" C_1C2...CR+1CR.

To obtain this representation one first looks if there exists a
representation of N with c;cy = 11, and no other ¢j;1¢; = 11, and
if this is not the case, then v(N) = B(N).

Theorem The canonical representation of N is unique.



Examples

Bergman Canonical

Q) A(N)

1 1.0 1.0

2 10-01 10-01

3 100-01 11.01

4 101-01 101-01

5 1000-1001 1000-1001
6 1010-0001 1010-0001
7 10000-0001 1011-0001
8 10001-0001 10001-0001
9 10010-0101 10010-0101
10 10100-0101 10011-0101
11 10101-0101 10101-0101
12 | 100000-101001 | 100000-101001

Theorem ~(N) # 3(N) < 3n, such that N = |(¢ + 2)n].



Why canonical??

ir AW.W.J.M. van Loon:
“The Golden Ratio: the origin of nature?”




Why canonical? Part 1

Look at the length of the representations.
Base b: length n in the intervals [b"1, b" — 1].

Lucas numbers: (L,) given by
Lo:=2,L;:=1,and L,=L,_ 1+ L, for n> 2.

What are the intervals of constant expansion length for the
Bergman representation?

Length 4n+ 1 in the intervals Ay, := [L2n, Lon+1],

length 4n + 4 in the intervals Aopi1 = [Lony1 + 1, Lonyo — 1].

What are the intervals of constant expansion length for the
canonical representation?

Length 2n+ 1 for n even, and 2n + 2 for n odd in the intervals
M= [Ln+ 1, Lot1].



Why canonical? Part 1 b

Base b: length n in the intervals B, = [b"~, b" — 1].

Constant expansion length for the Bergman representation:
In the intervals Ay, = [Lgn, L2n+1], Nopt1 = [L2n+1 +1,Lony0 — ].].

Constant expansion length for the canonical representation:
In the intervals [, := [L, + 1, Ly11].

What is ‘wrong’ with the A, compared to the B,?

Answer: the A, are too small compared to the Ayp:
|A2n| = Lon—1+1, and [A2pq1| = Loy — 1.

The I, are more like the B,.



Why canonical? Part 2 a

Look at the length of the vertical runs in the table of
representations.

Classical base b representations. The case b = 2:

N | expansion N | expansion N | expansion
0 0 8 1000 16 10000
1 1 9 1001 17 10001
2 10 10 1010 18 10010
3 11 11 1011 19 10011
4 100 12 1100 20 10100
5 101 13 1101 21 10101
6 110 14 1110 22 10110
7 111 15 1111 23 10111

In digit position i, for i > 0, only runs of 2/ 1's occur—separated
by runs of 2' Q's.



Why canonical? Part 2 b

For the Bergman expansion there is no such regularity: vertical
runs of 1's of length 1,2,3,4,5,6 and 7 do occur.

This is completely different for the canonical expansion:

Theorem In the canonical base phi expansion of the natural
numbers only vertical runs of 1's with length a Lucas number
occur, and all Lucas numbers occur as a run length. More
precisely: in digit position i only runs of length L;_1 occur when
i > 1, and only runs of length L_; occur when i < Q.



Next question:

How many ways are there to represent a number as a sum of
powers of the golden mean?

Not much is known about this question.
A lot (dozens of papers) is known about a related question:

How many ways are there to represent a number as a sum of
different Fibonacci numbers?

(Also known as Fibonacci partitions.)

D. A. Klarner (1966), L. Carlitz, (1968),.....,
S.Chow and T. Slattery, arXiv: 17 Sep 2020.



Minimal Fibonacci representations

These are also known as Zeckendorf representations.
Let Fp =0, Ff =1, F, =1,... be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written

uniquely as
o
N=>"dF,
i=2

with digits d; = 0 or 1, and where d;d;1; = 11 is not allowed.
We write Z(N) =d; ... d>.

Example Z(6) = 1001, since Fs =5, F, = 1.



Zeckendorf and Bergman

N ZN) [ B
1 1 1

2 10 10-01

3 100 100-01

4 101 101-01

5 1000 1000-1001

6 1001 1010-0001

7 1010 10000-0001
8 10000 10001-0001

9 10001 10010-0101
10 10010 10100-0101
11 10100 10101-0101
12 10101 100000-101001
13 | 100000 100010-001001
14 | 100001 100100-001001
15 | 100010 100101-001001




How many Fibonacci representations?

A000119 Number of representations of n as a sum of distinct
Fibonacci numbers.

THB =11,1,2,1,2,2,1,3,2,2,3,1,3,3,2,4,2,3,3,1,4,3,3,5, ...

Recursions given by Neville Robbins (1966). See also Chow and
Slattery (2020).

Z(8) = 10000.
Other representations: 1100, 1011. So TFIB(8) = 3.



Golden mean shift

Z(8) = 10000.
Other representations: 1100, 1011. So TFIB(8) = 3.

Golden mean shift: a map G = G,;, on 0-1-words:

G: wi...wnl00Wpyg.. . Wi = wy ... Wn01lwpig ... wg.
So G(Z(8)) = G(10000) = 1100, and G(1100) = 1001.
This is the "word" -version of F, = F,_1 + Fr—o.

But it is also the " word” -version of ¢" = "1 4 "2 1l



How many base phi representations?

We have seen: there are infinitely many ways!

Proposal by Ron Knott: only count those not ending in 011.

A289749 Number of ways not ending in 011 to write n in base phi.

T"=1,1,2,3,3,5,5,5,8,8,8,5,10,13,12,12,13,10, 7,15, 18,21, 16, . ...

1 all forms:
2 all forms:
3 all forms:
4 all forms:
5 all forms:

6 all forms:

1
1001, 1-11
100-01, 1101, 10-1111

101-01, 100-1111, 11-1111
1000-1001, 110-1001, 110-0111, 101-1111, 1000-0111
1010-0001, 1001-1001, 111-1001, 111-0111, 1001-0111



Trimming Knott

3 all forms: 100-01, 11-01, 10-1111
4 all forms: 101-01, 100-1111, 11-1111

The representations of N = 3, N = 4 are obtained in a special way.
101-01 — 101-0011 — 100-1111.

We remove these all the time, obtaining the total number of base
phi representations

T =1,1,2,2,1,5,5,4,5,4,3,1,10,13,12,12,13,10,6,11,12, ...
instead of

TF=1,1,2,3,35,5,5,8,8,8,5,10,13,12,12,13, 10,7, 15,18, . ..



Theorem COUNT: T#(N) = TFIB(F_g(p;2N).
Proof: Suppose that S(N) =d,...dr, so N = ZLR dig'.

Multiply by cp_R";_Z: LR LR
e RPN = Z dip'RT2 = Z disr2y = Z e
i—R =2 =2

where we substituted j = i — R + 2, and defined ¢j := j + R — 2.

Next we use the well known equation ¢/ = Fjp + Fj_1:

L—R+2
[F_R+2S0 + F_R+1]N = Z ej[F_jSO + Fj—l]-
j=2
This implies that L—R+2

F,RJFQN: Z eJ-FJ-.
Jj=2

So left side = Zeckendorf expansion of the number F_g o N.
But the manipulations above can be made for any 0-1-word of
length L — R+ 1 = golden mean shifts of e;... e _g42 are in
1-to-1 correspondence with golden mean shifts of dy . .. dgr.



Base phi and Lucas numbers

The Lucas numbers (L,) = (2,1,3,4,7,11,18,29,...):
Lo=2, Li=1L,=L,1+4+L,» forn>2.

From Lo, = ¢?"+ 72", and Lop+1 = Loy + Lop—1:
B(L2n) = 10*"-0°""*1,  B(Lans1) = 1(01)"-(01)".

We read off: R(Lz,) = —2n, R(Lant+1) = —2n.

Also clear that T#(Lz,) = 2n, and T¥(Lapy1) = 1.

So Theorem COUNT gives new (?!) information on the
Fibonacci representations:

TYB(Fopiolon) = 2n, TFB(Fpiolony1) =1 forall n> 1.



Fib and Luc

From Miklos Kristof, Mar 19 2007: (Start)

Let L(n) = A000032(n) = Lucas numbers. Then

For a >= b and odd b, F(a+ b) + F(a— b) = L(a) x F(b).
For a>= b and even b, F(a+ b) + F(a— b) = F(a) = L(b).
For a >= b and odd b, F(a+ b) — F(a— b) = F(a) = L(b).

So Fapgalony1 = Fanyz — F1 = Fapiz — 1.

But TFIB(F, — 1) = 1 is a well-known formula!



Stop

THE END



