Combinatorics of Fibonacci and golden mean number representations

Michel Dekking

One World Seminar on Combinatorics on Words

07\02\2022

Short Abstract:

How many ways are there to represent a number as a sum of powers of the golden mean?

Among these, what is the best way to do this?

What is the relation with representing a number as a sum of Fibonacci numbers?

I will give some answers to these questions in my talk.

Combinatorics of Fibonacci and golden mean number representations

"We'll have fun hearing this again!"

Short Abstract:

How many ways are there to represent a number as a sum of powers of the golden mean?

Among these, what is the best way to do this?

What is the relation with representing a number as a sum of Fibonacci numbers?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

I will give some answers to these questions in my talk.

Quick answers

How many ways are there to represent a number as a sum of powers of the golden mean?

Infinitely many.

Among these, what is the best way to do this?

Greedy algorithm \Rightarrow Bergman expansion, which is NOT the best!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

What is the relation with representing a number as a sum of Fibonacci numbers?

Golden mean shift: $100 \mapsto 011$.

Base phi representations

A base phi representation of a natural number N has the form

$$N=\sum_{i=-\infty}^{\infty}a_{i}arphi^{i},$$

 a_i are arbitrary non-negative numbers, $arphi:=(1+\sqrt{5})/2$: the golden mean.

Similarly to base 10 numbers, we write these representations as

$$\alpha(N) = a_L a_{L-1} \dots a_1 a_0 \cdot a_{-1} a_{-2} \dots a_{R+1} a_R$$

Here L is the largest positive, and R is the smallest negative power of φ that occurs (when these exist).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Infinitely many Base phi representations

Even if we only use digits a_i from $\{0, 1\}$ there are infinitely many finite length representations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example One has $\varphi^3 + \varphi^{-1} + \varphi^{-4} = 5$. So $\alpha(5) = 1000 \cdot 1001$. But $\varphi^{-4} = \varphi^{-5} + \varphi^{-6}$, so also $\alpha'(5) = 1000 \cdot 100011$, and $\alpha''(5) = 1000 \cdot 10001011$, and ...

Golden mean shift: $100 \mapsto 011$.

Base phi: Bergman representation

A natural number N is written in Bergman base phi if

$$N=\sum_{i=-\infty}^{\infty}d_i\varphi^i,$$

with digits $d_i = 0$ or 1, and where $d_i d_{i+1} = 11$ is not allowed. Again we write

$$\beta(N) = d_L d_{L-1} \dots d_1 d_0 \cdot d_{-1} d_{-2} \dots d_{R+1} d_R.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Theorem The Bergman representation of N is unique.

Base phi: canonical representation

A natural number N is written in the canonical base phi representation if N has the form

$$\mathsf{N}=\sum_{i=-\infty}^{\infty}c_{i}\varphi^{i},$$

with digits $c_i = 0$ or 1, and where $c_{i+1}c_i = 11$ is not allowed, *except* that $c_1c_0 = 11$, as soon as this is possible. We write

$$\gamma(\mathsf{N}) = c_L c_{L-1} \dots c_1 c_0 \cdot c_{-1} c_{-2} \dots c_{R+1} c_R$$

To obtain this representation one first looks if there exists a representation of N with $c_1c_0 = 11$, and no other $c_{i+1}c_i = 11$, and if this is not the case, then $\gamma(N) = \beta(N)$.

Theorem The canonical representation of N is unique.

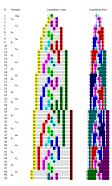
Examples

	Bergman	Canonical				
Ν	$\beta(N)$	$\gamma(N)$				
1	1.0	1.0				
2	10.01	10.01				
3	100.01	11.01				
4	101.01	101.01				
5	1000.1001	1000.1001				
6	1010.0001	1010.0001				
7	10000.0001	1011.0001				
8	10001.0001	10001.0001				
9	10010.0101	10010.0101				
10	10100.0101	10011.0101				
11	10101.0101	10101.0101				
12	100000.101001	100000.101001				

Theorem $\gamma(N) \neq \beta(N) \Leftrightarrow \exists n$, such that $N = \lfloor (\varphi + 2)n \rfloor$.

Why canonical??

ir A.W.W.J.M. van Loon: "The Golden Ratio: the origin of nature?"



Why canonical? Part 1

Look at the length of the representations. Base *b*: length *n* in the intervals $[b^{n-1}, b^n - 1]$.

Lucas numbers: (L_n) given by $L_0 := 2, L_1 := 1$, and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$.

What are the intervals of constant expansion length for the Bergman representation? Length 4n + 1 in the intervals $\Lambda_{2n} := [L_{2n}, L_{2n+1}]$, length 4n + 4 in the intervals $\Lambda_{2n+1} := [L_{2n+1} + 1, L_{2n+2} - 1]$.

What are the intervals of constant expansion length for the canonical representation? Length 2n + 1 for *n* even, and 2n + 2 for *n* odd in the intervals $\Gamma_n := [L_n + 1, L_{n+1}].$

Why canonical? Part 1 b

Base *b*: length *n* in the intervals $B_n = [b^{n-1}, b^n - 1]$.

Constant expansion length for the Bergman representation: In the intervals $\Lambda_{2n} = [L_{2n}, L_{2n+1}], \Lambda_{2n+1} = [L_{2n+1} + 1, L_{2n+2} - 1].$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Constant expansion length for the canonical representation: In the intervals $\Gamma_n := [L_n + 1, L_{n+1}].$

What is 'wrong' with the Λ_n compared to the B_n ?

Answer: the Λ_{2n+1} are too small compared to the Λ_{2n} : $|\Lambda_{2n}| = L_{2n-1} + 1$, and $|\Lambda_{2n+1}| = L_{2n} - 1$.

The Γ_n are more like the B_n .

Why canonical? Part 2 a

Look at the length of the vertical runs in the table of representations.

Classical base *b* representations. The case b = 2:

N	expansion	Ν	expansion	Ν	expansion
0	0	8	1000	16	10000
1	1	9	1001	17	10001
2	1 0	10	10 <mark>1</mark> 0	18	100 <mark>1</mark> 0
3	1 1	11	10 <mark>1</mark> 1	19	100 <mark>1</mark> 1
4	100	12	1100	20	10100
5	101	13	1101	21	10101
6	1 <mark>1</mark> 0	14	11 <mark>1</mark> 0	22	101 <mark>1</mark> 0
7	1 <mark>1</mark> 1	15	11 <mark>1</mark> 1	23	101 <mark>1</mark> 1

In digit position *i*, for $i \ge 0$, only runs of 2^i 1's occur—separated by runs of 2^i 0's.

Why canonical? Part 2 b

For the Bergman expansion there is no such regularity: vertical runs of 1's of length 1,2,3,4,5,6 and 7 do occur.

This is completely different for the canonical expansion:

Theorem In the canonical base phi expansion of the natural numbers only vertical runs of 1's with length a Lucas number occur, and all Lucas numbers occur as a run length. More precisely: in digit position i only runs of length L_{i-1} occur when $i \ge 1$, and only runs of length L_{-i} occur when $i \le 0$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Next question:

How many ways are there to represent a number as a sum of powers of the golden mean?

Not much is known about this question. A lot (dozens of papers) is known about a related question:

How many ways are there to represent a number as a sum of different Fibonacci numbers?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

(Also known as Fibonacci partitions.)

D. A. Klarner (1966), L. Carlitz, (1968),...., S.Chow and T. Slattery, arXiv: 17 Sep 2020.

Minimal Fibonacci representations

These are also known as Zeckendorf representations.

Let $F_0 = 0$, $F_1 = 1$, $F_2 = 1$,... be the Fibonacci numbers.

Ignoring leading zeros, any natural number N can be written uniquely as

$$N=\sum_{i=2}^{\infty}d_iF_i,$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

with digits $d_i = 0$ or 1, and where $d_i d_{i+1} = 11$ is not allowed. We write $Z(N) = d_L \dots d_2$.

Example Z(6) = 1001, since $F_5 = 5, F_2 = 1$.

Zeckendorf and Bergman

N	Z(N)	$\beta(N)$
1	1	1.
2	10	10.01
3	100	100.01
4	101	101.01
5	1000	1000.1001
6	1001	1010.0001
7	1010	10000.0001
8	10000	10001.0001
9	10001	10010.0101
10	10010	10100.0101
11	10100	10101.0101
12	10101	100000.101001
13	100000	100010.001001
14	100001	100100.001001
15	100010	100101.001001

How many Fibonacci representations?

A000119 Number of representations of n as a sum of distinct Fibonacci numbers.

 $\mathcal{T}^{\rm FIB} = 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, \dots$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Recursions given by Neville Robbins (1966). See also Chow and Slattery (2020).

Z(8) = 10000.Other representations: 1100, 1011. So $T^{\text{FIB}}(8) = 3.$

Golden mean shift

Z(8) = 10000.Other representations: 1100, 1011. So $T^{\text{FIB}}(8) = 3.$

Golden mean shift: a map $G = G_m$ on 0-1-words:

$$G: w_1 \ldots w_m 100 w_{m+4} \ldots w_k \mapsto w_1 \ldots w_m 011 w_{m+4} \ldots w_k.$$

So G(Z(8)) = G(10000) = 1100, and G(1100) = 1001.

This is the "word"-version of $F_n = F_{n-1} + F_{n-2}$.

But it is also the "word"-version of $\varphi^n = \varphi^{n-1} + \varphi^{n-2}$. !!

How many base phi representations?

We have seen: there are infinitely many ways!

Proposal by Ron Knott: only count those not ending in 011.

A289749 Number of ways not ending in 011 to write n in base phi.

 $T^{\kappa} = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, 21, 16, \dots$

1 all forms: 1

2 all forms: 10.01, 1.11

3 all forms: 100.01, 11.01, 10.1111

4 all forms: 101.01, 100.1111, 11.1111

5 all forms: 1000.1001, 110.1001, 110.0111, 101.1111, 1000.0111

6 all forms: 1010.0001, 1001.1001, 111.1001, 111.0111, 1001.0111

Trimming Knott

3 all forms: 100.01, 11.01, 10.1111 4 all forms: 101.01, 100.1111, 11.1111

The representations of N = 3, N = 4 are obtained in a special way. 101.01 \rightarrow 101.0011 \rightarrow 100.1111.

We remove these all the time, obtaining the total number of base phi representations

 $T^{\varphi}=1,1,2,2,1,5,5,4,5,4,3,1,10,13,12,12,13,10,6,11,12,\ldots$ instead of

 $T^{\kappa} = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, \dots$

Theorem COUNT: $T^{\varphi}(N) = T^{\text{FIB}}(F_{-R(N)+2}N)$.

Proof: Suppose that $\beta(N) = d_L \dots d_R$, so $N = \sum_R^L d_i \varphi^i$. Multiply by φ^{-R+2} : $\varphi^{-R+2}N = \sum_{i=R}^L d_i \varphi^{i-R+2} = \sum_{j=2}^{L-R+2} d_{j+R-2} \varphi^j = \sum_{j=2}^{L-R+2} e_j \varphi^j$

where we substituted j = i - R + 2, and defined $e_j := j + R - 2$. Next we use the well known equation $\varphi^j = F_j \varphi + F_{j-1}$:

$$[F_{-R+2}\varphi + F_{-R+1}]N = \sum_{j=2}^{L-R+2} e_j [F_j \varphi + F_{j-1}].$$

This implies that $F_{-R+2}N = \sum_{j=2}^{L-R+2} e_j F_j.$

So left side = Zeckendorf expansion of the number $F_{-R+2}N$. But the manipulations above can be made for any 0-1-word of length $L - R + 1 \Rightarrow$ golden mean shifts of $e_2 \dots e_{L-R+2}$ are in 1-to-1 correspondence with golden mean shifts of $d_L \dots d_{R+2}$.

Sac

Base phi and Lucas numbers

The Lucas numbers $(L_n) = (2, 1, 3, 4, 7, 11, 18, 29, ...)$:

$$L_0 = 2, \quad L_1 = 1, \quad L_n = L_{n-1} + L_{n-2} \quad \text{for } n \ge 2.$$

From
$$L_{2n} = \varphi^{2n} + \varphi^{-2n}$$
, and $L_{2n+1} = L_{2n} + L_{2n-1}$:
 $\beta(L_{2n}) = 10^{2n} \cdot 0^{2n-1} 1, \quad \beta(L_{2n+1}) = 1(01)^n \cdot (01)^n.$

We read off: $R(L_{2n}) = -2n, R(L_{2n+1}) = -2n$.

Also clear that $T^{\varphi}(L_{2n}) = 2n$, and $T^{\varphi}(L_{2n+1}) = 1$. So **Theorem COUNT** gives new (?!) information on the Fibonacci representations:

$$T^{ ext{FIB}}(F_{2n+2}L_{2n}) = 2n, \ T^{ ext{FIB}}(F_{2n+2}L_{2n+1}) = 1 \ ext{for all} \ n \geq 1.$$

Fib and Luc

From Miklos Kristof, Mar 19 2007: (Start) Let L(n) = A000032(n) = Lucas numbers. Then For $a \ge b$ and odd b, F(a + b) + F(a - b) = L(a) * F(b). For $a \ge b$ and even b, F(a + b) + F(a - b) = F(a) * L(b). For $a \ge b$ and odd b, F(a + b) - F(a - b) = F(a) * L(b).(End)

So
$$F_{2n+2}L_{2n+1} = F_{4n+3} - F_1 = F_{4n+3} - 1$$
.

But $T^{\text{FIB}}(F_n - 1) = 1$ is a well-known formula!

THE END

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで