Anti-powers in Aperiodic Recurrent Words

Colin Defant

Princeton University

One World Combinatorics on Words Seminar

April 4, 2022

Definition

A k-power is a word of the form w^k for some nonempty word w.

Definition

A k-power is a word of the form w^k for some nonempty word w.

Example

The word 110110110110 is a 4-power.

Definition

A k-power is a word of the form w^k for some nonempty word w.

Example

The word 110110110110 is a 4-power.

Definition (Fici-Restivo-Silva-Zamboni, 2016)

A *k*-anti-power is a word of the form $w^{(1)} \cdots w^{(k)}$ where $w^{(1)}, \ldots, w^{(k)}$ are distinct words of the same length.

Definition

A k-power is a word of the form w^k for some nonempty word w.

Example

The word 110110110110 is a 4-power.

Definition (Fici-Restivo-Silva-Zamboni, 2016)

A *k*-anti-power is a word of the form $w^{(1)} \cdots w^{(k)}$ where $w^{(1)}, \ldots, w^{(k)}$ are distinct words of the same length.

Example

The word $\underline{0100} \underline{1111} \underline{1100}$ is a 3-anti-power. The word $\underline{0100} \underline{1111} \underline{0100}$ is *not* a 3-anti-power.

Containing Powers or Anti-powers is Inevitable

Containing Powers or Anti-powers is Inevitable

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every infinite word either contains powers or all orders or contains anti-powers of all orders.

Containing Powers or Anti-powers is Inevitable

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every infinite word either contains powers or all orders or contains anti-powers of all orders.

Let $N(\ell, k)$ be the smallest positive integer such that every word of length $N(\ell, k)$ contains an ℓ -power or a k-anti-power.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

We have $k^2 - 1 \le N(k,k) \le k^3 \binom{k}{2}$.

Colin Defant Anti-powers in Aperiodic Recurrent Words

▶ 4 3

э

An infinite word is **aperiodic** if it is not eventually periodic.

An infinite word is **aperiodic** if it is not eventually periodic.

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every aperiodic infinite word contains a 3-anti-power.

An infinite word is **aperiodic** if it is not eventually periodic.

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every aperiodic infinite word contains a 3-anti-power.

Consider a sequence $(\alpha_i)_{i\geq 1}$ of positive integers satisfying $\alpha_{i+1} \geq 5\alpha_i$ for all *i*. Let $x = x_1x_2\cdots$, where $x_n = 0$ if $n \notin \{\alpha_i : i \in \mathbb{Z}\}$ and $x_n = 1$ if $n \in \{\alpha_i : i \in \mathbb{Z}\}$.

An infinite word is **aperiodic** if it is not eventually periodic.

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every aperiodic infinite word contains a 3-anti-power.

Consider a sequence $(\alpha_i)_{i\geq 1}$ of positive integers satisfying $\alpha_{i+1} \geq 5\alpha_i$ for all *i*. Let $x = x_1x_2\cdots$, where $x_n = 0$ if $n \notin \{\alpha_i : i \in \mathbb{Z}\}$ and $x_n = 1$ if $n \in \{\alpha_i : i \in \mathbb{Z}\}$.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

The word x is aperiodic and avoids 4-anti-powers.

Uniformly Recurrent Words

Uniformly Recurrent Words

An infinite word is **uniformly recurrent** if every finite factor that appears in the word actually appears infinitely often and with bounded gaps.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

Every aperiodic uniformly recurrent word contains anti-powers of all orders starting at every position.

The Thue-Morse word is the infinite binary word

 $\mathbf{t} =$

The **Thue-Morse word** is the infinite binary word

 $\mathbf{t} = \mathbf{0}$

The **Thue-Morse word** is the infinite binary word

 $\mathbf{t} = 01$

The Thue-Morse word is the infinite binary word

 $\mathbf{t} = 0110$

The Thue-Morse word is the infinite binary word

$\mathbf{t}=01101001$

The **Thue-Morse word** is the infinite binary word

$\mathbf{t} = 0110100110010110$

The **Thue-Morse word** is the infinite binary word

 $\mathbf{t} = 011010011001011001001001 \cdots$.

The **Thue-Morse word** is the infinite binary word

 $\mathbf{t} = 011010011001011001101001 \cdots$.

Let $\gamma(k)$ be the smallest positive integer m such that the prefix of **t** of length km is a k-anti-power.

The **Thue-Morse word** is the infinite binary word

 $\mathbf{t} = 011010011001011001101001 \cdots$.

Let $\gamma(k)$ be the smallest positive integer m such that the prefix of **t** of length km is a k-anti-power. Fici, Restivo, Silva, and Zamboni speculated that $\gamma(k)$ grows linearly with k. This turns out to be true.

The **Thue-Morse word** is the infinite binary word

 $\mathbf{t} = 011010011001011001101001 \cdots$.

Let $\gamma(k)$ be the smallest positive integer m such that the prefix of **t** of length km is a k-anti-power. Fici, Restivo, Silva, and Zamboni speculated that $\gamma(k)$ grows linearly with k. This turns out to be true.

Theorem (D., 2017)

We have
$$\frac{1}{4} \leq \liminf_{k \to \infty} \frac{\gamma(k)}{k} \leq \frac{9}{10}$$
 and $\frac{1}{2} \leq \limsup_{k \to \infty} \frac{\gamma(k)}{k} \leq \frac{3}{2}$.

Improved Estimates for $\gamma(k)$

э

Improved Estimates for $\gamma(k)$

Theorem (Narayanan, 2018) We have $\frac{3}{4} \leq \liminf_{k \to \infty} \frac{\gamma(k)}{k} \leq \frac{9}{10}$ and $\limsup_{k \to \infty} \frac{\gamma(k)}{k} = \frac{3}{2}$.

A B K A B K

Improved Estimates for $\gamma(k)$

Theorem (Narayanan, 2018)
We have
$$\frac{3}{4} \leq \liminf_{k \to \infty} \frac{\gamma(k)}{k} \leq \frac{9}{10}$$
 and $\limsup_{k \to \infty} \frac{\gamma(k)}{k} = \frac{3}{2}$.
Conjecture (D., 2017)
We have $\liminf_{k \to \infty} \frac{\gamma(k)}{k} = \frac{9}{10}$.

Definition

Let $\operatorname{AP}_{j}(\mathbf{t}, k)$ be the set of positive integers m such that the factor \mathbf{t} of length km starting at position j is a k-anti-power. Let $\gamma_{j}(k) = \min \operatorname{AP}_{j}(\mathbf{t}, k)$.

Definition

Let $AP_j(\mathbf{t}, k)$ be the set of positive integers m such that the factor of \mathbf{t} of length km starting at position j is a k-anti-power. Let $\gamma_j(k) = \min AP_j(\mathbf{t}, k)$.

Theorem (Gaetz, 2021)

For all
$$j \ge 1$$
, $\frac{1}{10} \le \liminf_{k \to \infty} \frac{\gamma_j(k)}{k} \le \frac{9}{10}$ and $\frac{1}{5} \le \limsup_{k \to \infty} \frac{\gamma_j(k)}{k} \le \frac{3}{2}$.

Definition

Let $\operatorname{AP}_{j}(\mathbf{t}, k)$ be the set of positive integers m such that the factor of \mathbf{t} of length km starting at position j is a k-anti-power. Let $\gamma_{j}(k) = \min \operatorname{AP}_{j}(\mathbf{t}, k)$.

Theorem (Gaetz, 2021)

For all
$$j \ge 1$$
, $\frac{1}{10} \le \liminf_{k \to \infty} \frac{\gamma_j(k)}{k} \le \frac{9}{10}$ and $\frac{1}{5} \le \limsup_{k \to \infty} \frac{\gamma_j(k)}{k} \le \frac{3}{2}.$

Conjecture (Gaetz, 2021)

For all
$$j \ge 1$$
, $\liminf_{k \to \infty} \frac{\gamma_j(k)}{k} = \frac{9}{10}$ and $\limsup_{k \to \infty} \frac{\gamma_j(k)}{k} = \frac{3}{2}$.

Colin Defant Anti-powers in Aperiodic Recurrent Words

It is straightforward to show that $m \in AP_1(\mathbf{t}, k)$ if and only if $2m \in AP_1(\mathbf{t}, k)$. So we are mainly interested in odd elements of $AP_1(\mathbf{t}, k)$.

It is straightforward to show that $m \in AP_1(\mathbf{t}, k)$ if and only if $2m \in AP_1(\mathbf{t}, k)$. So we are mainly interested in odd elements of $AP_1(\mathbf{t}, k)$.

Theorem (Gaetz, 2021)

For each fixed $j \ge 1$ and $k \ge 3$, we have

$$m \in \operatorname{AP}_{j}(\mathbf{t}, k) \iff 2m \in \operatorname{AP}_{j}(\mathbf{t}, k)$$

for all sufficiently large m.

Lemma

If yvy is a factor of **t** and |y| = m, then $2^{\lceil \log_2(m/3) \rceil}$ divides |yv|.

Lemma

If yvy is a factor of **t** and |y| = m, then $2^{\lceil \log_2(m/3) \rceil}$ divides |yv|.

Let $\Gamma_j(k) = \sup((2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)).$

Lemma

If yvy is a factor of **t** and
$$|y| = m$$
, then $2^{\lceil \log_2(m/3) \rceil}$ divides $|yv|$.

Let $\Gamma_j(k) = \sup((2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)).$

Theorem (D., 2017)

If $k \geq 3$, then $\Gamma_j(k) \leq 3k$.

A B K A B K

э

Lemma

If yvy is a factor of **t** and
$$|y| = m$$
, then $2^{\lceil \log_2(m/3) \rceil}$ divides $|yv|$.

Let $\Gamma_j(k) = \sup((2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)).$

Theorem (D., 2017)

If $k \geq 3$, then $\Gamma_j(k) \leq 3k$.

Proof Sketch.

Now suppose $m \in (2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)$. Then there exists $0 \leq n_1 < n_2 \leq k - 1$ such that $y := \mathbf{t}_{n_1m+j} \cdots \mathbf{t}_{(n_1+1)m+j-1} = \mathbf{t}_{n_2m+j} \cdots \mathbf{t}_{(n_2+1)m+j-1}$. Let $v = \mathbf{t}_{(n_1+1)m+j} \cdots \mathbf{t}_{n_2m+j-1}$.

Lemma

If yvy is a factor of **t** and
$$|y| = m$$
, then $2^{\lceil \log_2(m/3) \rceil}$ divides $|yv|$.

Let $\Gamma_j(k) = \sup((2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)).$

Theorem (D., 2017)

If $k \geq 3$, then $\Gamma_j(k) \leq 3k$.

Proof Sketch.

Now suppose $m \in (2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)$. Then there exists $0 \leq n_1 < n_2 \leq k - 1$ such that $y := \mathbf{t}_{n_1m+j} \cdots \mathbf{t}_{(n_1+1)m+j-1} = \mathbf{t}_{n_2m+j} \cdots \mathbf{t}_{(n_2+1)m+j-1}$. Let $v = \mathbf{t}_{(n_1+1)m+j} \cdots \mathbf{t}_{n_2m+j-1}$. Then |y| = m, so the lemma tells us that $2^{\lceil \log_2(m/3) \rceil}$ divides $|yv| = (n_2 - n_1)m$. But m is odd, so $2^{\lceil \log_2(m/3) \rceil}$ divides $n_2 - n_1$. So $k - 1 \geq n_2 \geq n_2 - n_1 \geq 2^{\lceil \log_2(m/3) \rceil}$.

Theorem (D., 2017)

We have
$$\liminf_{k \to \infty} \frac{\Gamma_1(k)}{k} = \frac{3}{2}$$
 and $\limsup_{k \to \infty} \frac{\Gamma_1(k)}{k} = 3.$

(4) (3) (4) (4) (4)

Theorem (D., 2017)

We have
$$\liminf_{k \to \infty} \frac{\Gamma_1(k)}{k} = \frac{3}{2}$$
 and $\limsup_{k \to \infty} \frac{\Gamma_1(k)}{k} = 3.$

Theorem (Gaetz, 2021)

We have
$$\liminf_{k \to \infty} \frac{\Gamma_j(k)}{k} = \frac{3}{2}$$
 and $\limsup_{k \to \infty} \frac{\Gamma_j(k)}{k} = 3.$

• • = • • = •

Related Questions

Related Questions

Question

How big is $(2\mathbb{Z}^+ - 1) \setminus AP_j(\mathbf{t}, k)$?

▶ 4 3 1

э

Related Questions

Question

How big is $(2\mathbb{Z}^+ - 1) \setminus \operatorname{AP}_j(\mathbf{t}, k)$?

What can be said about $AP_j(\mathbf{x}, k)$ for other specific interesting words \mathbf{x} ?

A word is **recurrent** if every finite factor that appears in the word actually appears infinitely often.

A word is **recurrent** if every finite factor that appears in the word actually appears infinitely often.

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every aperiodic word contains 3-anti-powers.

A word is **recurrent** if every finite factor that appears in the word actually appears infinitely often.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

Every aperiodic word contains 3-anti-powers.

Let $w_0 = 0$. For $n \ge 1$, let $w_n = w_{n-1} 1^{3|w_{n-1}|} w_{n-1}$. Let $w = \lim_{n \to \infty} w_n$.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

The word w is aperiodic and recurrent, and it avoids 6-anti-powers.

A word is **recurrent** if every finite factor that appears in the word actually appears infinitely often.

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every aperiodic word contains 3-anti-powers.

Let $w_0 = 0$. For $n \ge 1$, let $w_n = w_{n-1} 1^{3|w_{n-1}|} w_{n-1}$. Let $w = \lim_{n \to \infty} w_n$.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

The word w is aperiodic and recurrent, and it avoids 6-anti-powers.

Theorem (Berger–D., 2019)

Every aperiodic recurrent word contains 5-anti-powers.

Colin Defant Anti-powers in Aperiodic Recurrent Words

- (E - E -

э

Definition

Let $\mathcal{A}^{\leq \omega}$ be the set of words over an alphabet \mathcal{A} . A **morphism** is a map $\mu : \mathcal{A}^{\leq \omega} \to \mathcal{A}^{\leq \omega}$ such that $\mu(uv) = \mu(u)\mu(v)$ for all $u, v \in \mathcal{A}^{\leq \omega}$. A morphism is *r*-uniform if $|\mu(a)| = r$ for all $a \in \mathcal{A}$.

Definition

Let $\mathcal{A}^{\leq \omega}$ be the set of words over an alphabet \mathcal{A} . A **morphism** is a map $\mu : \mathcal{A}^{\leq \omega} \to \mathcal{A}^{\leq \omega}$ such that $\mu(uv) = \mu(u)\mu(v)$ for all $u, v \in \mathcal{A}^{\leq \omega}$. A morphism is *r*-uniform if $|\mu(a)| = r$ for all $a \in \mathcal{A}$.

Example

The Thue-Morse word $\mathbf{t} = 01101001100101010\cdots$ is a fixed point of the 2-uniform morphism μ given by $\mu(0) = 01$ and $\mu(1) = 10$.

Definition

Let $\mathcal{A}^{\leq \omega}$ be the set of words over an alphabet \mathcal{A} . A **morphism** is a map $\mu : \mathcal{A}^{\leq \omega} \to \mathcal{A}^{\leq \omega}$ such that $\mu(uv) = \mu(u)\mu(v)$ for all $u, v \in \mathcal{A}^{\leq \omega}$. A morphism is *r*-uniform if $|\mu(a)| = r$ for all $a \in \mathcal{A}$.

Example

The Thue-Morse word $\mathbf{t} = 01101001100101010\cdots$ is a fixed point of the 2-uniform morphism μ given by $\mu(0) = 01$ and $\mu(1) = 10$.

"Conjecture" (Berger–D., 2019)

If W is a "sufficiently well-behaved" aperiodic word that is fixed by a morphism μ , then there exists a constant C = C(W) such that for all $j, k \ge 1$, W contains a k-anti-power j-fix with blocks of length at most Ck.

"Conjecture" (Berger–D., 2019)

If W is a "sufficiently well-behaved" aperiodic word that is fixed by a morphism μ , then there exists a constant C = C(W) such that for all $j, k \ge 1$, W contains a k-anti-power j-fix with blocks of length at most Ck.

"Conjecture" (Berger–D., 2019)

If W is a "sufficiently well-behaved" aperiodic word that is fixed by a morphism μ , then there exists a constant C = C(W) such that for all $j, k \ge 1$, W contains a k-anti-power j-fix with blocks of length at most Ck.

Theorem (Berger–D., 2019)

The above conjecture is true for **binary** words that are fixed points of **uniform** morphisms.

"Conjecture" (Berger–D., 2019)

If W is a "sufficiently well-behaved" aperiodic word that is fixed by a morphism μ , then there exists a constant C = C(W) such that for all $j, k \ge 1$, W contains a k-anti-power j-fix with blocks of length at most Ck.

Theorem (Berger–D., 2019)

The above conjecture is true for **binary** words that are fixed points of **uniform** morphisms.

Theorem (Garg and Postic (independently), 2019)

The above conjecture is true for words that are fixed points of **uniform** morphisms.

Garg also proved the conjecture for the Fibonacci word, which is fixed by the **non-uniform** morphism μ given by $\mu(0) = 01$ and $\mu(1) = 0$.

Theorem (Garg, 2019)

For every $j, k \ge 1$, the Fibonacci word contains a k-anti-power j-fix with blocks of length at most 2.89k.

Thank You!

Colin Defant Anti-powers in Aperiodic Recurrent Words

э