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Powers and Anti-powers

Definition

A k-power is a word of the form wk for some nonempty word
w.

Example

The word 110110110110 is a 4-power.

Definition (Fici–Restivo–Silva–Zamboni, 2016)

A k-anti-power is a word of the form w(1) · · ·w(k) where
w(1), . . . , w(k) are distinct words of the same length.

Example

The word 0100 1111 1100 is a 3-anti-power.
The word 0100 1111 0100 is not a 3-anti-power.
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Containing Powers or Anti-powers is Inevitable

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

Every infinite word either contains powers or all orders or
contains anti-powers of all orders.

Let N(`, k) be the smallest positive integer such that every
word of length N(`, k) contains an `-power or a k-anti-power.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

We have k2 − 1 ≤ N(k, k) ≤ k3
(
k
2

)
.
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Aperiodic Words

An infinite word is aperiodic if it is not eventually periodic.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

Every aperiodic infinite word contains a 3-anti-power.

Consider a sequence (αi)i≥1 of positive integers satisfying
αi+1 ≥ 5αi for all i. Let x = x1x2 · · · , where xn = 0 if
n 6∈ {αi : i ∈ Z} and xn = 1 if n ∈ {αi : i ∈ Z}.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

The word x is aperiodic and avoids 4-anti-powers.
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Uniformly Recurrent Words

An infinite word is uniformly recurrent if every finite factor
that appears in the word actually appears infinitely often and
with bounded gaps.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

Every aperiodic uniformly recurrent word contains anti-powers
of all orders starting at every position.
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t = 011010011001011001101001 · · · .

Let γ(k) be the smallest positive integer m such that the prefix
of t of length km is a k-anti-power.
Fici, Restivo, Silva, and Zamboni speculated that γ(k) grows
linearly with k. This turns out to be true.

Theorem (D., 2017)

We have
1

4
≤ lim inf

k→∞

γ(k)

k
≤ 9

10
and

1

2
≤ lim sup

k→∞

γ(k)

k
≤ 3

2
.
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t = 01
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Let γ(k) be the smallest positive integer m such that the prefix
of t of length km is a k-anti-power.
Fici, Restivo, Silva, and Zamboni speculated that γ(k) grows
linearly with k. This turns out to be true.
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The Thue-Morse word is the infinite binary word
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Improved Estimates for γ(k)

Theorem (Narayanan, 2018)

We have
3

4
≤ lim inf

k→∞

γ(k)

k
≤ 9

10
and lim sup

k→∞

γ(k)

k
=

3

2
.

Conjecture (D., 2017)

We have lim inf
k→∞

γ(k)

k
=

9

10
.
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Anti-power j-fixes of the Thue-Morse Word

Definition

Let APj(t, k) be the set of positive integers m such that the
factor of t of length km starting at position j is a k-anti-power.
Let γj(k) = min APj(t, k).

Theorem (Gaetz, 2021)

For all j ≥ 1,
1

10
≤ lim inf

k→∞

γj(k)

k
≤ 9

10
and

1

5
≤ lim sup

k→∞

γj(k)

k
≤ 3

2
.

Conjecture (Gaetz, 2021)

For all j ≥ 1, lim inf
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k
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9

10
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3
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More on APj(t, k)

It is straightforward to show that m ∈ AP1(t, k) if and only if
2m ∈ AP1(t, k). So we are mainly interested in odd elements of
AP1(t, k).

Theorem (Gaetz, 2021)

For each fixed j ≥ 1 and k ≥ 3, we have

m ∈ APj(t, k)⇐⇒ 2m ∈ APj(t, k)

for all sufficiently large m.
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More on APj(t, k)

Lemma

If yvy is a factor of t and |y| = m, then 2dlog2(m/3)e divides |yv|.

Let Γj(k) = sup((2Z+ − 1) \APj(t, k)).

Theorem (D., 2017)

If k ≥ 3, then Γj(k) ≤ 3k.

Proof Sketch.

Now suppose m ∈ (2Z+ − 1) \APj(t, k). Then there exists
0 ≤ n1 < n2 ≤ k − 1 such that
y := tn1m+j · · · t(n1+1)m+j−1 = tn2m+j · · · t(n2+1)m+j−1. Let
v = t(n1+1)m+j · · · tn2m+j−1. Then |y| = m, so the lemma tells

us that 2dlog2(m/3)e divides |yv| = (n2 − n1)m. But m is odd, so
2dlog2(m/3)e divides n2 − n1. So
k − 1 ≥ n2 ≥ n2 − n1 ≥ 2dlog2(m/3)e.
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More on APj(t, k)

Theorem (D., 2017)

We have lim inf
k→∞

Γ1(k)

k
=

3

2
and lim sup

k→∞

Γ1(k)

k
= 3.

Theorem (Gaetz, 2021)

We have lim inf
k→∞

Γj(k)

k
=

3

2
and lim sup

k→∞

Γj(k)

k
= 3.
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Related Questions

Question

How big is (2Z+ − 1) \APj(t, k)?

What can be said about APj(x, k) for other specific interesting
words x?
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Aperiodic Recurrent Words

A word is recurrent if every finite factor that appears in the
word actually appears infinitely often.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

Every aperiodic word contains 3-anti-powers.

Let w0 = 0. For n ≥ 1, let wn = wn−11
3|wn−1|wn−1. Let

w = limn→∞wn.

Theorem (Fici–Restivo–Silva–Zamboni, 2016)

The word w is aperiodic and recurrent, and it avoids
6-anti-powers.

Theorem (Berger–D., 2019)

Every aperiodic recurrent word contains 5-anti-powers.
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Morphic Words

Definition

Let A≤ω be the set of words over an alphabet A. A morphism
is a map µ : A≤ω → A≤ω such that µ(uv) = µ(u)µ(v) for all
u, v ∈ A≤ω. A morphism is r-uniform if |µ(a)| = r for all
a ∈ A.

Example

The Thue-Morse word t = 0110100110010110 · · · is a fixed point
of the 2-uniform morphism µ given by µ(0) = 01 and µ(1) = 10.

“Conjecture” (Berger–D., 2019)

If W is a “sufficiently well-behaved” aperiodic word that is fixed
by a morphism µ, then there exists a constant C = C(W ) such
that for all j, k ≥ 1, W contains a k-anti-power j-fix with blocks
of length at most Ck.
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Uniform Morphic Words

“Conjecture” (Berger–D., 2019)

If W is a “sufficiently well-behaved” aperiodic word that is fixed
by a morphism µ, then there exists a constant C = C(W ) such
that for all j, k ≥ 1, W contains a k-anti-power j-fix with blocks
of length at most Ck.

Theorem (Berger–D., 2019)

The above conjecture is true for binary words that are fixed
points of uniform morphisms.

Theorem (Garg and Postic (independently), 2019)

The above conjecture is true for words that are fixed points of
uniform morphisms.
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Uniform Morphic Words

Garg also proved the conjecture for the Fibonacci word, which
is fixed by the non-uniform morphism µ given by µ(0) = 01
and µ(1) = 0.

Theorem (Garg, 2019)

For every j, k ≥ 1, the Fibonacci word contains a k-anti-power
j-fix with blocks of length at most 2.89k.
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Thank You!
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