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Powers and Anti-powers

Definition |

A k-power is a word of the form w¥ for some nonempty word
w.
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Definition

A k-power is a word of the form w¥ for some nonempty word
w.

The word 110110110110 is a 4-power.
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Powers and Anti-powers

Definition |

A k-power is a word of the form w¥ for some nonempty word
w.

The word 110110110110 is a 4-power.

Definition (Fici-Restivo-Silva—Zamboni, 2016) |

A k-anti-power is a word of the form w( ---w®) where
w(l), .. ,w(k) are distinct words of the same length.
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Powers and Anti-powers

Definition

A k-power is a word of the form w¥ for some nonempty word
w.

The word 110110110110 is a 4-power.

Definition (Fici-Restivo-Silva—Zamboni, 2016)

A k-anti-power is a word of the form w( ---w®) where
k) are distinct words of the same length.

The word 010 1100 is a 3-anti-power.

0111
The word 010011110100 is not a 3-anti-power.

w®, .. wl
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Containing Powers or Anti-powers is Inevitable
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Containing Powers or Anti-powers is Inevitable

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every infinite word either contains powers or all orders or
contains anti-powers of all orders.
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Containing Powers or Anti-powers is Inevitable

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

Every infinite word either contains powers or all orders or
contains anti-powers of all orders.

Let N (4, k) be the smallest positive integer such that every
word of length N (¢, k) contains an /-power or a k-anti-power.

Theorem (Fici-Restivo-Silva-Zamboni, 2016)
We have k* — 1 < N(k, k) < k*(5).
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Aperiodic Words

An infinite word is aperiodic if it is not eventually periodic.
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Aperiodic Words

An infinite word is aperiodic if it is not eventually periodic.

Theorem (Fici-Restivo-Silva-Zamboni, 2016) |

Every aperiodic infinite word contains a 3-anti-power.

Colin Defant Anti-powers in Aperiodic Recurrent Wo



Aperiodic Words

An infinite word is aperiodic if it is not eventually periodic.

Theorem (Fici-Restivo-Silva-Zamboni, 2016) |
Every aperiodic infinite word contains a 3-anti-power.
Consider a sequence (o );>1 of positive integers satisfying

;41 > by for all i, Let x = 129 - -+, where z,, = 0 if
né{a;:i€Z}and x, =1ifn € {a; :1 € Z}.
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Aperiodic Words

An infinite word is aperiodic if it is not eventually periodic.

Theorem (Fici-Restivo-Silva-Zamboni, 2016) |

Every aperiodic infinite word contains a 3-anti-power.

Consider a sequence (o );>1 of positive integers satisfying
;41 > by for all i, Let x = 129 - -+, where z,, = 0 if
né{a;:i€Z}and x, =1ifn € {a; :1 € Z}.

Theorem (Fici-Restivo—Silva-Zamboni, 2016)

The word x is aperiodic and avoids 4-anti-powers.
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Uniformly Recurrent Words
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Uniformly Recurrent Words

An infinite word is uniformly recurrent if every finite factor
that appears in the word actually appears infinitely often and
with bounded gaps.

Theorem (Fici-Restivo-Silva-Zamboni, 2016) |

Every aperiodic uniformly recurrent word contains anti-powers
of all orders starting at every position.
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The Thue-Morse Word
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t=0
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t=01
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =0110
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t = 01101001
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =0110100110010110
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =011010011001011001101001 - - - .
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =011010011001011001101001 - - - .

Let v(k) be the smallest positive integer m such that the prefix
of t of length km is a k-anti-power.
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =011010011001011001101001 - - - .

Let v(k) be the smallest positive integer m such that the prefix
of t of length km is a k-anti-power.

Fici, Restivo, Silva, and Zamboni speculated that v(k) grows
linearly with k. This turns out to be true.
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The Thue-Morse Word

The Thue-Morse word is the infinite binary word

t =011010011001011001101001 - - - .

Let v(k) be the smallest positive integer m such that the prefix
of t of length km is a k-anti-power.

Fici, Restivo, Silva, and Zamboni speculated that v(k) grows
linearly with k. This turns out to be true.

Theorem (D., 2017) |

=2
| o
N—

We have i < lim inf

k—o0
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Improved Estimates for v(k)
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Improved Estimates for v(k)

Theorem (Narayanan, 2018)
(k) _ 9 (k) _3

3
We have 1 < h;?iiololfT < 0 and ligisipT = 3
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Improved Estimates for v(k)

Theorem (Narayanan, 2018) |
(k) _ 9 (k) _ 3

3
We have 1 < likrgioI;fT < 0 and liﬂsipT = 3

Conjecture (D., 2017)
(k) _ 9

h liminf —* = —.
We have 1121013 ’ 0
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Anti-power j-fixes of the Thue-Morse Word
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Anti-power j-fixes of the Thue-Morse Word

Definition

Let AP;(t, k) be the set of positive integers m such that the
factor of t of length km starting at position j is a k-anti-power.
Let (k) = min AP;(t, k).
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Anti-power j-fixes of the Thue-Morse Word

Definition

Let AP;(t, k) be the set of positive integers m such that the
factor of t of length km starting at position j is a k-anti-power.
Let (k) = min AP;(t, k).

Theorem (Gaetz, 2021)

1 (K 9

Forallj>1, — < liminf%( ) < — and
10 k—=oo Kk 10

< lim sup % (k)

5 k—o0 k

w

< -—.
-2
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Anti-power j-fixes of the Thue-Morse Word

Definition |

Let AP;(t, k) be the set of positive integers m such that the
factor of t of length km starting at position j is a k-anti-power.
Let (k) = min AP;(t, k).

Theorem (Gaetz, 2021)

1 k
Forall j > 1, 10<hm1nf%( ) <% and

1 v;(k 3
— <l J < =
<l % <5

Conjecture (Gaetz, 2021)

For auj > 1 hmlnf 7]( ) = — and hmsup]i = —

k—o0 k—o0 2’
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More on AP;(t, k)
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More on AP;(t, k)

It is straightforward to show that m € APy (t, k) if and only if
2m € AP;(t, k). So we are mainly interested in odd elements of
AP (t, k).
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More on AP;(t, k)

It is straightforward to show that m € APy (t, k) if and only if
2m € AP;(t, k). So we are mainly interested in odd elements of
AP (t, k).

Theorem (Gaetz, 2021) |
For each fixed 7 > 1 and k > 3, we have

m € APj(t, ]{1) < 2m € APj(t,]C)

for all sufficiently large m.
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More on AP;(t, k)

Lemma |

If yoy is a factor of t and |y| = m, then 218207/ divides |yv.
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More on AP;(t, k)

Lemma |

If yoy is a factor of t and |y| = m, then 218207/ divides |yv.

Let T'j(k) = sup((2Z* — 1) \ AP;(t,k)).
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More on AP;(t, k)

Lemma |
If yoy is a factor of t and |y| = m, then 218207/ divides |yv.
Let T'j(k) = sup((2Z* — 1) \ AP;(t,k)).

Theorem (D., 2017) |
If k>3, then I'j(k) < 3k.
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More on AP;(t, k)

Lemma '

If yoy is a factor of t and |y| = m, then 218207/ divides |yv.
Let T'j(k) = sup((2Z* — 1) \ AP;(t,k)).

Theorem (D., 2017) |
If k>3, then I'j(k) < 3k.

Proof Sketch.

Now suppose m € (2Z*T — 1) \ AP,(t, k). Then there exists
0 <nj <ng <k—1 such that

Yy = tnlm-i-j T t(nlJrl)erjf] = tngm-&-j o 't(n2+l)m+j71~ Let
U= t(n1+1)m+j e 'tnngrjf] .
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More on AP;(t, k)

Lemma '

If yoy is a factor of t and |y| = m, then 218207/ divides |yv.
Let T'j(k) = sup((2Z* — 1) \ AP;(t,k)).

Theorem (D., 2017) |
If k>3, then I'j(k) < 3k.

Proof Sketch.

Now suppose m € (2Z*T — 1) \ AP,(t, k). Then there exists
0<ni <ng <k—1such that

Yy = tnlm-i-j T t(nlJrl)erjf] = tngm-&-j o 't(n2+l)m+j71~ Let

V = t(n;41)m+j * * * tngm+j—1. Then [y| = m, so the lemma tells
us that 2M1°82("/3)1 divides |yv| = (ng — ny)m. But m is odd, so
2Mlogz(m/3)1 divides ny — ny. So

k—1>mny>ny—ng > 2N/, O
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More on AP;(t, k)
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More on AP;(t, k)

Theorem (D., 2017)

I (k
We have lim inf 1(k) = g and lim sup

k—o0 k— o0

(k)

=3.
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More on AP;(t, k)

Theorem (D., 2017)

Iy (k Iy (k
We have lim inf 1(k) :§ and lim sup 1(k) = 3.
Theorem (Gaetz, 2021)
Lk ik
We have lim inf 5(k) = 3 and lim sup L =3.
k—o00 k 2 k—00
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Related Questions

Question
How big is (2ZT — 1) \ AP,(t,k)?
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Related Questions

Question
How big is (2ZT — 1) \ AP,(t,k)?

What can be said about AP;(x, k) for other specific interesting
words x7
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Aperiodic Recurrent Words

Colin Defant Anti-powers in Aperiodic Recurrent Words



riodic Recurrent Words

A word is recurrent if every finite factor that appears in the
word actually appears infinitely often.
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Aperiodic Recurrent Words

A word is recurrent if every finite factor that appears in the
word actually appears infinitely often.

Theorem (Fici-Restivo—Silva—Zamboni, 2016) |

Every aperiodic word contains 3-anti-powers.
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Aperiodic Recurrent Words

A word is recurrent if every finite factor that appears in the
word actually appears infinitely often.

Theorem (Fici-Restivo-Silva-Zamboni, 2016) |

Every aperiodic word contains 3-anti-powers.
Let wg =0. Forn > 1, let w,, = W1 13wn=1ly 1. Let
w = limy,,—y 00 Wy,

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

The word w is aperiodic and recurrent, and it avoids
6-anti-powers.
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Aperiodic Recurrent Words

A word is recurrent if every finite factor that appears in the
word actually appears infinitely often.

Theorem (Fici-Restivo-Silva-Zamboni, 2016) |

Every aperiodic word contains 3-anti-powers.
Let wg =0. Forn > 1, let w,, = W1 13wn=1ly 1. Let
w = limy,,—y 00 Wy,

Theorem (Fici-Restivo-Silva-Zamboni, 2016)

The word w is aperiodic and recurrent, and it avoids
6-anti-powers.

Theorem (Berger-D., 2019)

FEvery aperiodic recurrent word contains 5-anti-powers.
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Morphic Words

Definition

Let AS“ be the set of words over an alphabet A. A morphism
is a map p: ASY — A=Y such that p(uv) = p(u)u(v) for all
u,v € AS¥. A morphism is r-uniform if |;(a)| = r for all

ac A.
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Morphic Words

Definition |

Let ASY be the set of words over an alphabet A. A morphism
is a map p: ASY — A=Y such that p(uv) = p(u)u(v) for all
u,v € AS¥. A morphism is r-uniform if |;(a)| = r for all

ac A.

The Thue-Morse word t = 0110100110010110 - - - is a fixed point
of the 2-uniform morphism p given by p(0) = 01 and p(1) = 10.
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Morphic Words

Definition |

Let AS“ be the set of words over an alphabet A. A morphism
is a map p: ASY — A=Y such that p(uv) = p(u)u(v) for all
u,v € AS¥. A morphism is r-uniform if |;(a)| = r for all

ac A.

The Thue-Morse word t = 0110100110010110 - - - is a fixed point
of the 2-uniform morphism p given by p(0) = 01 and p(1) = 10.

“Conjecture” (Berger—D., 2019)

If W is a “sufficiently well-behaved” aperiodic word that is fixed
by a morphism p, then there exists a constant C' = C (W) such
that for all j,k > 1, W contains a k-anti-power j-fix with blocks
of length at most Ck.
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Uniform Morphic Words
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Uniform Morphic Words

“Conjecture” (Berger-D., 2019)

If W is a “sufficiently well-behaved” aperiodic word that is fixed
by a morphism p, then there exists a constant C' = C (W) such
that for all j,k > 1, W contains a k-anti-power j-fix with blocks
of length at most Ck.
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Uniform Morphic Words

“Conjecture” (Berger-D., 2019)

If W is a “sufficiently well-behaved” aperiodic word that is fixed
by a morphism p, then there exists a constant C' = C (W) such
that for all j,k > 1, W contains a k-anti-power j-fix with blocks

of length at most Ck.

Theorem (Berger-D., 2019) |
The above conjecture is true for binary words that are fixed
points of uniform morphisms.
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Uniform Morphic Words

“Conjecture” (Berger-D., 2019)

If W is a “sufficiently well-behaved” aperiodic word that is fixed
by a morphism p, then there exists a constant C' = C(W) such
that for all j,k > 1, W contains a k-anti-power j-fix with blocks
of length at most Ck.

Theorem (Berger-D., 2019) |

The above conjecture is true for binary words that are fixed
points of uniform morphisms.

Theorem (Garg and Postic (independently), 2019) |

The above conjecture is true for words that are fixed points of
uniform morphisms.
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Uniform Morphic Words
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Uniform Morphic Words

Garg also proved the conjecture for the Fibonacci word, which
is fixed by the non-uniform morphism p given by u(0) = 01
and p(1) = 0.

Theorem (Garg, 2019)

For every j,k > 1, the Fibonacci word contains a k-anti-power
j-fix with blocks of length at most 2.89k.
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Thank You!
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