Language of the billiard inside the cube

M. Barro, N. Bédaride and J. Cassaigne Université Nazi Boni Burkina Faso, I2M Marseille

Billiard	Insertion of a letter	Link	Results
•0000 00000000000	00000	0 00000	0000000

Law of Descartes. Reflection of a line.

Billiard	Insertion of a letter	Link	Results
00000000000000000000000000000000000000	00000	0 00000	0000000

Billiard inside a polygon

Billiard	Insertion of a letter	Link	Results
000000000000000000000000000000000000000	00000	0 00000	0000000

Billiard inside a polygon

Billiard	Insertion of a letter	Link	Results
000000000000000000000000000000000000000	00000	0 00000	0000000

Definition

Point m on the boundary and a direction θ .

The image is (m', θ') such that

- *m*′ on the boundary
- (mm') is parallel to θ
- θ' is obtained from θ by reflection along the part of the boundary containing m'

Billiard	Insertion of a letter	Link	Results
00000	00000	0 00000	0000000

The image of (m, θ) is (m', θ') .

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	0 00000	0000000

We obtain a dynamical system

$$T: \begin{array}{ccc} X &
ightarrow & X \ (m, heta) &
ightarrow & (m', heta') \end{array}$$

where X is a subset of $\partial P \times \mathbb{R}^2$.

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	0 00000	0000000

General method to code a dynamical system (X, T) into a subshift.

It allows us to study infinite words.

Billiard	Insertion of a letter	Link	Results
00000	00000	0 00000	0000000

Let (X, T) be a dynamical system. Consider \mathcal{P} a finite partition of X and a coding

$$\begin{array}{cccc} X &
ightarrow & \mathcal{A}^{\mathbb{N}} \ x & \mapsto & \phi(x) = (u_n)_{\mathbb{N}} \end{array}$$

where $u_n = i$ if $T^n x \in P_i$ and $|\mathcal{A}| = card\mathcal{P}$. We denote (for the usual topology)

$$\Sigma = \overline{\phi(X)}.$$

We have a **subshift** (Σ, S) , where S is the shift map, and a language \mathcal{L} .

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		00000	0000000

Proposition

We have the following relation

$$\phi \circ T(x) = S \circ \phi(x).$$

This relation shows the relation between the two dynamical systems: they are semi conjugated.

Billiard	Insertion of a letter	Link	Results
000000000000000000000000000000000000000	00000	0 00000	0000000

We apply the coding to the billiard:

Square: one letter for parallel faces. We have a 2-letter alphabet.

Same thing inside a cube and a 3-letter alphabet.

Billiard	Insertion of a letter	Link	Results
00000	00000	0 00000	0000000

Different subshifts and languages (set of finite words which appears in one coding sequence).

There is a subshift $\overline{\{S^n\phi(m,\theta) \mid n \in \mathbb{N}\}}$

And another one with the union on all points m with fixed direction.

$$\{S^n\phi(m,\theta)\mid n\in\mathbb{N},m\in\partial P\}$$

And the one with all the possibilities.

We have

$$\mathcal{L}_{m,\theta} \subset \mathcal{L}_{\theta} \subset \mathcal{L}$$

Billiard	Insertion of a letter	Link	Results
00000	00000	0 00000	0000000

Direction
$$\theta = \begin{pmatrix} \theta_1 \\ \theta_2 \\ \theta_3 \end{pmatrix}$$
.

Definition

 θ is a minimal direction: for every point *m*, the orbit of (m, θ) is dense inside the table.

Proposition

The direction θ is a minimal direction if and only if $\theta_1, \ldots, \theta_d$ are linearly independent over \mathbb{Q} .

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	0 00000	0000000

Three remarks: Projective result: θ and $\lambda \theta$ are the same.

Square: Minimal direction if and only if $\frac{\theta_2}{\theta_1}$ is irrational.

Cube: more complicated.

Silliard	Insertion of a letter	Link	Results
000000000000000000000000000000000000000	00000	0 00000	0000000

Square

Proposition

If θ is minimal, $\mathcal{L}_{m,\theta} = \mathcal{L}_{\theta}$. If not then we have, for each point m, a periodic word.

$$egin{cases} p(n, heta) = n+1 & \textit{minimal direction} \ p(n, heta) \leq C \end{cases}$$

Billiard 	Insertion of a letter 00000	Link 0 00000	Results 0 0000000	
Square				

Square

Recall that a sturmian word has complexity n + 1.

Theorem (Coven-Hedlund)

The word u is a Sturmian word if and only if there exists (m, θ) such that $u = \phi(m, \theta)$

Billiard	Insertion of a letter	Link	Results
000000000000000000000000000000000000000	00000	0 00000	0000000

Cube

A trajectory can be:

dense in the cube

$$\begin{pmatrix} 1\\\sqrt{2}\\\pi \end{pmatrix}$$

• dense on a finite number of planes

$$\begin{pmatrix} 1\\\sqrt{2}\\2 \end{pmatrix}$$

• Periodic trajectory $\begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$

Billiard	Insertion of a letter	Link	Results
00000 0000000000000	00000	0 00000	0000000

Theorem The value of $p(n, m, \theta)$ can be

$$\left\{egin{array}{ll} n^2+n+1 & (H)\ \sim C_{ heta}n^2 & minimal \ and \ not \ (H)\ &=\Theta(n) & non \ minimal \ and \ non \ periodic\ &=\Theta(1) & periodic \ trajectory \end{array}
ight.$$

Hypothesis (H): $\theta_1, \theta_2, \theta_3$ are linearly independant over \mathbb{Q} , and $\theta_1^{-1}, \theta_2^{-1}, \theta_3^{-1}$ are linearly independant over \mathbb{Q} .

Billiard	Insertion of a letter	Link	Results
000000000000000000000000000000000000000	00000	0 00000	0000000

History:

Arnoux-Mauduit-Shiokawa-Tamura 1994: Proof false for minimal direction.

Baryshnikov 1995 (dimension d) maximal value.

Bédaride 2003, 2007, 2009.

Billiard 00000 0000000000	Insertion of a letter 00000	Link 0 00000	Results 0 0000000
	Carl		

Better understanding of the language of one trajectory inside the cube.

Link with another notion of combinatorics on words.

Billiard	Insertion of a letter	Link	Results
00000	0000	0	0
00000000000		00000	0000000

Let u be an infinite word on the alphabetA.

Let us write a factorization with words of length k

 $u = w_0 w_1 w_2 w_3 \cdots w_i \cdots$ avec $w_i \in L_k(u), i \in \mathbb{N}$.

We add a letter *c* between two consecutive factors $v = cw_0 cw_1 cw_2 cw_3 c \cdots cw_i c \cdots$

We denote this word $v = I_k^c(u)$.

Billiard	Insertion of a letter	Link	Results
00000 00000000000	0000	0 00000	0000000

Example

Consider the Fibonacci word

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	0 00000	0000000

Theorem (Barro 00)

Let u be a sturmian word and $v = I_k^c(u)$. Then we obtain

$$\mathsf{P}_{\mathsf{v}}(n) = \begin{cases} n^2 + n + 1 & si \quad n \le k \\ kn + k + 1 & si \quad n > k \end{cases}$$

Theorem

Let u be a sturmian word and $v = I_k^c(u)$. Then v is 2-balanced.

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		00000	0000000

Theorem

Let u be a sturmian word and $v = I_k^c(u)$. Then the abelian complexity is given by

$$\mathsf{P}_{v}^{ab}(n) = \begin{cases} 3 & n = 1 \\ 2 & \text{if} & n = 0 \mod k + 1 \\ 4 & \text{otherwise} \end{cases}$$

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		00000	0000000

Let u be the Fibonacci word, let c be a letter (either a, b or another one) and $v = I_k^c(u)$.

Then remark that $\pi_c(v) = u$ and the frequency of c is equal to $\frac{1}{k+1}$ for some fixed $k \ge 1$.

Billiard	Insertion of a letter	Link	Results
00000 000000000000	00000	00000	0000000

Consider the orthogonal projection on one face of the cube.

The projection of a billiard trajectory in the cube is a billiard trajectory inside the square.

We have two infinite words u and v on 2 and 3 letters alphabets and $\pi(v) = u$.

> v = abcabcabcc... $\pi(v) = ababab...$

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	○ ●0000	0000000

All the following on one example with u the Fibonacci word.

Same thing for all sturmian words: We can do the same for all other non minimal direction.

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		0●000	0000000

If u is the Fibonacci word, then it is a billiard word inside the square.

We can imagine that v is a billiard word inside a cube.

Find $v = I_k^c(u)$?

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	0 00●00	0000000

One projection is the Fibonacci word.

We look for a trajectory θ which projects on $\begin{pmatrix} 1 \\ \omega \end{pmatrix}$

And the frequency of the last letter must be $\frac{1}{k+1}$

$$\begin{pmatrix} 1 \\ \varphi \\ x \end{pmatrix}$$

with $\frac{x}{x+\varphi^2} = \frac{1}{k+1}$.

Billiard	Insertion of a letter	Link	Results
00000 00000000000	00000	0 000●0	0000000

We consider the direction (k = 2)

$$\begin{pmatrix} 1\\ \varphi\\ \frac{\varphi+1}{2} \end{pmatrix}$$

We have a billiard trajectory inside the cube. This trajectory is not dense.

Description of the language ?

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		0000●	0000000

Example

Fibonacci word on the alphabet $\{b, c\}$

bc.b.bc.bc.b.bc.bc.bc.b...

Insertion of a

abc.abb.acb.acb.abc.abb.acv.acb...

Recoding

 $a_2.a_4.a_1.a_1.a_2...$

Insertion of a letter 00000 Link 0 00000 Results

```
List of results
```

For each non minimal direction:

Value of $p(n, \theta)$.

Description of $\mathcal{L}_{m,\theta}$ and the subshift:

For each (m, θ) its coding is the image by a morphism of a (bad) coding of a translation on the torus \mathbb{T}^1 .

Billiard 00000 0000000000	Insertion of a letter 00000	Link 0 00000	Results 0 •000000
	Method		

First return map on the face of the cube coded by a. It gives the first return words of a.

Linear flow on a fixed direction. It explains how to concatenate the return words.

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
000000000000		00000	0●00000

Partition of the face coded by *a*. Each region corresponds to a return word.

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		00000	00●0000

The morphism

$m \in P_{a_i}$	a ₁	a ₂	a ₃	<i>a</i> 4	a_5	<i>a</i> 6	a ₇
$\Phi(a_i)$	acb	abc	abcb	abb	abbc	acbb	ab

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
00000000000		00000	000●000

Linear flow $z \mapsto z + 2\varphi \mod 1$ on each orbit.

Billiard	Insertion of a letter	Link	Results
00000	00000	0	_
00000000000		00000	0000●00

Rotation by $2\varphi - 3$ coded by several (6 ≥ 2 for this example) intervals.

Billiard	Insertion of a letter	Link	Results
00000	00000	0	0
000000000000		00000	00000●0

The green segment intersects 6 polygons. One orbit of the rotation is coded by a word on the alphabet $\{a_1, a_2, a_7, a_4, a_6, a_3\}$. Then we apply Φ and obtain the cubic billiard word.

If we consider the red segment, we have a rotation coded by 3 letters, and we apply Φ to obtain the billiard word. In this case we obtain Barro results.

Billiard	Insertion of a letter	Link	Results
00000	00000	0 00000	0 0000000

Future

Description of the language for a minimal direction.

Billiard inside the hypercube.

Work of M. Andrieu ...