Avoiding doubled patterns

Antoine Domenech & Pascal Ochem

ÉNS de Lyon & LIRMM

Combinatorics on Words, 20th June 2022

https://doi.org/10.48550/arXiv.2105.04673

Patterns are over $\Delta = \{A, B, ...\}$, alphabet of variables. Words are over $\Sigma_k = \{0, 1, ..., k - 1\}$, alphabet of letters.

An **occurrence** is defined by a morphism: $\phi : \Delta^* \to \Sigma^+$, $\phi(P)$ is a factor of w. Ex: P = ABA occurs in w = 12001001. Doubled patterns Improving 2-avoidability Definitions From Ochem 2016 to 2022 With 4 variables

Patterns are over $\Delta = \{A, B, ...\}$, alphabet of variables. Words are over $\Sigma_k = \{0, 1, ..., k - 1\}$, alphabet of letters.

An **occurrence** is defined by a morphism: $\phi : \Delta^* \to \Sigma^+$, $\phi(P)$ is a factor of w. Ex: P = ABA occurs in w = 12001001.

A pattern is **k-avoidable** if there is an infinite word on k letters with no occurrence of it. Otherwise, it is **k-unavoidable**. Ex: AA is 2-unavoidable, but AAA isn't.

Thue-Morse morphism: $\varphi: 0 \mapsto 01, 1 \mapsto 10$. $\varphi^{\omega}(0)$ is cube-free.

Definitions From Ochem 2016 to 2022 With 4 variables

Doubled pattern: every variable occurs at least twice. Not doubled: ABBCA . Doubled: ABACBCA, ABCDBCBACBD .

Definitions From Ochem 2016 to 2022 With 4 variables

Theorem 1 (Ochem 2016)

Every doubled pattern is 3-avoidable.

Conjecture 2 (Ochem & Pinlou, 2014)

There exist only finitely many 2-unavoidable doubled patterns.

Growth Rate:
$$GR_k(P) = \lim_{n \to \infty} |\{w \in \Sigma_k^n \text{ avoiding } P\}|^{1/n}$$

So $|\{w \in \Sigma_k^n \text{ avoiding } P\}| = \Theta(GR_k(P)^n)$.

Proposition 3

min
$$GR_3$$
(doubled) = $GR_3(AA)$

Proposition 3

min
$$GR_3$$
(doubled) = $GR_3(AA)$

Conjecture 4

Every square-free doubled pattern is 2-avoidable.

Proposition 3

min
$$GR_3$$
(doubled) = $GR_3(AA)$

Conjecture 4

Every square-free doubled pattern is 2-avoidable.

Conjecture 4 implies Proposition 3:

• If P contains a square then $GR_3(P) \ge GR_3(AA)$

Proposition 3

min
$$GR_3$$
(doubled) = $GR_3(AA)$

Conjecture 4

Every square-free doubled pattern is 2-avoidable.

- If P contains a square then $GR_3(P) \ge GR_3(AA)$
- If P is square free:
 - Conjecture 4 \implies P is 2-avoidable

Doubled patterns Improving 2-avoidability Definitions From Ochem 2016 to 2022 With 4 variables

Proposition 3

min
$$GR_3$$
(doubled) = $GR_3(AA)$

Conjecture 4

Every square-free doubled pattern is 2-avoidable.

- If P contains a square then $GR_3(P) \ge GR_3(AA)$
- If P is square free:
 - Conjecture 4 \implies P is 2-avoidable
 - P is 2-avoidable \implies $GR_3(P) \ge \sqrt{2}$

Doubled patterns Improving 2-avoidability Definitions From Ochem 2016 to 2022 With 4 variables

Proposition 3

min
$$GR_3$$
(doubled) = $GR_3(AA)$

Conjecture 4

Every square-free doubled pattern is 2-avoidable.

- If P contains a square then $GR_3(P) \ge GR_3(AA)$
- If P is square free:
 - Conjecture 4 \implies P is 2-avoidable
 - P is 2-avoidable \implies $GR_3(P) \ge \sqrt{2}$
 - $GR_3(P) \ge GR_3(AA) \simeq 1.30$

Definitions From Ochem 2016 to 2022 With 4 variables

Theorem 5

Every square-free doubled pattern with at most 4 variables is 2-avoidable.

Proof:

- 1. List all "minimal" relevant patterns.
- 2. Show that they are 2-avoidable.

Definitions From Ochem 2016 to 2022 With 4 variables

1. List all "minimal" relevant patterns.

 $Q \succcurlyeq P$ if: $\int Q$ is P up to renaming variables, and $Q \ge_{lex} P$

$BCAACB \succcurlyeq ABCCBA$

Definitions From Ochem 2016 to 2022 With 4 variables

1. List all "minimal" relevant patterns.

$$\begin{array}{l} Q \succcurlyeq P \text{ if:} \\ \left\{ \begin{array}{l} \mathsf{Q} \text{ is } \mathsf{P} \text{ up to renaming variables, and } Q \geq_{\mathit{lex}} P \\ Q = P^{R}, \text{ and } Q \geq_{\mathit{lex}} P \end{array} \right. \end{array}$$

$$(ABCACDBD)^{R} = DBDCACBA$$
$$= ABACDCBD$$

So:

$ABCACDBD \succcurlyeq ABACDCBD$

Definitions From Ochem 2016 to 2022 With 4 variables

Q

1. List all "minimal" relevant patterns.

$$\begin{array}{l} Q \succcurlyeq P \text{ if:} \\ \left\{ \begin{matrix} \mathsf{Q} \text{ is } \mathsf{P} \text{ up to renaming variables, and } Q \geq_{\mathit{lex}} P \\ Q = P^R, \text{ and } Q \geq_{\mathit{lex}} P \\ \mathsf{P} \text{ is a square-free doubled pattern and a factor of} \end{matrix} \right. \end{array}$$

$ABCADCDBDAB \succcurlyeq ABCADCDB$

Definitions From Ochem 2016 to 2022 With 4 variables

1. List all "minimal" relevant patterns.

 $\begin{array}{l} Q\succcurlyeq P \text{ if:} \\ \left\{ \begin{array}{l} \mathsf{Q} \text{ is }\mathsf{P} \text{ up to renaming variables, and } Q \geq_{\mathit{lex}} P \\ Q = P^R, \text{ and } Q \geq_{\mathit{lex}} P \\ \mathsf{P} \text{ is a square-free doubled pattern and a factor of } \mathsf{Q} \end{array} \right. \end{array}$

Also forbid occurrences of already known 2-avoidable patterns. e.g: *ABACBC* occurs in *ABABACDBCD*

Definitions From Ochem 2016 to 2022 With 4 variables

2. Show that they are 2-avoidable.

Morphic words: Rosenfeld's implementation of Cassaigne's algorithm.
Ex: let f₅ : Σ^{*}₅ → Σ^{*}₅ be 01/23/4/21/0, and c : Σ^{*}₅ → Σ^{*}₂ be

00/10/111/01/011. Then $c(f_5^{\omega}(0))$ avoids ABCBDCABCD.

• Otherwise: images of a Dejean word (Ochem lemma, 2004). Ex: let w_4 be any Dejean word over Σ_4 , and $c : \Sigma_4^* \to \Sigma_2^*$ be 1111/1101/0010/0000. Then $c(w_4)$ avoids ABCBDABCD.

Definitions From Ochem 2016 to 2022 With 4 variables

Conjecture 2 (Ochem & Pinlou, 2014)

There exist only finitely many 2-unavoidable doubled patterns.

Conjecture 4

Every square-free doubled pattern is 2-avoidable.

 \rightarrow are those two equivalent ?

MON Link with doubled patterns Experimental results

How much are 2-unavoidable patterns 2-unavoidable ? \rightarrow AA: only three distincts squares needed: 00, 11, 0101 (Fraenkel, Simpson, 1995)

Different Occurrences Number: number of occurrences of a pattern in a binary word.

Recall : occurrences are morphisms, not factors ! Ex :

	ABBA
	$A\mapsto 0$
	$B\mapsto 00$
ABBA in 000000	$A \mapsto 00$
	$B\mapsto 0$
	$A \mapsto 0$
	$B\mapsto 0$

So DON(ABBA, 000000) = 3

Different Occurrences Number: number of occurrences of a pattern in a binary word.

Recall : occurrences are morphisms, not factors ! Ex :

	ABBA
	$A \mapsto 0$
	$B\mapsto 00$
ABBA in 000000	$A\mapsto 00$
	$B\mapsto 0$
	$A \mapsto 0$
	$B\mapsto 0$

So DON(ABBA, 000000) = 3

Different Occurrences Number: number of occurrences of a pattern in a binary word.

Recall : occurrences are morphisms, not factors ! Ex :

ABBA
$A\mapsto 0$
$B\mapsto 00$
$A \mapsto 00$
$B\mapsto 0$
$A\mapsto 0$
$B\mapsto 0$

So DON(ABBA, 000000) = 3

Different Occurrences Number: number of occurrences of a pattern in a binary word.

Recall : occurrences are morphisms, not factors ! Ex :

	ABBA
ABBA in 000000	$A \mapsto 0$
	$B\mapsto 00$
	$A \mapsto 00$
	$B\mapsto 0$
	$A\mapsto 0$
	$B\mapsto 0$

So DON(ABBA, 000000) = 3

Different Occurrences Number: number of occurrences of a pattern in a binary word.

Recall : occurrences are morphisms, not factors ! Ex :

	ABBA
ABBA in 000000	$A\mapsto 0$
	$B\mapsto 00$
	$A \mapsto 00$
	$B\mapsto 0$
	$A\mapsto 0$
	$B\mapsto 0$

So DON(ABBA, 000000) = 3

Theorem 6

Let P be a 2-unavoidable pattern. Then:

 $MON(P) < \infty \iff P$ is doubled

 \implies : (Ex:) P = ABACBAB is 2-unavoidable. Assume by contradiction that there is a word *u* such that $DON(P, u) = k \in \mathbb{N}^*$.

- $L = \{v \in \Sigma_2^{\omega} \text{ s.t. } DON(P, v) \leq k\}$ is factorial.
- So there is $w \in L$ recurrent.
 - P occurs at least once : $\phi : A \mapsto x, B \mapsto y, C \mapsto z$
 - So xyx and yxy appear infinitely many times.
 - So $DON(P, w) = \infty \leq k$. Contradiction.

Link with doubled patterns Experimental results

Theorem 6

Let P be a 2-unavoidable pattern. Then:

 $MON(P) < \infty \iff P$ is doubled

 \Leftarrow : The binary word w_P such that $MON(P) < \infty$ avoids large repetitions of some fixed exponent. w_P exists by a result of Rumyantsev.

MON Link with doubled patterns Experimental results

Pattern	conjectured MON (and lower bound)
AA	3
AABAB	1
AABCCB	4
ABAB	1
ABACCB	1
ABBA	8
ABBCCA	6
ABCBCA	1
ABCCAB	1
ABCCBA	7

Conjectured MON of 2-unavoidable doubled patterns with at most 3 variables.

(Conjectured observing large finite binary words.)

Doubled patterns Improving 2-avoidability MON Link with doubled patter Experimental results

"The" morphic word for ABBA:

 $c(f_5^{\omega}(0))$ shows MON(ABBA) = 8.

	Doubled patterns Improving 2-avoidability	Link with doubled pat Experimental results	
ABBA			
$A \mapsto 0$			
$B\mapsto 0$			
$A \mapsto 1$			
$B\mapsto 0$			
$A \mapsto 0$			
$B\mapsto 1$			A(BC)(BC)A
$A \mapsto 10$	A lot of b		$\frac{A(DC)(DC)A}{A(DC)(DC)A}$
$B\mapsto 11$	A IOL OF DA		$A \mapsto 01$ $B \mapsto 0$
$A \mapsto 1$	occurrence	:5	$B \mapsto 0$
$B\mapsto 1$			$C \rightarrow 0$
$A \mapsto 10$			
$B\mapsto 00$			
$A \mapsto 01$			
$B\mapsto 11$			
$A \mapsto 01$			
$B\mapsto 00$			

MON Link with doubled patterns Experimental results

Any questions ?