Maximum order complexity for some automatic and morphic sequences along polynomial values

Pierre Popoli

Institut Élie Cartan de Lorraine, Vandœuvre-lès-Nancy, France

Combinatorics on Words, June 27, 2022

Summary

Automatic and morphic sequences

2 Complexities

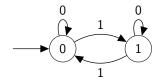


Figure: Automaton of the Thue–Morse sequence $\mathcal{T} = (t(n))_n$



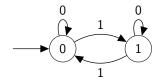
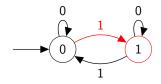


Figure: Automaton of the Thue–Morse sequence $\mathcal{T} = (t(n))_n$



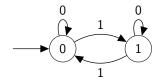
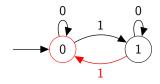


Figure: Automaton of the Thue–Morse sequence $\mathcal{T} = (t(n))_n$



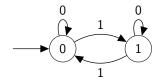
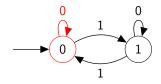


Figure: Automaton of the Thue–Morse sequence $\mathcal{T} = (t(n))_n$



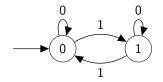
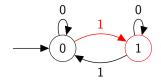


Figure: Automaton of the Thue–Morse sequence $\mathcal{T} = (t(n))_n$

Input: $(13)_2 = 1101$, we read left to right.



Then t(13) = 1.

 \mathcal{T} can also be generated by the following morphism $f : \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 10. \end{cases}$ This morphism is *uniform*: images have same length. We apply recursively the corresponding morphism

> 0 f(0) = 01 f(01) = f(0) f(1) = 01 10 f(0110) = 0110 1001: $f^{\omega}(0) = 0110100110010110...$

Thus t(n) is the *n*-th value of $f^{\omega}(0)$.

Automatic sequence: generated by an automaton or equivalently as a projection of a fixed point of a uniform morphism.

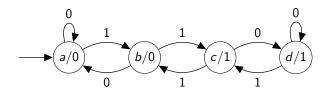


Figure: Automaton of the Golay–Rudin–Shapiro sequence $\mathcal{R} = (r(n))_n$

For $(13)_2 = 1101$, we have r(13) = 1. $\mathcal{R} = (r(n))_n = 000100100011101...$ Or with the morphism $f : \begin{cases} a \mapsto ab, b \mapsto ac, \\ c \mapsto db, d \mapsto dc. \end{cases}$ and $\pi : \begin{cases} a, b \mapsto 0, \\ c, d \mapsto 1. \end{cases}$ Thus $\begin{cases} f^{\omega}(a) = abacabdbabacdcac... \\ \pi(f^{\omega}(a)) = 000100100011101.... \end{cases}$

Generalization

Let w be a word in base 2, $e_w(n)$ counts the number of occurences of w in the expansion of n in base 2.

Then $S = (s_n)_n = (e_{\omega}(n) \pmod{2})_n$ is an automatic sequence. Particular word: $w_k = 1 \cdots 1 = 1^k$.

$$r(n)$$
 counts the number of 11 in $(n)_2 \mod 2$.

$$13 = (1101)_2, r(13) = 1.$$

For a general k, these sequences are called *pattern sequences*.

Morphic sequences

 π

Morphic sequences are generated by morphisms that are not necessarily uniform.

Example 1: Fibonacci word
$$f: \begin{cases} 0 \mapsto 01 \\ 1 \mapsto 0 \end{cases}$$
 , thus we have $f^{\omega}(0) = 0100101001001 \cdots$

We have $|f^n(0)| = F_n$ the *n*-th Fibonacci number.

Non-automatic sequence: the frequencies of its letters are not rational.

Example 2: The characteristic sequence of squares is a morphic sequence with

$$f: \begin{cases} a \mapsto abcc, \\ b \mapsto bcc, \\ c \mapsto c. \end{cases} \text{ and } \pi: \begin{cases} a, b \mapsto 1, \\ c \mapsto 0. \end{cases}$$
$$\frac{n \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \quad 10 \quad 11 \quad 12 \quad 13 \quad 14 \quad 15 \quad 16 \\ \pi(f^{\omega}(a)) \quad 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 0 \ 0 \ 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \end{cases}$$
Non-automatic sequence (Ritchie, 1963).

Remark

Notice that it is not trivial in general to determine whether a morphic sequence is automatic or not.

$$f: \left\{ egin{array}{ll} 0\mapsto 12\ 1\mapsto 102\ ,\ f^\omega(1)=102120102012\ldots\ 2\mapsto 0 \end{array}
ight.$$

is automatic (Berstel, 1978), with image reduction modulo 3 of

$$g: \left\{ \begin{array}{l} 0 \mapsto 12, 1 \mapsto 13 \\ 2 \mapsto 20, 3 \mapsto 21 \end{array} \right.,$$
$$g^{\omega}(1) = 132120132012 \dots$$
$$\downarrow \pmod{3}$$
$$102120102012 \dots$$

Summary

1 Automatic and morphic sequences

2 Complexities

3 Pseudorandom sequences

4 Zeckendorf base

Subword complexity

Let $w = a_0 a_1 a_2 \dots$ be an infinite word on an alphabet Σ . A finite word $u = b_0 b_1 \dots b_{k-1} \in \Sigma^k$ is a *subword* of w if there exists i such that

$$a_i = b_0, \ a_{i+1} = b_1, \ \ldots, \ a_{i+k-1} = b_{k-1}.$$

Subword complexity

Let $S = (s_n)_n$ be a sequence Σ and $w = s_0 s_1 \dots$ For $k \ge 0$, we define p_S by

 $p_{\mathcal{S}}(k) = \#\{u \in \Sigma^k : u \text{ is a subword of } w\}.$

where $w = s_0 s_1$

- $p_{\mathcal{S}}(k) \leq \operatorname{Card}(\Sigma)^k$ for all k.
- $S = 01010101..., p_S(k) = 2$ for all k.
- If there exists k such as $p_{\mathcal{S}}(k) \leq k$, \mathcal{S} is periodic.
- If p_S(k) = k + 1 for all k, S is said to be sturmian.
 Example: Fibonacci word.

Normal sequence

A sequence is said to be *normal* if for every word $b_0 \dots b_{k-1} \in \Sigma^k$:

$$\lim_{N \to +\infty} \frac{1}{N} \# \{ i < N, s_i = b_0, \dots, s_{i+k-1} = b_{k-1} \} = \frac{1}{\operatorname{Card}(\Sigma)^k},$$

i.e. every word appears in the sequence and each word of a fixed length appears with the same frequency.

Almost every sequence is normal (Borel, 1909) but relatively few constructions are known.

Example: The Champernowne sequence (1933)

 $\mathcal{S}=0$ 1 10 11 100 \ldots

is a normal sequence on $\{0, 1\}$.

It is conjectured that π is a normal number but still not known.

Feedback shift register (FSR)

Binary FSR with *n* states

Mapping $\mathfrak{F}: \mathbb{F}_2^n \to \mathbb{F}_2^n$, $n \geq 2$ on the form

$$\mathfrak{F}:(x_0,x_1,\ldots,x_{n-1})\mapsto (x_1,x_2,\ldots,x_{n-1},f(x_0,x_1,\ldots,x_{n-1}))$$

where $f \in \mathbb{F}_2[X_0, \ldots, X_{n-1}]$.

The binary sequence $S = (s_i)_{i \ge 0}$, with *n* given terms, and the remaining terms obtained with the relationship recurrence

$$s_{i+n}=f(s_i,\ldots,s_{i+n-1}), \quad i\geq 0.$$

is called the *output* sequence of the FSR.

An output sequence generated by a short FSR is considered **weak** for cryptographic applications since it is too predictable.

Maximum order complexity

Maximum order complexity at rank N

 $M(\mathcal{S}, N)$ is the smallest integer M such that

$$s_{i+M}=f(s_i,\ldots,s_{i+M-1}),$$

with $f(X_1,\ldots,X_M) \in \mathbb{F}_p[X_1,\ldots,X_M]$ and $0 \le i \le N-M-1$.

M(S, N): length of the shortest FSR that generates the first N elements of S.

The maximum order complexity is used as an indicator of the unpredictability of the sequence.

Example 1/2

Let S = 01011... We have M(S, 2) = 1 since the two first letters are not identical.

In order that M(S,3) = 1, we have to find a polynomial f(x) such that

$$\begin{cases} s_2 = f(s_1), \\ s_1 = f(s_0). \end{cases} \implies \begin{cases} 0 = f(1), \\ 1 = f(0). \end{cases}$$

Thus the polynomial f(x) = -x + 1 is convenient.

In order that $M(\mathcal{S},4) = 1$, we have to find a polynomial f(x) such that

$$\begin{cases} s_3 = f(s_2), \\ s_2 = f(s_1), \\ s_1 = f(s_0). \end{cases} \quad \implies \begin{cases} 1 = f(0), \\ 0 = f(1), \\ 1 = f(0). \end{cases}$$

Thus the same polynomial as before is convenient.

4

Example 2/2

 $\mathcal{S} = \texttt{01011}\ldots$

In order that M(S,5) = 1, we have to find a polynomial f(x) such that

$$\left\{\begin{array}{ll} 1=f(1),1=f(0)\\ 0=f(1),1=f(0) \end{array}\right \implies \text{not possible}.$$

We have to increase the number of variables.

In order that M(S,5) = 2, we have to find a polynomial f(x,y) such that

$$\begin{cases} s_4 = f(s_3, s_2) \\ s_3 = f(s_2, s_1) \\ s_2 = f(s_1, s_0) \end{cases} \implies \begin{cases} 1 = f(1, 0) \\ 1 = f(0, 1) \\ 0 = f(1, 0) \end{cases} \implies \text{again not possible.} \end{cases}$$

In order that M(S,5) = 3, we have to find a polynomial f(x, y, z) such that

$$\begin{cases} s_4 = f(s_3, s_2, s_1) \\ s_3 = f(s_2, s_1, s_0) \end{cases} \implies \begin{cases} 1 = f(1, 0, 1) \\ 1 = f(0, 1, 0) \end{cases}$$

Thus f(x, y, z) = x + y is convenient.

Special factor and maximum order complexity

A finite word u is to be a *special factor* of a word w if there exists at least two different letters α and β such that $u\alpha$ and $u\beta$ are subwords of w.

Theorem: Jansen (1989)

Let $S = (s_n)_n$ be a sequence on Σ . Let k be the length of the largest special factor of the word $s_0 s_1 \dots s_{N-1}$. Then M(S, N) = k + 1.

For example for w = 01011 we notice that 01 is the longest special factor of w. Therefore M(w, 5) = 2 + 1 = 3.

Expansion complexity

Let G(x) be the generating series of S : $G(x) = \sum_{n \ge 0} s_n x^n$.

Expansion complexity at rank N

 $E(\mathcal{S}, N)$ is the least total degree of $h(x, y) \in \mathbb{F}_p[X, Y]$ such that

$$h(x, G(x)) \equiv 0 \mod x^N$$
.

Christol's theorem (1979)

S is *p*-automatic \Leftrightarrow The generating series of S is algebraic over \mathbb{F}_p . $\Leftrightarrow E(S, N)$ is bounded.

No relationship between M(S, N) and E(S, N).

Summary

1 Automatic and morphic sequences

2 Complexities

A sequence S is said *pseudo-random* if S has similar complexities as a truly random sequence and can be easily generated.

Expected order for a truly random binary sequence

- Maximum order complexity: $M(S, N) \simeq \log N$.
- Subword complexity: $p_{\mathcal{S}}(N) \simeq 2^N$.
- Expansion complexity: $E(S, N) \simeq \sqrt{N}$.

Classical Thue-Morse

Vinogradov's notation: $f \ll g$ means $|f| \leq C|g|$, for some $C \geq 0$ and for N large enough.

Measures for the Thue–Morse sequence

For $N \ge 4$, we have

$$\begin{split} & \mathcal{M}(\mathcal{T}, N) \gg N: \text{ Sun-Winterhof (2019)}, \\ & p_{\mathcal{T}}(N) \ll N: \text{ Brlek, de Luca-Varricchio (1989)} \\ & \text{ automatic, Allouche-Shallit (2003)}, \\ & E(\mathcal{T}, N) \leq 5. \end{split}$$

These measures are very similar for *pattern sequences*.

What happens along squares ?

Let us denote $\mathcal{T}_2 = (t(n^2))_{n \ge 0}$.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1...

Theorem: Drmota, Mauduit and Rivat (2019)

 \mathcal{T}_2 is a normal sequence.

 $\mathcal{T}_2 ext{ is no longer automatic } \implies E(\mathcal{T}_2, N) \to +\infty.$

Theorem: Sun and Winterhof (2019)

 $M(\mathcal{T}_2, N) \gg N^{1/2}.$

Thus the Thue–Morse sequence along squares is a better candidate for a pseudorandom sequence.

Again, same phenomenon appears for *pattern sequences*.

The 32 \times 32 first terms of Thue–Morse

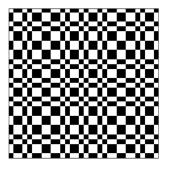


Figure: Classical

Figure: Along squares

Generalization to other polynomial subsequences

Let $P \in \mathbb{Z}[X]$, $P(\mathbb{N}) \subset \mathbb{N}$ of degree $d \geq 2$. Let us denote $\mathcal{T}_P = (t(P(n)))_n$. Then

- The subword complexity \mathcal{T}_P is exponential: $p_{\mathcal{T}_P}(N) \ge c^N$ with $c = 2^{1/2^{d-2}}$, Moshe (2007).
- \mathcal{T}_P is not automatic $E(\mathcal{T}_P, N) \to +\infty$.

Theorem: P. (2020)

Let $P \in \mathbb{Z}[X]$, $P(\mathbb{N}) \subset \mathbb{N}$ of degree d monic. Let $\mathcal{T}_P = (t(P(n)))_n$ and $\mathcal{P}_{k,P} = (p_k(P(n)))_n$, then we have for $N \ge N_0(k, P)$,

 $M(\mathcal{T}_p, N) \gg N^{1/d},$ $M(\mathcal{P}_{k,P}, N) \gg N^{1/d}.$

Build a special factor of length $N^{1/d}$, up to a constant, in the first N terms.

Sum of digits function

 $t(n) \equiv s_2(n) \pmod{2}$, $s_2(n)$ is the sum of digits function in base 2. For $a, b \ge 0$, $b < 2^r$ we have $s_2(a2^r + b) = s_2(a) + s_2(b)$.

$$(a)_2 \quad 0 \cdots 0 = a2^r \\ + \qquad (b)_2 = b \\ \hline (a)_2 \quad (b)_2 = a2^r + b.$$

The sum is said to be *non-interfering* since there is no interaction between the digits of *a* and *b*.

Then for all $\ell \geq 0$ and $n < 2^{\ell}$:

$$s_2(n+2^{\ell}) = s_2(n+2^{\ell+1})$$
 and $\begin{cases} s_2(2^{\ell}+2^{\ell}) = s_2(2^{\ell+1}) = 1 \\ s_2(2^{\ell}+2^{\ell+1}) = 0 \pmod{2} \end{cases}$

 \implies special factor of lenght 2^{ℓ} , for all $\ell \geq 0$.

Sketch of proof

Let $P \in \mathbb{N}[X]$, we have for all $\ell, r > 0$ and $0 \le n < c_P 2^{\ell}$, for some $c_P > 0$,

$$t(P(n+2^{d\ell})) = t(P(n+2^{d\ell+r})).$$

Exact same proof as before.

Then we seek for all *n* such as $n > c_P 2^{\ell}$, "close" of 2^{ℓ} , such as

$$t(P(n+2^{d\ell})) \equiv t(P(n+2^{d\ell+r}))+1 \pmod{2}.$$

Hardest part in general, precise control of the carry propagation is needed.

Summary

1 Automatic and morphic sequences

2 Complexities

3 Pseudorandom sequences

Numeration system based on the Fibonnaci sequence: $F_n = 0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots$

Zeckendorf base

 $\mathcal{F} = (F_n)_n$ Fibonacci sequence, $F_0 = 0$ et $F_1 = 1$. Each integer n can be represented uniquely by

$$n = \sum_{i\geq 0} \varepsilon_i(n) F_{i+2},$$
 with $\varepsilon_{i+1}(n) \varepsilon_i(n) = 0.$

 $\varepsilon_{i+1}(n)\varepsilon_i(n) = 0$ hypothesis is to ensure the unicity.

n	Binary	Zeckendorf			
0	0	0	8	1000	10000
1	1	1	9	1001	10001
2	10	10	10	1010	10010
3	11	100	11	1011	10100
4	100	101	12	1100	10101
5	101	1000	13	1101	100000
6	110	1001	14	1110	100001
7	111	1010	15	1111	100010

Analogus of the Thue-Morse sequence: the sum of digits function

$$s_Z(n) = \sum_{i\geq 0} \varepsilon_i(n).$$

 $\mathcal{S}_Z = (s_Z(n) \pmod{2})_{n \ge 0}$ is a morphic sequence (Bruyère) with

$$f: \left\{ \begin{array}{ll} a \mapsto ab, b \mapsto c \\ c \mapsto cd, d \mapsto a \end{array} \right. \text{ and } \pi: \left\{ \begin{array}{ll} a \mapsto 0, b \mapsto 1 \\ c \mapsto 1, d \mapsto 0. \end{array} \right.$$

 $S_Z = \pi \circ f(a) = 011101001000110001011...$ S_Z is not an automatic sequence, Drmota-Müllner-Spiegelhofer (2018).

Carry propagation

	1	0	0	1	0 =	= 10		
Transversality:	+				1 =	- 1		
	1	0	1	0	0 =	= 11.		
due to $F_{n+2} = F_{n+1}$	$+F_n$.							
				1	0	0	0	= 5
 Right carry propaga 	tion	+	-	1	0	0	1	= 6
	tion.		1	0	0	1	1	
			1	0	1	0	0	= 11.
due to $2F_n = F_{n+1}$	$+ F_{n-2}$.							

Carry propagation works very differently than the base 2.

Determinism of \mathcal{S}_Z

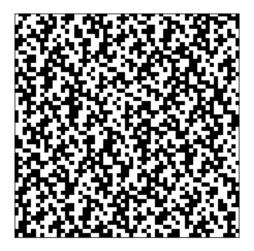


Figure: The 53 \times 53 first terms of \mathcal{S}_{Z}

Determinism of \mathcal{S}_Z

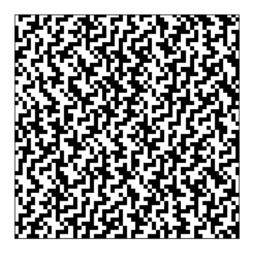


Figure: The 54 \times 54 first terms of \mathcal{S}_Z

Determinism of S_Z

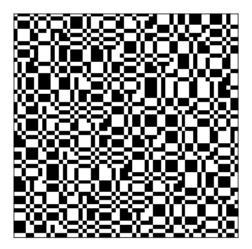


Figure: The 55 \times 55 first terms of \mathcal{S}_{Z}

 $55 = F_{10}$.

Maximum order complexity of S_Z

Let $\varphi = \frac{1+\sqrt{5}}{2}$ be the golden ratio.

Theorem: Jamet, P., Stoll (2021)

There exists $N_0 > 0$ such as that for all $N > N_0$

$$M(\mathcal{S}_Z, N) \geq rac{1}{arphi + arphi^3}N + 1.$$

Theorem: Shallit (2022)

$$\begin{split} &\lim \inf_{N \to +\infty} \frac{M(S_Z, N)}{N} = \frac{1}{\varphi + \varphi^3}, \\ &\lim \sup_{N \to +\infty} \frac{M(S_Z, N)}{N} = \frac{1}{1 + \varphi^2}. \end{split}$$

Thanks to Walnut, unfortunately not possible to go on polynomial subsequences.

Randomness of S_Z along squares

Figure: The 55 \times 55 first terms of \mathcal{S}_Z along squares

Polynomial subsequences

Different result from the Thue–Morse sequence. Factor 2d instead of d due to the right carry propagation.

Theorem: Jamet, P., Stoll (2021)

Let $P \in \mathbb{Z}[X]$, $P(\mathbb{N}) \subset \mathbb{N}$ monic of degree d. $\mathcal{S}_{Z,P} = (s_Z(P(n)) \pmod{2})_n$, then

 $M(\mathcal{S}_{Z,P}, N) \gg N^{1/2d}.$

 $(n + 2^{\ell})^2 = n^2 + 2^{\ell+1}n + 2^{2\ell} \implies$ good expression in base 2. $(n + F_{\ell})^2 = n^2 + 2nF_{\ell} + F_{\ell}^2 \implies$ expression in Zeckendorf base ? Only perfect powers that are Fibonacci numbers are 1, $8 = 2^3$ and $144 = 12^2$.

Lucas numbers:
$$\mathcal{L} = (L_n)_n$$
, and $\begin{cases} L_0 = 2, L_1 = 1 \\ L_{n+2} = L_{n+1} + L_n, n \ge 0. \end{cases}$

 $L_n = F_{n+1} + F_{n-1}$ and L_n^d is "simple" in Zeckendorf base.

Summary

1 Automatic and morphic sequences

2 Complexities

3 Pseudorandom sequences

4 Zeckendorf base

DAWG

We can find the special factors of a word by building its DAWG (Direct Acyclic Word Graph).

Let $w = a_1 \dots a_n \in \Sigma^n$.

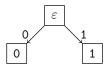
For a subword y of w, we define the set $E_w(y) = \{i : y = a_{i-|y|+1} \dots a_i\}$, the set of ending positions of y.

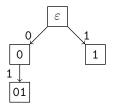
Two subwords y and z are said suffix-equivalents if $E_w(y) = E_w(z)$.

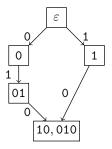
The DAWG (Direct Acyclic Word Graph) of a word is the smallest graph that recognizes every subword of a word (Blumer et al.).

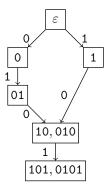
The edges are subwords and the vertices are letters. Two subwords are in the same edge if they are suffix-equivalents.

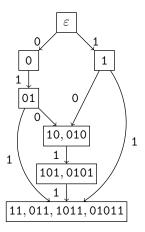
We can find easily the special factor of a word by building its DAWG and looking for the deepest edge with at least two outgoing arrows.



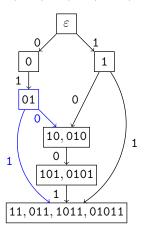








w = 01011.Sub $(w) = \{0, 1, 01, 10, 11, 010, 101, 011, 0101, 1011, 01011\}.$



Thus the longest factor special is the deepest node with at least two outgoing arrows, here this is 01.

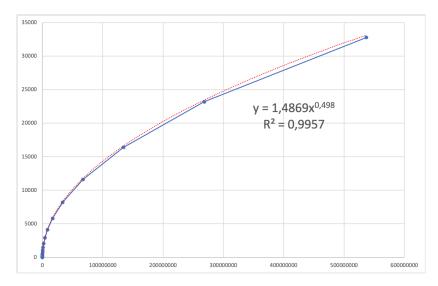


Figure: Maximum order complexity at rank N of the Thue–Morse sequence along squares.

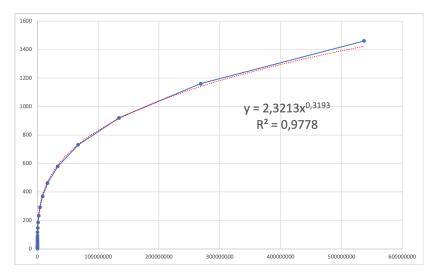


Figure: Maximum order complexity at rank N of the Thue–Morse sequence along cubes.

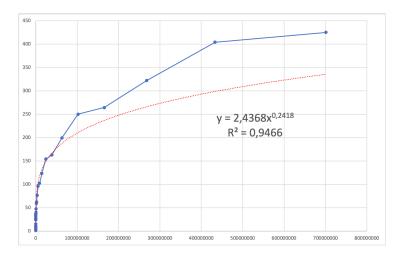


Figure: Maximum order complexity at rank N of Zeckendorf along squares.

Conjectures

• The maximum order complexity of the Thue–Morse sequence along polynomial subsequences of degree *d* satisfies

 $M(\mathcal{T}_P, N) \asymp N^{1/d}.$

• The maximum order complexity of the Zeckendorf sequence along polynomial subsequences of degree *d* satisfies

$$M(\mathcal{S}_{Z,P}, N) \asymp N^{1/2d}.$$

Open problem

Figure: The 64×64 first terms of Thue–Morse along primes.

Problem: Show a bound of the maximum order complexity for this subsequence. Estimations gives log(N).

Thank you for your attention !

Contact:

Pierre Popoli pierre.popoli@univ-lorraine.fr Institut Élie Cartan de Lorraine Université de Lorraine