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Definitions

Let w = w[1]w[2]...w[n] be a word or a string.
n is called the length of w. It is denoted by |w|.
The alphabet of w is the collection of distinct letters in w.
It is denoted by Alph(w).
The factors of w are words of the type w[i]w[i+ 1]...w[j],
with 1 ≤ i ≤ j ≤ |w|. Let Fact(w) denote the set of factors
of w.
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Patterns

A palindrome is a word w = w[1]w[2]...w[n] such that

w[1]w[2]...w[n] = w[n]w[n− 1]...w[1].

A σ-palindrome is a word w = w[1]w[2]...w[n] such that

w[1]w[2]...w[n] = σ(w[n]w[n− 1]...w[1]),

where σ is an involution on Alph(w) satisfying σ2 = Id.
A square is a word w = w[1]w[2]...w[2n] such that

w[1]w[2]...w[n] = w[n+ 1]w[n+ 2]...w[2n].
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Counting patterns in a word
For a finite word w, let p(w), pσ(w) and s(w) denote
respectively the number of distinct palindromes, σ-palindromes
and squares (counting the empty word) in w.

Palindrome : in a given position i, there exists one new
palindromic suffix.(Droubay, Justin and Pirillo, 2001)

p(w) ≤ |w|+ 1.

σ-palindrome : in a given position i, there exists one new
σ-palindromic suffix.(Blondin-Masse, Brlek, Garon, and
Labbe 2008, Pelantová and Starosta, 2014)

pσ(w) ≤ |w|+ 1.

Square : in a given position i, there can be two new square
suffixes. (Fraenkel and Simpson, 1998)

s(w) ≤ 2|w|+ 1.
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An example of words with many squares

First consideration from Fraenkel and Simpson(1998).
For i ≥ 1, let qi = 0i+110i10i+11 and let wi = q1q2...qi.
Let s∗(w) denote the number of distinct nonempty squares
in w.

Theorem (Fraenkel,Simpson(1998))

For the sequence (wi)i∈N defined as above |wi| = (3i2 + 13i)/2
and s∗(wi) = 3i2/2 + ⌊(i+ 1)/2⌋+ 7i/2− 3.

Observation :

s∗(wi) = |wi| − o(
√

|wi|).
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Fraenkel-Simpson’s conjecture

Conjecture (Fraenkel, Simpson (1998))
For any finite word w, one has

s∗(w) ≤ |w|.

Results : Any finite word w contains at least at most :
Fraenkel, Simpson (1998) : s∗(w) ≤ 2|w| ;
Ilie (2005) : s∗(w) ≤ 2|w| − o(log(|w|)) ;
Lam (2013) : s∗(w) ≤ 95/48|w| ;
Deza, Franek and Thierry (2015) : s∗(w) ≤ 11/6|w| ;
Thierry (2020) : s∗(w) ≤ 3/2|w|.
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New result

Theorem (Brlek, Li (2022))

Any finite word w = w[1]w[2]...w[n], if we let |Alph(w)| denote
the number of distinct letters in w, one has

s∗(w) ≤ |w| − |Alph(w)|.

Moreover, if we count the empty word, then one has

s(w) ≤ |w| − |Alph(w)|+ 1.
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Rauzy graphs

Definitions : Let w be a finite word. For any integer i
satisfying 1 ≤ i ≤ |w|, let Lw(i) denote the set of length-i
factors of w and let Cw(i) be the cardinality of Lw(i).
The i-th Rauzy graph of w is Γw(i) = {vw(i), ew(i)} such
that
(i) vw(i) = Lw(i); ew(i) = Lw(i+ 1),
(ii)e ∈ ew(i+ 1) from v1 to v2 iff there exist
α, β ∈ Alph(w), y ∈ Lw(i− 1) such that
v1 = αy, v2 = yβ, e = αyβ.
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Example

Let us consider the 3-rd Rauzy graph of the word
w = bbaababaababbba

bba baa aab

aba

bababbbbb

bbaa baab

aaba

abab

baba

abaa

babbabbb

bbba
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Facts of Rauzy graphs

For the graph Γw(i),

|vw(i)| = Cw(i); |ew(i)| = Cw(i+ 1);

The Rauzy graph Γw(i) is weakly connected for all
1 ≤ i ≤ |w|.
The Rauzy graphs Contain cycles and circuits.
The square factors in w are recognised with the help of
circuits.
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Basics on graph theory

Let G(V,E) be an oriented graph, An elementary cycle is a
closed chain of distinct vertices and distinct edges, and an
elementary circuit is a closed path of distinct vertices and
distinct edges.
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Basics of graph theory

Theorem (Berge(1973))
The number of the independent elementary cycles on a graph G
with p connected components is given by the cyclomatic number

χ(G) = e− v + p.

Corollary
For a given word w, the number of the independent elementary
circuits on the graph Γw(i) is bounded by

χ(Γw(i)) = Cw(i+ 1)− Cw(i) + 1.
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How the circuits help

Let X = aab.
If w = ...a, a, b, a, a, b, ..., then, on Γw(3), there exists
C1 = {v1, e1}, such that v1 is all conjugates of x.

aab aba

baa

aaba

baab
abaa
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How the circuits help

If w = ...a, a, b, a, a, b, ...a, b, a, a, b, a, ..., then, on Γw(4), there
exists C2 = {v2, e2}, such that v2 = e1.

aaba abaa

baab

aabaa

baaba
abaab
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

How the circuits help

If w = ...(a, a, b)4, a..., then the word (aba)4 can be associated
with C5 = {v5, e5} on Γw(10) such that v5 = e4.
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

An injection

There exists an injection from the set of nonempty square
factors of w into its Rauzy graphs ∪Γw(i) :

Φ : Sq∗(w) → ∪1≤i≤|w|Γw(i).

The images of Φ are small circuits.
A circuit C(V,E) on Γw(i) is called small if it is an
elementary circuit and |V | = |E| ≤ i.

Proposition
All small circuits on the same Rauzy graph are independent.
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

Example

Let us consider the 3-rd Rauzy graph of the word
w = bbaababaababbba

bba baa aab

aba

bababbbbb

bbaa baab

aaba

abab

baba
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babbabbb

bbba
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

End of the proof
For a given word w and an integer i satisfying 1 ≤ i ≤ |w|,

|Im(Φ) ∩ Γw(i)| ≤ χ(Γw(i)) = Cw(i+ 1)− Cw(i) + 1.

Thus,

S∗(w) =
∑

1≤i≤|w|

|Im(Φ) ∩ Γw(i)|

≤
∑

1≤i≤|w|

Cw(i+ 1)− Cw(i) + 1

≤ |w| − |Alph(w)|.
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Square defect and some conjectures

Example

w = bbaababaababbba
Γw(1)
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Example
w = bbaababaababbba
Γw(2)
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Let us consider the 3-rd Rauzy graph of the word
w = bbaababaababbba
Γw(3)
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

Example
w = bbaababaababbba
Γw(4)

abaa

baab

baba

aaba

abab

bbaa

babb

abbb
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a

a
b

a

b

b

b

a
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Discussion
Square defect and some conjectures

Example
w = bbaababaababbba
Γw(5)

baaba

bbaab

abbbaa b

b a

a

a

b

a

b
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Square defect and some conjectures

Example
w = bbaababaababbba
Γw(6)
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bbaaba

babbbab a

a a

b

b

b

a

b
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

Theorem
The upper bound s∗(w) ≤ |w| − |Alph(w)| is not sharp.

Reason 1 : the gaps.
Let x = aab and w = ...x4.... From our previous
construction, there exists a function Φ such that (aab)2 →
Γw(3), (aba)

2 → Γw(4), (baa)
2 → Γw(5), (aab)

4 → Γw(9).
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

But there also exist similar circuits on Γw(6),Γw(7),Γw(8). On
Γw(6) :

(aab)2 (aba)2

(baa)2

(aab)2a

(baa)2b
(aba)2a

Shuo LI Joint work with Srečko Brlek, Francesco Dolce, Élise VandommeOn the number of squares in a word 30 / 46



Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

But there also exist similar circuits on Γw(6),Γw(7),Γw(8). On
Γw(6) :

(aab)2 (aba)2

(baa)2

(aab)2a

(baa)2b
(aba)2a

Shuo LI Joint work with Srečko Brlek, Francesco Dolce, Élise VandommeOn the number of squares in a word 30 / 46



Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

But there also exist similar circuits on Γw(6),Γw(7),Γw(8). On
Γw(6) :

(aab)2 (aba)2

(baa)2

(aab)2a

(baa)2b
(aba)2a

Shuo LI Joint work with Srečko Brlek, Francesco Dolce, Élise VandommeOn the number of squares in a word 30 / 46



Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

On Γw(7) :

(aab)2a (aba)2a

(baa)2b

(aab)2aa

(baa)2ba
(aba)2ab
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(Non)-sharpness : reason 1

On Γw(7) :
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

On Γw(8) :

(aab)2aa (aba)2ab

(baa)2ba

(aab)3

(baa)3
(aba)3
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 1

On Γw(8) :

(aab)2aa (aba)2ab

(baa)2ba

(aab)3

(baa)3
(aba)3
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

A generalisation

A power is a word of the from uk = uu...u︸ ︷︷ ︸
k times

. It is also called

a k-power, and k is its exponent.
For a finite word w, let M∗(w) denote the set of nonempty
powers of exponent at least 2 in w.
There exists an injection from M∗(w) into its Rauzy graphs
∪Γw(i) :

Ψ : M∗(w) → ∪1≤i≤|w|Γw(i).
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

A generalisation

Theorem (Li,Pachocki and Radoszewski 2022)

For every finite word w, let m∗(w) denote the number of distinct
nonempty powers of exponent at least 2 in w, let m∗

k(w) denote
the number of distinct nonempty k-powers in w, then one has

m∗(w) ≤ |w| − |Alph(w)|;

Moreover, for any integer k ≥ 2,

m∗
k(w) ≤

|w| − |Alph(w)|
k − 1

.
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 2
The Reason 1 is not critical : The w may not contain any
other powers of exponent larger than 2.
Reason 2 : Existence of other independent circuits.
Let x = aab and let w = ...x2..., then there exists the
following circuit on Γw(2) :

aa ab

ba

aab

baa
aba
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

Primitive circuits

Let x be a primitive word and let [x] be the conjugate class
of x.
If there exists a word w such that x2 ∈ Fact(w) and if
|x| ≥ 2, then there exists a circuit on Γw(|x| − 1) such that
its edge set is [x]. This circuit is called a primitive circuit.

Proposition (Li, 2022)
The primitive circuits are independent with small circuits.
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Definitions and background
Proof of the new result

Discussion
Square defect and some conjectures

(Non)-sharpness : reason 3

Reason 3 : Simulation.
A248958 : maximum number of distinct nonempty squares
in a binary string of length n.

B(n) = 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14,

15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25

Conjecture (Brlek and Li, 2022)

Let MS(n) denote the maximum number of distinct nonempty
squares in a word of length n, then

MS(n) ≤ ⌈n+ 1−
√
n− log2

√
n⌉ = Up(n).
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(Non)-sharpness : reason 3

Reason 3 : Simulation.
A248958 : maximum number of distinct nonempty squares
in a binary string of length n.

B(n) = 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14,

15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25
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Some remarks and open questions

Up(n)−B(n) = 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2,

2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2

If there exists some word w satisfying s(w) = MS(|w|),
then w is a binary word ?
MS(n+ 1)−MS(n) ≤ 1 ?
How many independent circuits can a Rauzy graph
contain ?
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Motivation

Theorem (Brlek, Li (2022))

Any finite word w, if we let |Alph(w)| denote the number of
distinct letters in w, one has

s∗(w) ≤ |w|−|Alph(w)|.
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Motivation

Let w be a finite word.
The palindromic defect of w is defined to be

Dp(w) = |w|+ 1− p(w),

The σ-palindromic defect of w is defined to be

Dpσ(w) = |w|+ 1− pσ(w).
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BR-identity
Theorem
For any finite word w, one has

2Dp(w) =

|w|∑
i=0

Cw(i+ 1)− Cw(i) + 2− pw(i+ 1)− pw(i),

where pw(i) is the number of distinct length-i palindromes in
w.(Brlek, Reutenauer 2011)

2Dpσ(w) =

|w|∑
i=0

Cw(i+ 1)− Cw(i) + 2− pσw(i+ 1)− pσw(i),

where pσw(i) is the number of distinct length-i σ-palindromes in
w.(Reutenauer and Fest 2013)
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Square defect

Let w be a finite word, the square defect of w is defined to
be

Ds(w) = |w|+ 1− s(w),

Theorem (Brlek, Dolce, Vandomme (2018))
For any finite word w, one has

2Ds(w) =

|w|∑
i=0

Cw(i+ 1)− Cw(i) + 2− sw(i+ 1)− sw(i),

where sw(i) is the number of distinct length-i squares in w.
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Alternative BR-identity

2Ds(w) =

|w|∑
i=0

Cw(i+ 1)− Cw(i) + 2− sw(i+ 1)− sw(i)

⇐⇒ s(w) =

|w|∑
i=0

Cw(i+ 1)− Cw(i) + 1−Ds(w).

s(w) ≤
|w|∑
i=0

Cw(i+1)−Cw(i)+1 ⇐⇒ s(w) ≤ |w|+1−|Alph(w)|.

Fraenkel-Simpson conjecture ⇐⇒ Ds(w) ≥ 0.
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Square defect for infinite words

Let w be an infinite word, its square defect is defined to be

Ds(w) = sup {Ds(p)|p ∈ Fact(w)} .

Theorem (Brlek, Dolce, Vandomme (2018))
The square defect of any periodic word or strict standard
episturmian word is infinite.
The square BR-identity holds for any infinite periodic word and
strict standard episturmian.
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Conjectures

Conjecture
The square defect of any infinite word is infinite.

Conjecture
The square BR-identity holds for any infinite word.
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Thank you for your attention !
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