On the number of squares in a word

Shuo LI Joint work with Srečko Brlek, Francesco Dolce, Élise Vandomme

Université du Québec à Montréal

September 19 2022

Presentation plan

2 Proof of the new result

3 Discussion

Definitions

- Let w = w[1]w[2]...w[n] be a word or a string. n is called the length of w. It is denoted by |w|.
- The alphabet of w is the collection of distinct letters in w. It is denoted by Alph(w).
- The factors of w are words of the type w[i]w[i+1]...w[j], with $1 \le i \le j \le |w|$. Let Fact(w) denote the set of factors of w.

Definitions

- Let w = w[1]w[2]...w[n] be a word or a string. n is called the length of w. It is denoted by |w|.
- The alphabet of w is the collection of distinct letters in w. It is denoted by Alph(w).
- The factors of w are words of the type w[i]w[i+1]...w[j], with $1 \le i \le j \le |w|$. Let Fact(w) denote the set of factors of w.

Definitions

- Let w = w[1]w[2]...w[n] be a word or a string. n is called the length of w. It is denoted by |w|.
- The alphabet of w is the collection of distinct letters in w. It is denoted by Alph(w).
- The factors of w are words of the type w[i]w[i+1]...w[j], with $1 \le i \le j \le |w|$. Let Fact(w) denote the set of factors of w.

Patterns

• A palindrome is a word w = w[1]w[2]...w[n] such that w[1]w[2]...w[n] = w[n]w[n-1]...w[1].

• A σ -palindrome is a word w = w[1]w[2]...w[n] such that

 $w[1]w[2]...w[n] = \sigma(w[n]w[n-1]...w[1]),$

where σ is an involution on Alph(w) satisfying σ² = Id.
A square is a word w = w[1]w[2]...w[2n] such that

w[1]w[2]...w[n] = w[n+1]w[n+2]...w[2n].

< ロト < 同ト < ヨト < ヨト -

- 31

Patterns

• A palindrome is a word w = w[1]w[2]...w[n] such that

$$w[1]w[2]...w[n] = w[n]w[n-1]...w[1].$$

• A σ -palindrome is a word w = w[1]w[2]...w[n] such that

$$w[1]w[2]...w[n] = \sigma(w[n]w[n-1]...w[1]),$$

where σ is an involution on Alph(w) satisfying $\sigma^2 = Id$. • A square is a word w = w[1]w[2]...w[2n] such that

w[1]w[2]...w[n] = w[n+1]w[n+2]...w[2n].

Patterns

• A palindrome is a word w = w[1]w[2]...w[n] such that

$$w[1]w[2]...w[n] = w[n]w[n-1]...w[1].$$

• A σ -palindrome is a word w = w[1]w[2]...w[n] such that

$$w[1]w[2]...w[n] = \sigma(w[n]w[n-1]...w[1]),$$

where σ is an involution on Alph(w) satisfying σ² = Id.
A square is a word w = w[1]w[2]...w[2n] such that

$$w[1]w[2]...w[n] = w[n+1]w[n+2]...w[2n].$$

< 回 ト く ヨ ト く ヨ ト

Counting patterns in a word

For a finite word w, let p(w), $p_{\sigma}(w)$ and s(w) denote respectively the number of distinct palindromes, σ -palindromes and squares (counting the empty word) in w.

• Palindrome : in a given position *i*, there exists one new palindromic suffix.(Droubay, Justin and Pirillo, 2001)

 $p(w) \le |w| + 1.$

• σ -palindrome : in a given position *i*, there exists one new σ -palindromic suffix.(Blondin-Masse, Brlek, Garon, and Labbe 2008, Pelantová and Starosta, 2014)

 $p_{\sigma}(w) \le |w| + 1.$

• Square : in a given position *i*, there can be two new square suffixes. (Fraenkel and Simpson, 1998)

 $s(w) \le 2|w| + 1.$

Counting patterns in a word

For a finite word w, let p(w), $p_{\sigma}(w)$ and s(w) denote respectively the number of distinct palindromes, σ -palindromes and squares (counting the empty word) in w.

• Palindrome : in a given position *i*, there exists one new palindromic suffix.(Droubay, Justin and Pirillo, 2001)

 $p(w) \le |w| + 1.$

• σ -palindrome : in a given position *i*, there exists one new σ -palindromic suffix.(Blondin-Masse, Brlek, Garon, and Labbe 2008, Pelantová and Starosta, 2014)

 $p_{\sigma}(w) \le |w| + 1.$

• Square : in a given position *i*, there can be two new square suffixes. (Fraenkel and Simpson, 1998)

$$s(w) \le 2|w| + 1.$$

ロト (過) () ティアト

Counting patterns in a word

For a finite word w, let p(w), $p_{\sigma}(w)$ and s(w) denote respectively the number of distinct palindromes, σ -palindromes and squares (counting the empty word) in w.

• Palindrome : in a given position *i*, there exists one new palindromic suffix.(Droubay, Justin and Pirillo, 2001)

 $p(w) \le |w| + 1.$

• σ -palindrome : in a given position *i*, there exists one new σ -palindromic suffix.(Blondin-Masse, Brlek, Garon, and Labbe 2008, Pelantová and Starosta, 2014)

$$p_{\sigma}(w) \le |w| + 1.$$

• Square : in a given position *i*, there can be two new square suffixes. (Fraenkel and Simpson, 1998)

$$s(w) \le 2|w| + 1.$$

An example of words with many squares

- First consideration from Fraenkel and Simpson(1998).
- For $i \ge 1$, let $q_i = 0^{i+1} 10^i 10^{i+1} 1$ and let $w_i = q_1 q_2 \dots q_i$.
- Let $s^*(w)$ denote the number of distinct nonempty squares in w.

(Fraenkel, Simpson (1998))

For the sequence $(w_i)_{i \in \mathbb{N}}$ defined as above $|w_i| = (3i^2 + 13i)/2$ and $s^*(w_i) = 3i^2/2 + \lfloor (i+1)/2 \rfloor + 7i/2 - 3$.

• Observation :

$$s^*(w_i) = |w_i| - o(\sqrt{|w_i|}).$$

An example of words with many squares

- First consideration from Fraenkel and Simpson(1998).
- For $i \ge 1$, let $q_i = 0^{i+1} 10^i 10^{i+1} 1$ and let $w_i = q_1 q_2 \dots q_i$.
- Let $s^*(w)$ denote the number of distinct nonempty squares in w.

(Fraenkel.Simpson(1998))

For the sequence $(w_i)_{i \in \mathbb{N}}$ defined as above $|w_i| = (3i^2 + 13i)/2$ and $s^*(w_i) = 3i^2/2 + \lfloor (i+1)/2 \rfloor + 7i/2 - 3$.

• Observation :

$$s^*(w_i) = |w_i| - o(\sqrt{|w_i|}).$$

-

An example of words with many squares

- First consideration from Fraenkel and Simpson(1998).
- For $i \ge 1$, let $q_i = 0^{i+1} 10^i 10^{i+1} 1$ and let $w_i = q_1 q_2 \dots q_i$.
- Let $s^*(w)$ denote the number of distinct nonempty squares in w.

Theorem (Fraenkel, Simpson(1998))

For the sequence $(w_i)_{i \in \mathbb{N}}$ defined as above $|w_i| = (3i^2 + 13i)/2$ and $s^*(w_i) = 3i^2/2 + \lfloor (i+1)/2 \rfloor + 7i/2 - 3$.

• Observation :

$$s^*(w_i) = |w_i| - o(\sqrt{|w_i|}).$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

An example of words with many squares

- First consideration from Fraenkel and Simpson(1998).
- For $i \ge 1$, let $q_i = 0^{i+1} 10^i 10^{i+1} 1$ and let $w_i = q_1 q_2 \dots q_i$.
- Let $s^*(w)$ denote the number of distinct nonempty squares in w.

Theorem (Fraenkel, Simpson(1998))

For the sequence $(w_i)_{i \in \mathbf{N}}$ defined as above $|w_i| = (3i^2 + 13i)/2$ and $s^*(w_i) = 3i^2/2 + \lfloor (i+1)/2 \rfloor + 7i/2 - 3$.

• Observation :

$$s^*(w_i) = |w_i| - o(\sqrt{|w_i|}).$$

伺い イヨト イヨト ニヨ

An example of words with many squares

- First consideration from Fraenkel and Simpson(1998).
- For $i \ge 1$, let $q_i = 0^{i+1} 10^i 10^{i+1} 1$ and let $w_i = q_1 q_2 \dots q_i$.
- Let $s^*(w)$ denote the number of distinct nonempty squares in w.

Theorem (Fraenkel, Simpson(1998))

For the sequence $(w_i)_{i \in \mathbf{N}}$ defined as above $|w_i| = (3i^2 + 13i)/2$ and $s^*(w_i) = 3i^2/2 + \lfloor (i+1)/2 \rfloor + 7i/2 - 3$.

 \bullet Observation :

$$s^*(w_i) = |w_i| - o(\sqrt{|w_i|}).$$

伺下 イヨト イヨト

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|$;
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|));$
- Lam (2013) : $s^*(w) \le 95/48|w|;$
- Deza, Franck and Thierry $(2015) : s^*(w) \le 11/6|w|;$
- Thierry (2020) : $s^*(w) \le 3/2|w|$.

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- \bullet Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|$;
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|));$
- Lam (2013) : $s^*(w) \le 95/48|w|;$
- Deza, Franck and Thierry $(2015) : s^*(w) \le 11/6|w|;$
- Thierry (2020) : $s^*(w) \le 3/2|w|$.

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- \bullet Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|;$
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|));$
- Lam (2013) : $s^*(w) \le 95/48|w|;$
- Deza, Franck and Thierry (2015) : $s^*(w) \le 11/6|w|$;
- Thierry (2020) : $s^*(w) \le 3/2|w|$.

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- \bullet Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|$;
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|));$
- Lam (2013) : $s^*(w) \le 95/48|w|;$
- Deza, Franek and Thierry (2015) : $s^*(w) \le 11/6|w|$;
- Thierry (2020) : $s^*(w) \le 3/2|w|$.

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- \bullet Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|$;
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|))$;
- Lam (2013) : $s^*(w) \le 95/48|w|$;
- Deza, Franck and Thierry (2015) : $s^*(w) \le 11/6|w|$;
- Thierry (2020) : $s^*(w) \le 3/2|w|$.

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- \bullet Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|$;
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|));$
- Lam (2013) : $s^*(w) \le 95/48|w|$;
- Deza, Franek and Thierry (2015) : s*(w) ≤ 11/6|w|;
 Thierry (2020) : s*(w) ≤ 3/2|w|.

Fraenkel-Simpson's conjecture

Conjecture (Fraenkel, Simpson (1998))

For any finite word w, one has

- \bullet Results : Any finite word w contains at least at most :
- Fraenkel, Simpson (1998) : $s^*(w) \le 2|w|$;
- Ilie (2005) : $s^*(w) \le 2|w| o(log(|w|));$
- Lam (2013) : $s^*(w) \le 95/48|w|$;
- Deza, Franck and Thierry $(2015) : s^*(w) \le 11/6|w|;$
- Thierry $(2020) : s^*(w) \le 3/2|w|$.

New result

Theorem (Brlek, Li (2022))

Any finite word w = w[1]w[2]...w[n], if we let |Alph(w)| denote the number of distinct letters in w, one has

$$s^*(w) \le |w| - |\mathrm{Alph}(w)|.$$

Moreover, if we count the empty word, then one has

 $s(w) \le |w| - |\operatorname{Alph}(w)| + 1.$

э

Rauzy graphs

- Definitions : Let w be a finite word. For any integer i satisfying $1 \le i \le |w|$, let $L_w(i)$ denote the set of length-i factors of w and let $C_w(i)$ be the cardinality of $L_w(i)$.
- The *i*-th Rauzy graph of w is $\Gamma_w(i) = \{v_w(i), e_w(i)\}$ such that

(i)
$$v_w(i) = L_w(i); e_w(i) = L_w(i+1),$$

(ii) $e \in e_w(i+1)$ from v_1 to v_2 iff there exist $\alpha, \beta \in \text{Alph}(w), y \in L_w(i-1)$ such that $v_1 = \alpha y, v_2 = y\beta, e = \alpha y\beta.$

Rauzy graphs

- Definitions : Let w be a finite word. For any integer i satisfying $1 \le i \le |w|$, let $L_w(i)$ denote the set of length-i factors of w and let $C_w(i)$ be the cardinality of $L_w(i)$.
- The *i*-th Rauzy graph of w is $\Gamma_w(i) = \{v_w(i), e_w(i)\}$ such that

(i)
$$v_w(i) = L_w(i); e_w(i) = L_w(i+1),$$

(ii) $e \in e_w(i+1)$ from v_1 to v_2 iff there exist
 $\alpha, \beta \in \text{Alph}(w), y \in L_w(i-1)$ such that
 $v_1 = \alpha y, v_2 = y\beta, e = \alpha y\beta.$

Example

• Let us consider the 3-rd Rauzy graph of the word w = bbaabababababa

Example

• Let us consider the 3-rd Rauzy graph of the word w = bbaababababababa

Facts of Rauzy graphs

• For the graph $\Gamma_w(i)$,

$|v_w(i)| = C_w(i); |e_w(i)| = C_w(i+1);$

- The Rauzy graph $\Gamma_w(i)$ is weakly connected for all $1 \le i \le |w|$.
- The Rauzy graphs Contain cycles and circuits.
- The square factors in *w* are recognised with the help of circuits.

Facts of Rauzy graphs

• For the graph $\Gamma_w(i)$,

$$|v_w(i)| = C_w(i); |e_w(i)| = C_w(i+1);$$

- The Rauzy graph $\Gamma_w(i)$ is weakly connected for all $1 \le i \le |w|$.
- The Rauzy graphs Contain cycles and circuits.
- The square factors in *w* are recognised with the help of circuits.

Facts of Rauzy graphs

• For the graph $\Gamma_w(i)$,

$$|v_w(i)| = C_w(i); |e_w(i)| = C_w(i+1);$$

- The Rauzy graph $\Gamma_w(i)$ is weakly connected for all $1 \le i \le |w|$.
- The Rauzy graphs Contain cycles and circuits.
- The square factors in *w* are recognised with the help of circuits.

Facts of Rauzy graphs

• For the graph $\Gamma_w(i)$,

$$|v_w(i)| = C_w(i); |e_w(i)| = C_w(i+1);$$

- The Rauzy graph $\Gamma_w(i)$ is weakly connected for all $1 \le i \le |w|$.
- The Rauzy graphs Contain cycles and circuits.
- The square factors in *w* are recognised with the help of circuits.

Basics on graph theory

Let G(V, E) be an oriented graph, An elementary cycle is a closed chain of distinct vertices and distinct edges, and an elementary circuit is a closed path of distinct vertices and distinct edges.

Basics on graph theory

Let G(V, E) be an oriented graph, An elementary cycle is a closed chain of distinct vertices and distinct edges, and an elementary circuit is a closed path of distinct vertices and distinct edges.

Basics of graph theory

Theorem (Berge(1973))

The number of the independent elementary cycles on a graph G with p connected components is given by the cyclomatic number

$$\chi(G) = e - v + p.$$

Corollary

For a given word w, the number of the *independent* elementary circuits on the graph $\Gamma_w(i)$ is bounded by

 $\chi(\Gamma_w(i)) = C_w(i+1) - C_w(i) + 1.$

Basics of graph theory

Theorem (Berge(1973))

The number of the independent elementary cycles on a graph G with p connected components is given by the cyclomatic number

$$\chi(G) = e - v + p.$$

Corollary

For a given word w, the number of the *independent* elementary circuits on the graph $\Gamma_w(i)$ is bounded by

$$\chi(\Gamma_w(i)) = C_w(i+1) - C_w(i) + 1.$$
How the circuits help

Let X = aab.

If w = ...a, a, b, a, a, b, ..., then, on $\Gamma_w(3)$, there exists $C_1 = \{v_1, e_1\}$, such that v_1 is all conjugates of x.

э

How the circuits help

Let X = aab. If w = ...a, a, b, a, a, b, ..., then, on $\Gamma_w(3)$, there exists $C_1 = \{v_1, e_1\}$, such that v_1 is all conjugates of x.

How the circuits help

Let X = aab. If w = ...a, a, b, a, a, b, ..., then, on $\Gamma_w(3)$, there exists $C_1 = \{v_1, e_1\}$, such that v_1 is all conjugates of x.

How the circuits help

If $w = \dots a, a, b, a, a, b, \dots a, b, a, a, b, a, \dots$, then, on $\Gamma_w(4)$, there exists $C_2 = \{v_2, e_2\}$, such that $v_2 = e_1$.

э

How the circuits help

If $w = \dots a, a, b, a, a, b, \dots a, b, a, a, b, a, \dots$, then, on $\Gamma_w(4)$, there exists $C_2 = \{v_2, e_2\}$, such that $v_2 = e_1$.

How the circuits help

If w = ...a, a, b, a, a, b, ...a, b, a, a, b, a, a, ..., then, on $\Gamma_w(5)$, there exists $C_3 = \{v_3, e_3\}$, such that $v_3 = e_2$.

3 ∃ ≥ 3

How the circuits help

If w = ...a, a, b, a, a, b, ...a, b, a, a, b, a, a, ..., then, on $\Gamma_w(5)$, there exists $C_3 = \{v_3, e_3\}$, such that $v_3 = e_2$.

How the circuits help

If $w = \dots (a, a, b)^4$, ..., then, on $\Gamma_w(9)$, there exists $C_4 = \{v_4, e_4\}$, such that v_4 is all conjugates of x^4 .

э

How the circuits help

If $w = \dots (a, a, b)^4$, ..., then, on $\Gamma_w(9)$, there exists $C_4 = \{v_4, e_4\}$, such that v_4 is all conjugates of x^4 .

How the circuits help

If $w = ...(a, a, b)^4$, a..., then the word $(aba)^4$ can be associated with $C_5 = \{v_5, e_5\}$ on $\Gamma_w(10)$ such that $v_5 = e_4$.

• • = • • = •

How the circuits help

If $w = ...(a, a, b)^4$, a..., then the word $(aba)^4$ can be associated with $C_5 = \{v_5, e_5\}$ on $\Gamma_w(10)$ such that $v_5 = e_4$.

An injection

• There exists an injection from the set of nonempty square factors of w into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Phi: \quad Sq^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

- The images of Φ are small circuits.
- A circuit C(V, E) on $\Gamma_w(i)$ is called small if it is an elementary circuit and $|V| = |E| \le i$.

Proposition

All small circuits on the same Rauzy graph are independent.

An injection

• There exists an injection from the set of nonempty square factors of w into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Phi: \quad Sq^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

- The images of Φ are small circuits.
- A circuit C(V, E) on $\Gamma_w(i)$ is called small if it is an elementary circuit and $|V| = |E| \le i$.

Proposition

All small circuits on the same Rauzy graph are independent.

An injection

• There exists an injection from the set of nonempty square factors of w into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Phi: \quad Sq^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

- The images of Φ are small circuits.
- A circuit C(V, E) on $\Gamma_w(i)$ is called small if it is an elementary circuit and $|V| = |E| \le i$.

Proposition

All small circuits on the same Rauzy graph are independent.

An injection

• There exists an injection from the set of nonempty square factors of w into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Phi: \quad Sq^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

- The images of Φ are small circuits.
- A circuit C(V, E) on $\Gamma_w(i)$ is called small if it is an elementary circuit and $|V| = |E| \le i$.

Proposition

All small circuits on the same Rauzy graph are independent.

Example

• Let us consider the 3-rd Rauzy graph of the word w = bbaabababababa

Example

• Let us consider the 3-rd Rauzy graph of the word w = bbaababababababa

End of the proof

For a given word w and an integer i satisfying $1 \le i \le |w|$,

$$Im(\Phi) \cap \Gamma_w(i)| \le \chi(\Gamma_w(i)) = C_w(i+1) - C_w(i) + 1.$$

Thus,

$$S^*(w) = \sum_{1 \le i \le |w|} |Im(\Phi) \cap \Gamma_w(i)|$$

$$\le \sum_{1 \le i \le |w|} C_w(i+1) - C_w(i) + 1$$

$$\le |w| - |Alph(w)|.$$

End of the proof

For a given word w and an integer i satisfying $1 \le i \le |w|$,

$$Im(\Phi) \cap \Gamma_w(i)| \le \chi(\Gamma_w(i)) = C_w(i+1) - C_w(i) + 1.$$

Thus,

$$S^*(w) = \sum_{1 \le i \le |w|} |Im(\Phi) \cap \Gamma_w(i)|$$

$$\leq \sum_{1 \le i \le |w|} C_w(i+1) - C_w(i) + 1$$

$$\leq |w| - |Alph(w)|.$$

Example

Example

Example

w = bbaabababababaababbba $\Gamma_w(2)$

æ

Example

w = bbaababababaababbba $\Gamma_w(2)$

æ

Example

Let us consider the 3-rd Rauzy graph of the word w = bbaabababababa $\Gamma_w(3)$

Example

Let us consider the 3-rd Rauzy graph of the word w = bbaababababababa $\Gamma_w(3)$

Example

Let us consider the 3-rd Rauzy graph of the word w = bbaabaabaababbba $\Gamma_w(3)$

Example

Let us consider the 3-rd Rauzy graph of the word w = bbaababaababbba $\Gamma_w(3)$

Example

w = bbaabaababbba $\Gamma_w(4)$

Example

w = bbaabaabaababbba $\Gamma_w(4)$

Example

w = bbaabaababbba $\Gamma_w(5)$

Shuo LI Joint work with Srečko Brlek, Francesco Dolc On the number of squares in a word 27/46

Example

w = bbaabaababbba $\Gamma_w(5)$

Shuo LI Joint work with Srečko Brlek, Francesco Dolc On the number of squares in a word 27/46

Example

w = bbaabaababbba $\Gamma_w(6)$

Example

w = bbaabaababbba $\Gamma_w(6)$

Definitions and background Proof of the new result Discussion

Square defect and some conjectures

(Non)-sharpness : reason 1

Theorem

The upper bound $s^*(w) \leq |w| - |Alph(w)|$ is not sharp.

- Reason 1 : the gaps.
- Let x = aab and $w = ...x^4...$ From our previous construction, there exists a function Φ such that $(aab)^2 \rightarrow \Gamma_w(3), (aba)^2 \rightarrow \Gamma_w(4), (baa)^2 \rightarrow \Gamma_w(5), (aab)^4 \rightarrow \Gamma_w(9).$

Definitions and background Proof of the new result Discussion

Square defect and some conjectures

(Non)-sharpness : reason 1

Theorem

The upper bound $s^*(w) \leq |w| - |Alph(w)|$ is not sharp.

• Reason 1 : the gaps.

• Let x = aab and $w = ...x^4...$ From our previous construction, there exists a function Φ such that $(aab)^2 \rightarrow \Gamma_w(3), (aba)^2 \rightarrow \Gamma_w(4), (baa)^2 \rightarrow \Gamma_w(5), (aab)^4 \rightarrow \Gamma_w(9).$

Definitions and background Proof of the new result Discussion

Square defect and some conjectures

(Non)-sharpness : reason 1

Theorem

The upper bound $s^*(w) \leq |w| - |Alph(w)|$ is not sharp.

- Reason 1 : the gaps.
- Let x = aab and $w = ...x^4...$ From our previous construction, there exists a function Φ such that $(aab)^2 \rightarrow \Gamma_w(3), (aba)^2 \rightarrow \Gamma_w(4), (baa)^2 \rightarrow \Gamma_w(5), (aab)^4 \rightarrow \Gamma_w(9).$

・ 同 ト ・ ヨ ト ・ ヨ ト
(Non)-sharpness : reason 1

But there also exist similar circuits on $\Gamma_w(6), \Gamma_w(7), \Gamma_w(8)$. On $\Gamma_w(6)$:

æ

(Non)-sharpness : reason 1

But there also exist similar circuits on $\Gamma_w(6), \Gamma_w(7), \Gamma_w(8)$. On $\Gamma_w(6)$:

→ ∃ →

- + E +

크

(Non)-sharpness : reason 1

But there also exist similar circuits on $\Gamma_w(6), \Gamma_w(7), \Gamma_w(8)$. On $\Gamma_w(6)$:

Square defect and some conjectures

(Non)-sharpness : reason 1

On $\Gamma_w(7)$:

• • = • • = •

æ

Square defect and some conjectures

(Non)-sharpness : reason 1

On $\Gamma_w(7)$:

→ ∃ →

크

Square defect and some conjectures

(Non)-sharpness : reason 1

On $\Gamma_w(8)$:

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

æ

Square defect and some conjectures

(Non)-sharpness : reason 1

On $\Gamma_w(8)$:

→

크

A generalisation

- A power is a word of the from $u^k = \underbrace{uu...u}_{k \text{ times}}$. It is also called a *k*-power, and *k* is its exponent.
- For a finite word w, let $M^*(w)$ denote the set of nonempty powers of exponent at least 2 in w.
- There exists an injection from $M^*(w)$ into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Psi: \quad M^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

A generalisation

- A power is a word of the from $u^k = \underbrace{uu...u}_{k \text{ times}}$. It is also called a *k*-power, and *k* is its exponent.
- For a finite word w, let $M^*(w)$ denote the set of nonempty powers of exponent at least 2 in w.
- There exists an injection from $M^*(w)$ into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Psi: \quad M^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

A generalisation

- A power is a word of the from $u^k = \underbrace{uu...u}_{k \text{ times}}$. It is also called a *k*-power, and *k* is its exponent.
- For a finite word w, let $M^*(w)$ denote the set of nonempty powers of exponent at least 2 in w.
- There exists an injection from $M^*(w)$ into its Rauzy graphs $\cup \Gamma_w(i)$:

$$\Psi: \quad M^*(w) \to \bigcup_{1 \le i \le |w|} \Gamma_w(i).$$

A generalisation

Theorem (Li,Pachocki and Radoszewski 2022)

For every finite word w, let $m^*(w)$ denote the number of distinct nonempty powers of exponent at least 2 in w, let $m_k^*(w)$ denote the number of distinct nonempty k-powers in w, then one has

$$m^*(w) \le |w| - |\operatorname{Alph}(w)|;$$

Moreover, for any integer $k \geq 2$,

$$m_k^*(w) \le \frac{|w| - |\operatorname{Alph}(w)|}{k - 1}$$

(Non)-sharpness : reason 2

- The Reason 1 is not critical : The w may not contain any other powers of exponent larger than 2.
- Reason 2 : Existence of other independent circuits.
- Let x = aab and let $w = ...x^2...$, then there exists the following circuit on $\Gamma_w(2)$:

(Non)-sharpness : reason 2

- The Reason 1 is not critical : The w may not contain any other powers of exponent larger than 2.
- Reason 2 : Existence of other independent circuits.
- Let x = aab and let $w = ...x^2...$, then there exists the following circuit on $\Gamma_w(2)$:

(Non)-sharpness : reason 2

- The Reason 1 is not critical : The w may not contain any other powers of exponent larger than 2.
- Reason 2 : Existence of other independent circuits.
- Let x = aab and let $w = ...x^2...$, then there exists the following circuit on $\Gamma_w(2)$:

Primitive circuits

• Let x be a primitive word and let [x] be the conjugate class of x.

• If there exists a word w such that $x^2 \in Fact(w)$ and if $|x| \ge 2$, then there exists a circuit on $\Gamma_w(|x|-1)$ such that its edge set is [x]. This circuit is called a primitive circuit.

Proposition (Li, 2022)

The primitive circuits are independent with small circuits.

Primitive circuits

- Let x be a primitive word and let [x] be the conjugate class of x.
- If there exists a word w such that $x^2 \in Fact(w)$ and if $|x| \ge 2$, then there exists a circuit on $\Gamma_w(|x|-1)$ such that its edge set is [x]. This circuit is called a primitive circuit.

Proposition (Li, 2022)

The primitive circuits are independent with small circuits.

Primitive circuits

- Let x be a primitive word and let [x] be the conjugate class of x.
- If there exists a word w such that $x^2 \in Fact(w)$ and if $|x| \ge 2$, then there exists a circuit on $\Gamma_w(|x|-1)$ such that its edge set is [x]. This circuit is called a primitive circuit.

Proposition (Li, 2022)

The primitive circuits are independent with small circuits.

(Non)-sharpness : reason 3

• Reason 3 : Simulation.

• A248958 : maximum number of distinct nonempty squares in a binary string of length n.

B(n) = 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14,15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25

Conjecture (Brlek and Li, 2022)

Let MS(n) denote the maximum number of distinct nonempty squares in a word of length n, then

$MS(n) \le \lceil n+1 - \sqrt{n} - \log_2 \sqrt{n} \rceil = Up(n).$

(Non)-sharpness : reason 3

- Reason 3 : Simulation.
- A248958 : maximum number of distinct nonempty squares in a binary string of length *n*.

$$\begin{split} B(n) = 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14, \\ 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25 \end{split}$$

Conjecture (Brlek and Li, 2022)

Let MS(n) denote the maximum number of distinct nonempty squares in a word of length n, then

 $MS(n) \leq \lceil n+1 - \sqrt{n} - \log_2 \sqrt{n} \rceil = Up(n).$

(Non)-sharpness : reason 3

- Reason 3 : Simulation.
- A248958 : maximum number of distinct nonempty squares in a binary string of length *n*.

B(n) = 0, 1, 1, 2, 2, 3, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 12, 13, 13, 14, 15, 16, 17, 18, 19, 20, 20, 21, 22, 23, 23, 24, 25

Conjecture (Brlek and Li, 2022)

Let MS(n) denote the maximum number of distinct nonempty squares in a word of length n, then

$$MS(n) \le \lceil n+1 - \sqrt{n} - \log_2 \sqrt{n} \rceil = Up(n).$$

Square defect and some conjectures

Some remarks and open questions

۲

$$\begin{split} Up(n) - B(n) &= 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, \\ &2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2 \end{split}$$

- If there exists some word w satisfying s(w) = MS(|w|), then w is a binary word?
- $MS(n+1) MS(n) \le 1$?
- How many independent circuits can a Rauzy graph contain?

Square defect and some conjectures

Some remarks and open questions

$$\begin{split} Up(n) - B(n) &= 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, \\ &2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2 \end{split}$$

- If there exists some word w satisfying s(w) = MS(|w|), then w is a binary word?
- $MS(n+1) MS(n) \le 1$?
- How many independent circuits can a Rauzy graph contain?

Square defect and some conjectures

Some remarks and open questions

$$\begin{split} Up(n) - B(n) &= 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, \\ &2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2 \end{split}$$

- If there exists some word w satisfying s(w) = MS(|w|), then w is a binary word?
- $MS(n+1) MS(n) \le 1$?
- How many independent circuits can a Rauzy graph contain?

Square defect and some conjectures

Some remarks and open questions

$$\begin{split} Up(n) - B(n) &= 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, \\ &2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 2, 2 \end{split}$$

- If there exists some word w satisfying s(w) = MS(|w|), then w is a binary word?
- $MS(n+1) MS(n) \le 1$?
- How many independent circuits can a Rauzy graph contain ?

Motivation

Theorem (Brlek, Li (2022))

Any finite word w, if we let |Alph(w)| denote the number of distinct letters in w, one has

 $s^*(w) \le |w| - |\operatorname{Alph}(w)|.$

э

Motivation

Let w be a finite word.

• The palindromic defect of w is defined to be

$$D_p(w) = |w| + 1 - p(w),$$

• The σ -palindromic defect of w is defined to be

$$D_{p_{\sigma}}(w) = |w| + 1 - p_{\sigma}(w).$$

Motivation

Let w be a finite word.

• The palindromic defect of w is defined to be

$$D_p(w) = |w| + 1 - p(w),$$

• The σ -palindromic defect of w is defined to be

$$D_{p_{\sigma}}(w) = |w| + 1 - p_{\sigma}(w).$$

BR-identity

Theorem

For any finite word w, one has

$$2D_p(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - p_w(i+1) - p_w(i),$$

where $p_w(i)$ is the number of distinct length-i palindromes in w.(Brlek, Reutenauer 2011)

$$2D_{p_{\sigma}}(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - p_{\sigma w}(i+1) - p_{\sigma w}(i),$$

where $p_{\sigma w}(i)$ is the number of distinct length-*i* σ -palindromes in w.(Reutenauer and Fest 2013)

Square defect

• Let w be a finite word, the square defect of w is defined to be

$$D_s(w) = |w| + 1 - s(w),$$

Theorem (Brlek, Dolce, Vandomme (2018))

For any finite word w, one has

$$2D_s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - s_w(i+1) - s_w(i),$$

where $s_w(i)$ is the number of distinct length-i squares in w.

A (1) < (1) < (1) </p>

Square defect

• Let w be a finite word, the square defect of w is defined to be

$$D_s(w) = |w| + 1 - s(w),$$

Theorem (Brlek, Dolce, Vandomme (2018))

For any finite word w, one has

$$2D_s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - s_w(i+1) - s_w(i),$$

where $s_w(i)$ is the number of distinct length-*i* squares in *w*.

Alternative BR-identity

$$2D_s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - s_w(i+1) - s_w(i)$$
$$\iff s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 1 - D_s(w).$$

$$s(w) \le \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 1 \iff s(w) \le |w| + 1 - |Alph(w)|.$$

Fraenkel-Simpson conjecture $\iff D_s(w) \ge 0.$

Alternative BR-identity

$$2D_s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - s_w(i+1) - s_w(i)$$
$$\iff s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 1 - D_s(w).$$

$$s(w) \leq \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 1 \iff s(w) \leq |w| + 1 - |\operatorname{Alph}(w)|.$$

Fraenkel-Simpson conjecture $\iff D_s(w) \ge 0.$

Alternative BR-identity

$$2D_s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 2 - s_w(i+1) - s_w(i)$$
$$\iff s(w) = \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 1 - D_s(w).$$

$$s(w) \le \sum_{i=0}^{|w|} C_w(i+1) - C_w(i) + 1 \iff s(w) \le |w| + 1 - |Alph(w)|.$$

Fraenkel-Simpson conjecture $\iff D_s(w) \ge 0.$

Square defect for infinite words

Let w be an infinite word, its square defect is defined to be

 $D_s(w) = \sup \left\{ D_s(p) | p \in \operatorname{Fact}(w) \right\}.$

Theorem (Brlek, Dolce, Vandomme (2018))

The square defect of any periodic word or strict standard episturmian word is infinite. The square BR-identity holds for any infinite periodic word

strict standard episturmian.

Square defect for infinite words

Let w be an infinite word, its square defect is defined to be

 $D_s(w) = \sup \left\{ D_s(p) | p \in \operatorname{Fact}(w) \right\}.$

Theorem (Brlek, Dolce, Vandomme (2018))

The square defect of any periodic word or strict standard episturmian word is infinite.

The square BR-identity holds for any infinite periodic word and strict standard episturmian.

Conjectures

Conjecture

The square defect of any infinite word is infinite.

$\operatorname{Conjecture}$

The square BR-identity holds for any infinite word.
Definitions and background Proof of the new result Discussion Square defect and some conjectures

Conjectures

Conjecture

The square defect of any infinite word is infinite.

Conjecture

The square BR-identity holds for any infinite word.

Definitions and background Proof of the new result Discussion Square defect and some conjectures

Thank you for your attention!

Shuo LI Joint work with Srečko Brlek, Francesco Dolc On the number of squares in a word 46/46