Scattered Factor Universality -Investigating Simon's Congruence

Pamela Fleischmann

One World Combinatorics on Words Seminar 2023

Example

Example

palindrome

palm

Example

Example

Example

Scattered Factors

Definition

Definition. A word $u = u[1] \cdots u[n] \in \Sigma^*$ scattered factor of $v \in \Sigma^*$ if

$$\exists x_1, \ldots x_{n+1} \in \Sigma^* : v = x_1 u[1] x_2 u[2] \cdots x_n u[n] x_{n+1}$$

abaa \sim_3 abaaa?

abaa \sim_3 abaaa?

 $\mathsf{ScatFact}_3(\mathsf{abaa})$

 $\{aaa, aba, baa\}$

abaa \sim_3 abaaa?

 $\mathsf{ScatFact}_3(\mathsf{abaa})$

 $\{aaa, aba, baa\}$

 $ScatFact_3(abaaa)$

 $\{aaa, aba, baa\}$

abaa \sim_3 abaaa?

 $ScatFact_3(abaa)$

 $\{aaa, aba, baa\}$

ScatFact₃(abaaa)

 $\{aaa, aba, baa\}$

Example

abaa \sim_3 abaaa?

 $ScatFact_3(abaa)$

 $\{aaa, aba, baa\}$

ScatFact₃(abaaa)

 $\{aaa, aba, baa\}$

abba \sim_3 baab?

Example

abaa \sim_3 abaaa?

 $ScatFact_3(abaa)$

 $\{aaa, aba, baa\}$

ScatFact₃(abaaa)

 $\{aaa, aba, baa\}$

abba \sim_3 baab?

ScatFact₃(abba)

{aba, abb, bba}

Example

abaa \sim_3 abaaa?

 $ScatFact_3(abaa)$

 $\{aaa, aba, baa\}$

ScatFact₃(abaaa)

{aaa, aba, baa}

abba \sim_3 baab?

ScatFact₃(abba)

{aba, abb, bba}

ScatFact₃(baab)

{aab,baa,bab}

Example

abaa \sim_3 abaaa?

 $ScatFact_3(abaa)$

 $\{aaa, aba, baa\}$

ScatFact₃(abaaa)

{aaa, aba, baa}

abba \sim_3 baab?

ScatFact₃(abba)

{aba, abb, bba}

ScatFact₃(baab)

{aab,baa,bab}

Comparing Words

Definition. The words *u* and *v* are Simon congruent modulo $k \in \mathbb{N}_0$ if

$$\mathsf{ScatFact}_\ell(u) = \mathsf{ScatFact}_\ell(v) \quad \text{for all } \ell \leq k$$

Comparing Words

Definition.

The words *u* and *v* are Simon congruent modulo $k \in \mathbb{N}_0$ if

 $ScatFact_{\ell}(u) = ScatFact_{\ell}(v)$ for all $\ell \leq k$

• what is the index $|\Sigma^*/ \sim_k |$ for a fixed $k \in \mathbb{N}$?

Motivation for Universality

Motivated by the classical universality problem for languages:

Motivation for Universality

Motivated by the classical universality problem for languages:

Problem. Given: $w \in \Sigma^*$, $k \in \mathbb{N}_0$ Goal: Decide whether $\text{ScatFact}_k(w) = \Sigma^k$?

Scattered Factor Universality

Definition

Definition.

A word $w \in \Sigma^*$ is called *k*-universal if

 $\operatorname{ScatFact}_k(w) = \Sigma^k$.

• $\iota(w)$ largest number k such that $ScatFact_k(w) = \Sigma^k$

Scattered Factor Universality

Definition

Definition.

A word $w \in \Sigma^*$ is called *k*-universal if

 $\mathsf{ScatFact}_k(w) = \Sigma^k.$

• $\iota(w)$ largest number k such that $ScatFact_k(w) = \Sigma^k$

• this is only a small part of the way towards the index, thus...

Scattered Factor Universality

Definition

Definition. A word $w \in \Sigma^*$ is called *m*-nearly *k*-universal if

$$\mathsf{ScatFact}_k(w)| = |\Sigma|^k - m_k$$

Examples

• abacdbaacdbadbacba is 3-universal

- abacdbaacdbadbacba is 3-universal
 - let's write it more conveniently: abacd.baacd.badbac.ba

- abacdbaacdbadbacba is 3-universal
 - let's write it more conveniently: abacd.baacd.badbac.ba
- abacdbaacdbacbaba is nearly 3-universal

- abacdbaacdbadbacba is 3-universal
 - let's write it more conveniently: abacd.baacd.badbac.ba
- abacdbaacdbacbaba is nearly 3-universal
 - let's write it more conveniently, too: abacd.baacd.bacbaba

- abacdbaacdbadbacba is 3-universal
 - let's write it more conveniently: abacd.baacd.badbac.ba
- abacdbaacdbacbaba is nearly 3-universal
 - let's write it more conveniently, too: abacd.baacd.bacbaba
 - ddd is indeed absent!

- abacdbaacdbadbacba is 3-universal
 - let's write it more conveniently: abacd.baacd.badbac.ba
- abacdbaacdbacbaba is nearly 3-universal
 - let's write it more conveniently, too: abacd.baacd.bacbaba
 - ddd is indeed absent!
 - why is it the only one?

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc
"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

"Formalisation"

aabacbcbcabcabc

a b c

 $\begin{array}{l} \text{Rest} \\ \mathsf{r}(w) = \mathsf{bc} \end{array}$

"Formalisation"

aabacbcbcabcabc

a b c

of Arches Rest $\iota(w) = 3$ r(w) = bc

"Formalisation"

aabacbcbcabcabc

a b c

of Arches Rest Modus $\iota(w) = 3$ r(w) = bc m(aabacbcbcabcabc) =

"Formalisation"

aabacbcbcabcabc

a b c

of ArchesRestModus $\iota(w) = 3$ r(w) = bcm(aabacbcbcabcabcabc) = caa

k-universal Words

Characterisation

Theorem. A word $w \in \Sigma^*$ is *k*-universal iff $\iota(w) \ge k$.

k-universal Words

Characterisation

Theorem.

A word $w \in \Sigma^*$ is *k*-universal iff $\iota(w) \ge k$.

Corollary.

All words with $\geq k$ arches are in one congruence class w.r.t.

 \sim_{k} .

Considerations

Is it possible to have only k - 2 arches?

Considerations

Is it possible to have only k - 2 arches?

Considerations

Is it possible to have only k - 2 arches?

• $a_1a_2a_3a_4a_5ba_1$ and $a_1a_2a_3a_4a_5ba_2$ not scattered factors of length 7!

Nearly *k*-universal words have k - 1 arches.

Considerations

Is it possible to have two or more missing letters in the rest?

Considerations

Is it possible to have two or more missing letters in the rest?

Considerations

Is it possible to have two or more missing letters in the rest?

• $a_1a_2a_3a_4a_5a$ and $a_1a_2a_3a_4a_5b$ not scattered factors of length 6!

Considerations

Is it possible to have two or more missing letters in the rest?

• $a_1a_2a_3a_4a_5a$ and $a_1a_2a_3a_4a_5b$ not scattered factors of length 6!

Nearly *k*-universal words have $|\Sigma| - 1$ letters in the rest.

Characterisation?

Do we have *w* nearly *k*-universal iff $\iota(w) = k - 1$ and $|alph(r(w))| = |\Sigma| - 1$?

Characterisation?

Do we have *w* nearly *k*-universal iff $\iota(w) = k - 1$ and $|alph(r(w))| = |\Sigma| - 1$?

cbbacabbccaab

• 3 arches

Characterisation?

Do we have *w* nearly *k*-universal iff $\iota(w) = k - 1$ and $|alph(r(w))| = |\Sigma| - 1$?

cbbacabbccaab

- 3 arches
- $r(w) = {ab} = \Sigma \setminus {c}$

Characterisation?

Do we have *w* nearly *k*-universal iff $\iota(w) = k - 1$ and $|alph(r(w))| = |\Sigma| - 1$?

cbbacabbccaab

• abac absent

Characterisation?

Do we have *w* nearly *k*-universal iff $\iota(w) = k - 1$ and $|alph(r(w))| = |\Sigma| - 1$?

cbbacabbccaab

- abac absent
- aaac absent

Nearly *k*-Universal

Example

bcbaaccbabcabacbcbaac

Nearly *k*-Universal

Example

bcbaaccbabcabacbcbaac

Nearly *k*-Universal

Example

bcbaaccbabcabacbcbaac
Example

bcbaaccb ab cabacbcbaac

Example

bcbaaccbabc ab acbcbaac

Example

bcbaaccbabcabac bc baac

Example

bcbaaccbabcabacbcba ac

Characterisation

Theorem. A word $w \in \Sigma^*$ is nearly *k*-universal iff 1. $\iota(w) = k - 1$ 2. for all $u \in \text{PerfUniv}_{k_1}$ and all $v \in \text{PerfUniv}_{k_2}$ with $k = k_1 + k_2 + 1$ and $x \in \Sigma^*$ with $w = uxv^R$ we have $|\text{alph}(x)| = |\Sigma| - 1$

Congruence Classes

Each word in Σ^k determines a congruence class w.r.t. \sim_k .

Congruence Classes

Each word in Σ^k determines a congruence class w.r.t. \sim_k .

|u| = |abccab| = 6

Congruence Classes

Each word in Σ^k determines a congruence class w.r.t. \sim_k .

Congruence Classes

Each word in Σ^k determines a congruence class w.r.t. \sim_k .

u = abccab

bcba.accb.abc.abac.bcba.ac is the shortlex normal form for abccab.

Shortlex Normal Form (faster) u = abccabbc b a ac сb ab С ab а b a I C $a \notin r(w^R)$ $b \notin r(w)$

Shortlex Normal Form (faster)

u = abccab

Shortlex Normal Form (faster)

u = abccab

$\alpha\beta$ -factorisation

Refinement

• first and last letter in β_i unique

- α_i to fill up arches with β_{i-1} and β_i
- letters in *α_i* arbitrarily often and permuted

Still nice

Theorem.

A word $w \in \Sigma^*$ is 2-nearly *k*-universal iff

1.
$$\iota(w) = k - 1$$
,

2. there exists $i \in [k]$ such that for all $j \in [k] \setminus \{i\}$ we have

•
$$|alph(\alpha_i(w))| = |\Sigma| - 2$$
 and

•
$$|\operatorname{alph}(\alpha_j(w))| = |\Sigma| - 1.$$

Still nice

Theorem.

A word $w \in \Sigma^*$ is 2-nearly *k*-universal iff

1.
$$\iota(w) = k - 1$$
,

2. there exists $i \in [k]$ such that for all $j \in [k] \setminus \{i\}$ we have

•
$$|\operatorname{alph}(\alpha_i(w))| = |\Sigma| - 2$$
 and

•
$$|\operatorname{alph}(\alpha_j(w))| = |\Sigma| - 1.$$

Corollary.

The 2-nearly *k*-universal words contribute $k\binom{|\Sigma|}{2}|\Sigma|^{k-1}$ congruence classes to Σ^* / \sim_k .

getting ugly

$\Sigma = \{a, b\}, k = 2$

aaaa...

getting ugly

 $\Sigma = \{a, b\}, k = 2$

aaaa...

• ab, ba, and bb absent

getting ugly

 $\Sigma = \{a, b\}, k = 2$

aaaa...

- ab, ba, and bb absent
- $\iota(w) = 0$ (not k 1!)

Characterisation

Theorem.

A word $w \in \Sigma^*$ is 3-nearly *k*-universal iff

1. either $w \in x^2 x^*$ for k = 2, $|\Sigma| = 2$, and $x \in \Sigma$ or

Characterisation

Theorem.

A word $w \in \Sigma^*$ is 3-nearly *k*-universal iff

1. either $w \in x^2 x^*$ for k = 2, $|\Sigma| = 2$, and $x \in \Sigma$ or

2.
$$\iota(w) = k - 1$$
 and

Characterisation

Theorem.

A word $w \in \Sigma^*$ is 3-nearly *k*-universal iff

1. either $w \in x^2 x^*$ for k = 2, $|\Sigma| = 2$, and $x \in \Sigma$ or

2.
$$\iota(w) = k - 1$$
 and

• there exists $i \in [k]$ with $|alph(\alpha_i(w))| = |\Sigma| - 3$ and $|alph(\alpha_i(w))| = |\Sigma| - 1$ for all $j \in [k] \setminus \{i\}$ or

Characterisation

Theorem.

A word $w \in \Sigma^*$ is 3-nearly *k*-universal iff

1. either $w \in x^2 x^*$ for k = 2, $|\Sigma| = 2$, and $x \in \Sigma$ or

2. $\iota(w) = k - 1$ and

- there exists $i \in [k]$ with $|alph(\alpha_i(w))| = |\Sigma| 3$ and $|alph(\alpha_j(w))| = |\Sigma| 1$ for all $j \in [k] \setminus \{i\}$ or
- there exists $i \in [k-1]$ with $|alph(\alpha_i(w))| = |\alpha_{i+1}(w)| = |\Sigma| 2$ and the concatenation of one pair of letters is a scattered factor of $\beta_i(w)$; all other α_i miss exactly one letter.

Repetition

k-Universality

2nd Characterisation

Theorem.

A word $w \in \Sigma^*$ is *k*-universal iff

$$ScatFact_k(w) = ScatFact_k(w^2).$$

k-Universality

2nd Characterisation

Theorem. A word $w \in \Sigma^*$ is *k*-universal iff

 $ScatFact_k(w) = ScatFact_k(w^2).$

- $\Rightarrow \sqrt{}$
- $\Leftarrow w \geq \frac{k}{2} \text{ arches} \Rightarrow \sqrt{}$
- $\leftarrow w < \frac{k}{2} \text{ arches} \Rightarrow m(w)\overline{r}m(w) \text{ or } m(w)m(w) \notin \text{ScatFact}_{\leq k}(w) \notin$

• $\iota(w) = k \Rightarrow w^n$ has at least *kn* arches

• $\iota(w) = k \Rightarrow w^n$ has at least *kn* arches

aabb

• $\iota(w) = k \Rightarrow w^n$ has at least kn arches

aabbaabb

• $\iota(w) = k \Rightarrow w^n$ has at least kn arches

aabblaabb

when do we have the additional arch?

Circular *k*-Universality

Conjugates

Definition. A word $w \in \Sigma^*$ is circular *k*-universal ($\zeta(w) = k$) if a conjugate of *w* is *k*-universal.

 $\Sigma = \{a,b,c,d\} \text{ and }$

abbccdabacdbdc

 $\Sigma = \{a,b,c,d\} \text{ and }$

abbccdabacdbdc

• not 3-universal: dda is missing

 $\Sigma = \{a,b,c,d\} \text{ and }$

abbccdabacdbdc

- not 3-universal: dda is missing
- 2-universal

Example

 $\Sigma = \{a,b,c,d\} \text{ and }$

ąbbccdabacdbdc.a

- not 3-universal: dda is missing
- 2-universal
- a conjugate is 3-universal

Example

 $\Sigma = \{a,b,c,d\} \text{ and }$

ąbbccdabacdbdc., a

- not 3-universal: dda is missing
- 2-universal
- a conjugate is 3-universal $(u, v \in \Sigma^* \text{ are conjugates iff there exist } x, y \in \Sigma^* \text{ with } u = xy \text{ and } v = yx)$

 $\iota(w^s), \zeta(w^s)$

Definition.

•
$$\iota_w(s) = \iota(w^s)$$
 and $\zeta_w(s) = \zeta(w^s)$

 $\iota(w^s), \zeta(w^s)$

Definition.

•
$$\iota_w(s) = \iota(w^s)$$
 and $\zeta_w(s) = \zeta(w^s)$

Definition.

•
$$\iota_w(s) = \iota(w^s)$$
 and $\zeta_w(s) = \zeta(w^s)$

•
$$\nabla \iota_w(s) = \iota_w(s) - \iota_w(s-1)$$
 (growth of the universality w.r.t. powers)

Repetitions

$\iota(w^s), \zeta(w^s)$

Definition.

•
$$\iota_w(s) = \iota(w^s)$$
 and $\zeta_w(s) = \zeta(w^s)$

• $\nabla \iota_w(s) = \iota_w(s) - \iota_w(s-1)$ (growth of the universality w.r.t. powers)

Theorem.

$$w\in\Sigma^{\geq k}$$
, $s\in\mathbb{N}$

• if
$$\zeta(w) = \iota(w) + 1$$
 then $\iota(w^s) = s \cdot \iota(w) + s - 1$

Repetitions

$\iota(W^s), \zeta(W^s)$

Definition.

•
$$\iota_w(s) = \iota(w^s)$$
 and $\zeta_w(s) = \zeta(w^s)$

• $\nabla \iota_w(s) = \iota_w(s) - \iota_w(s-1)$ (growth of the universality w.r.t. powers)

Theorem.

$$w \in \Sigma^{\geq k}, s \in \mathbb{N}$$

• if $\zeta(w) = \iota(w) + 1$ then $\iota(w^s) = s \cdot \iota(w) + s - 1$
• if $|\Sigma| = 2$ then
$$\begin{cases} \iota(w^s) = s \cdot \iota(w) + s - 1, & \text{if } \zeta(w) = \iota(w) + 1, \\ \iota(w^s) = s \cdot \iota(w), & \text{otherwise} \end{cases}$$

babccaabc

• $\iota(w) = \zeta(w) = 2$

babccaabc

- $\iota(w) = \zeta(w) = 2$
- $\iota(w^2) = 5$ (2k+1)

babccaabc

- $\iota(w) = \zeta(w) = 2$
- $\iota(w^2) = 5$ (2k+1)
- $\iota(w^3) = 7$ (3k+1)

babccaabc

- $\iota(w) = \zeta(w) = 2$
- $\iota(w^2) = 5$ (2k+1)
- $\iota(w^3) = 7$ (3k+1)

When do we have $\nabla \iota_w(s) = k$ and when $\nabla \iota_w(s) = k + 1$

How to get an Equivalence?

The Rest

babccaabc ba bccaabc

How to get an Equivalence?

The Rest

babccaabc ba bccaabc

• $\iota(w^2) = \iota(w) + \iota(p^{-1}w)$

How to get an Equivalence?

The Rest

babccaabc ba bccaabc

- $\iota(w^2) = \iota(w) + \iota(p^{-1}w)$
- $p = r(w^R)^R$ is longest prefix of *w* with $\iota(p^{-1}w) = \iota(w)$

Characterisation of the Growth

 $W^{s} = W^{s-1}W$

Proposition. $\iota(wu) = \iota(w) + \iota(u) + 1$ iff $alph(r(w)r(u^{R})) = \Sigma$

Characterisation of the Growth

 $W^{s} = W^{s-1}W$

Proposition.

$$\iota(wu) = \iota(w) + \iota(u) + 1 \text{ iff alph}(r(w)r(u^{R})) = \Sigma$$

Corollary. $\nabla \iota_w(s) = \iota(w) + 1$ iff $alph(w^{s-1}r(w^R)) = \Sigma$

Characterisation of the Growth

 $W^{s} = W^{s-1}W$

Proposition.

$$\iota(wu) = \iota(w) + \iota(u) + 1$$
 iff $alph(r(w)r(u^R)) = \Sigma$

Corollary. $\nabla \iota_w(s) = \iota(w) + 1$ iff $alph(w^{s-1}r(w^R)) = \Sigma$

 $\rightsquigarrow \nabla \iota_w$ and $s \mapsto r(w^s)$ depend on each other

$s \mapsto r(w^s)$

• notice $r(w^s) = r(r(w^{s-1}w))$ $(r(w^s) = r(uw)$ for some u)

- notice $r(w^s) = r(r(w^{s-1}w))$ $(r(w^s) = r(uw)$ for some u)
- $alph(u) = alph(v) \subset \Sigma$ implies r(uw) = r(vw)

- notice $r(w^s) = r(r(w^{s-1}w))$ $(r(w^s) = r(uw)$ for some u)
- $alph(u) = alph(v) \subset \Sigma$ implies r(uw) = r(vw)
- alph(r(w^s)) = alph(r(w^t)) implies r(w^{s+i}) = r(w^{t+i}) for all i ∈ N (the converse is not true!)

- notice $r(w^s) = r(r(w^{s-1}w))$ $(r(w^s) = r(uw)$ for some u)
- $alph(u) = alph(v) \subset \Sigma$ implies r(uw) = r(vw)
- alph(r(w^s)) = alph(r(w^t)) implies r(w^{s+i}) = r(w^{t+i}) for all i ∈ N (the converse is not true!)
- $alph(r(w^s)) = alph(r(w^t)) \text{ iff } alph(r(w^{s+i})) = alph(r(w^{t+i}))$

$s \mapsto r(w^s)$

- notice $r(w^s) = r(r(w^{s-1}w))$ $(r(w^s) = r(uw)$ for some u)
- $alph(u) = alph(v) \subset \Sigma$ implies r(uw) = r(vw)
- alph(r(w^s)) = alph(r(w^t)) implies r(w^{s+i}) = r(w^{t+i}) for all i ∈ N (the converse is not true!)
- $alph(r(w^s)) = alph(r(w^t)) \text{ iff } alph(r(w^{s+i})) = alph(r(w^{t+i}))$

Proposition.

The growth of the universality index, $\nabla \iota_w$, is eventually periodic.

$s \mapsto r(w^s)$

- notice $r(w^s) = r(r(w^{s-1}w))$ $(r(w^s) = r(uw)$ for some u)
- $alph(u) = alph(v) \subset \Sigma$ implies r(uw) = r(vw)
- alph(r(w^s)) = alph(r(w^t)) implies r(w^{s+i}) = r(w^{t+i}) for all i ∈ N (the converse is not true!)
- $alph(r(w^s)) = alph(r(w^t)) \text{ iff } alph(r(w^{s+i})) = alph(r(w^{t+i}))$

Proposition.

The growth of the universality index, $\nabla \iota_w$, is eventually periodic.

Notice: $|\{alph(r(w^s))|s \in \mathbb{N}_0\}| \le |\Sigma|$

Theorem. For all $w \in \Sigma^*$ there exist $s, t \in [|\Sigma|]$ with s < t such that 1. $r(w^{s+i}) = r(w^{t+i})$ for all $i \in \mathbb{N}$,

Periodicity

Theorem.

For all $w \in \Sigma^*$ there exist $s, t \in [|\Sigma|]$ with s < t such that

1.
$$r(w^{s+i}) = r(w^{t+i})$$
 for all $i \in \mathbb{N}$,

2.
$$alph(r(w^{s+i})) = alph(r(w^{t+i}))$$
 for all $i \in \mathbb{N}$,

Periodicity

Theorem.

For all $w \in \Sigma^*$ there exist $s, t \in [|\Sigma|]$ with s < t such that

1.
$$r(w^{s+i}) = r(w^{t+i})$$
 for all $i \in \mathbb{N}$,

2.
$$alph(r(w^{s+i})) = alph(r(w^{t+i}))$$
 for all $i \in \mathbb{N}$,

3.
$$\nabla \iota_w(s+i) = \nabla \iota_w(t+i)$$
 for all $\in \mathbb{N}$

Periodicity

Theorem.

For all $w \in \Sigma^*$ there exist $s, t \in [|\Sigma|]$ with s < t such that

1.
$$r(w^{s+i}) = r(w^{t+i})$$
 for all $i \in \mathbb{N}$,

2.
$$alph(r(w^{s+i})) = alph(r(w^{t+i}))$$
 for all $i \in \mathbb{N}$

3.
$$\nabla \iota_w(s+i) = \nabla \iota_w(t+i)$$
 for all $\in \mathbb{N}$

• \rightsquigarrow beginning at s + 1, $\nabla \iota_w$ has period t - s

 $s\mapsto r(w^s)$

• we investigated $w^s = w^{s-1}w$

- we investigated $w^s = w^{s-1}w$
- what if we change to $w^s = ww^{s-1}$?

 $s \mapsto r(w^s)$

- we investigated $w^s = w^{s-1}w$
- what if we change to $w^s = ww^{s-1}$?

Lemma. $r(w^s) \neq r(w^{s+3})$

$$f(w^s) \neq r(w^{s+1})$$
 then

•
$$\nabla \iota_w(s+1) = \iota(w)$$
 iff $r(w^s)$ is suffix of $r(w^{s+1})$

 $s \mapsto r(w^s)$

- we investigated $w^s = w^{s-1}w$
- what if we change to $w^s = ww^{s-1}$?

Lemma.

 $r(w^s) \neq r(w^{s+1})$ then

- $\nabla \iota_w(s+1) = \iota(w)$ iff $r(w^s)$ is suffix of $r(w^{s+1})$
- $\nabla \iota_w(s+1) = \iota(w) + 1$ iff $r(w^{s+1})$ is suffix of $r(w^s)$

•
$$\nabla \iota_w(s+1) = \iota(w)$$
 iff $alph(r(w^s)) \subset alph(r(w^{s+1}))$

Corollary. alph
$$(r(w^{s})) \neq alph(r(w^{s+1}))$$
 then

Alphabet

Alphabet

Corollary. $alph(r(w^s)) \neq alph(r(w^{s+1}))$ then

- $\nabla \iota_w(s+1) = \iota(w)$ iff $alph(r(w^s)) \subset alph(r(w^{s+1}))$
- $\nabla \iota_w(s+1) = \iota(w) + 1$ iff $alph(r(w^{s+1})) \subset alph(r(w^s))$

Corollary. $alph(r(w^s)) \neq alph(r(w^{s+1}))$ then

- $\nabla \iota_w(s+1) = \iota(w)$ iff $alph(r(w^s)) \subset alph(r(w^{s+1}))$
- $\nabla \iota_w(s+1) = \iota(w) + 1$ iff $alph(r(w^{s+1})) \subset alph(r(w^s))$

When is $s \mapsto r(w^s)$ eventually constant? (~ is the corollary applicable?)

Eventually Constant

Lemma. $s \mapsto r(w^s)$ eventually constant iff $\nabla \iota_w$ eventually constant

Eventually Constant

Lemma.

 $s \mapsto r(w^s)$ eventually constant iff $\nabla \iota_w$ eventually constant

Corollary. $\zeta(w) = \iota(w) + 1$ then $s \mapsto r(w^s)$ eventually constant

Eventually Constant

Lemma.

 $s \mapsto r(w^s)$ eventually constant iff $\nabla \iota_w$ eventually constant

Corollary. $\zeta(w) = \iota(w) + 1$ then $s \mapsto r(w^s)$ eventually constant

 $\rightsquigarrow \nabla \iota_w(s) = k$ on an interval $[\ell + 1, n]$ then $alph(r(w^{\ell})) \subseteq \ldots \subseteq alph(r(w^n))$ (equivalence if the chain is strict)

Ascending

• $alph(r(w^{\ell})) \subset \ldots \subset alph(r(w^{\ell+|\Sigma|+1})) \text{ implies } |alph(r(w^{s}))| = s - \ell$ for all $s \in [\ell, \ell + |\Sigma| - 1]$

Ascending

- $alph(r(w^{\ell})) \subset \ldots \subset alph(r(w^{\ell+|\Sigma|+1})) \text{ implies } |alph(r(w^{s}))| = s \ell$ for all $s \in [\ell, \ell + |\Sigma| - 1]$
- \rightsquigarrow strictly ascending chains of length $|\Sigma|+1$ cannot exist

Chains

Ascending

- $alph(r(w^{\ell})) \subset \ldots \subset alph(r(w^{\ell+|\Sigma|+1})) \text{ implies } |alph(r(w^{s}))| = s \ell$ for all $s \in [\ell, \ell + |\Sigma| - 1]$
- \rightsquigarrow strictly ascending chains of length $|\Sigma|+1$ cannot exist

Proposition.

• $\nabla \iota_w(s) = \iota(w)$ for all $s \in [1, |\Sigma|]$ implies $\nabla \iota_w(s) = \iota(w)$ for all $s \in \mathbb{N}$

Chains

Ascending

- $alph(r(w^{\ell})) \subset \ldots \subset alph(r(w^{\ell+|\Sigma|+1})) \text{ implies } |alph(r(w^{s}))| = s \ell$ for all $s \in [\ell, \ell + |\Sigma| - 1]$
- \rightsquigarrow strictly ascending chains of length $|\Sigma|+1$ cannot exist

Proposition.

- $\nabla \iota_w(s) = \iota(w)$ for all $s \in [1, |\Sigma|]$ implies $\nabla \iota_w(s) = \iota(w)$ for all $s \in \mathbb{N}$
- $\nabla \iota_w(s) = \iota(w)$ for all $s \in \mathbb{N}$ iff $\nabla \zeta_w(s) = \iota(w)$ for all $s \in [1, |\Sigma| 1]$

Ascending Chains

Theorem. $\iota(w) > 0$

•
$$\zeta(w) = \iota(w) + 1$$
 implies $\iota(w^s) = s\iota(w) + s - 1$

Ascending Chains

Theorem.

 $\iota(w) > 0$

- $\zeta(w) = \iota(w) + 1$ implies $\iota(w^s) = s\iota(w) + s 1$
- $\nabla \zeta_w(t) = \iota(w)$ for all $t \in [1, |\Sigma| 1]$ implies $\iota(w^s) = s\iota(w)$

Descending Chains

• $alph(r(w^{\ell})) \supset \ldots \supset alph(r(w^{\ell+|\Sigma|+1}))$ implies $|alph(r(w^{\ell+s}))| = |\Sigma| - 1 - s$ for all $s \in [0, |\Sigma| - 1]$

Descending Chains

- $alph(r(w^{\ell})) \supset \ldots \supset alph(r(w^{\ell+|\Sigma|+1}))$ implies $|alph(r(w^{\ell+s}))| = |\Sigma| 1 s$ for all $s \in [0, |\Sigma| - 1]$
- $\bullet \ \rightsquigarrow$ strictly descending chains of length $|\Sigma|$ cannot exist

Descending Chains

- alph(r(w^ℓ)) ⊃ ... ⊃ alph(r(w^{ℓ+|Σ|+1})) implies |alph(r(w^{ℓ+s}))| = |Σ| − 1 − s for all s ∈ [0, |Σ| − 1]
- $\bullet \ \rightsquigarrow$ strictly descending chains of length $|\Sigma|$ cannot exist

Theorem.

The following statements are equivalent

1.
$$\nabla \iota_w(s) = \iota(w) + 1$$
 for all $s \in [2, |\Sigma|]$

Descending Chains

- alph(r(w^ℓ)) ⊃ ... ⊃ alph(r(w^{ℓ+|Σ|+1})) implies |alph(r(w^{ℓ+s}))| = |Σ| − 1 − s for all s ∈ [0, |Σ| − 1]
- $\bullet \ \rightsquigarrow$ strictly descending chains of length $|\Sigma|$ cannot exist

Theorem.

The following statements are equivalent

1.
$$\nabla \iota_w(s) = \iota(w) + 1$$
 for all $s \in [2, |\Sigma|]$

2.
$$\nabla \iota_w(s) = \iota(w) + 1$$
 for all $s \in \mathbb{N}_{\geq 2}$

Descending Chains

- alph(r(w^ℓ)) ⊃ ... ⊃ alph(r(w^{ℓ+|Σ|+1})) implies |alph(r(w^{ℓ+s}))| = |Σ| − 1 − s for all s ∈ [0, |Σ| − 1]
- \rightsquigarrow strictly descending chains of length $|\Sigma|$ cannot exist

Theorem.

The following statements are equivalent

1.
$$\nabla \iota_w(s) = \iota(w) + 1$$
 for all $s \in [2, |\Sigma|]$

2.
$$\nabla \iota_w(s) = \iota(w) + 1$$
 for all $s \in \mathbb{N}_{\geq 2}$

3.
$$\zeta(w) = \iota(w) + 1$$

Computational Results

Theorem.

• $\iota_w(n)$ for all $n \in \mathbb{N}_0$ can be computed in constant time with a preprocessing of $\mathcal{O}(|\Sigma||w|)$

Computational Results

Theorem.

- $\iota_w(n)$ for all $n \in \mathbb{N}_0$ can be computed in constant time with a preprocessing of $\mathcal{O}(|\Sigma||w|)$
- $\zeta(w)$ can be computed in time $\mathcal{O}(|\Sigma||w|)$

Thanks to

- Laura Barker
- Sebastian Bernhard Germann
- Katharina Harwardt
- Lukas Haschke
- Annika Huch
- Florin Manea
- Annika Mayrock
- Dirk Nowotka

Thank you for your attention!