cl|Alu

Scattered Factor Universality -

Investigating Simon’s Congruence

Pamela Fleischmann

One World Combinatorics on Words Seminar 2023

m-Nearly k-Universality

What is a Scattered Factor? Example

pal indrome

What is a Scattered Factor? Example

palindrome

T

palm

What is a Scattered Factor?

palindrome

T &

palm

Example

What is a Scattered Factor?

pal indrome

T &

palm Lime

Example

What is a Scattered Factor?

pal indrome

T &

palm Lime

dome

Example

Scattered Factors

Definition

Definition.

X1, . X1 €T

A word u = u[l]---u[n] € * scattered factor of v € * if

v = xqu[l]xu[2] - - - Xpu[n]Xpa1

Simon’s Congruence Example

~k

Simon’s Congruence Example

abaa ~3 abaaa?

~k

Simon’s Congruence Example

abaa ~3 abaaa?

ScatFactz(abaa)

{aaa, aba,baa}

Simon’s Congruence Example

abaa ~3 abaaa?

ScatFactz(abaa)

{aaa, aba,baa}

ScatFactsz(abaaa)

{aaa, aba,baa}

Simon’s Congruence Example

abaa ~3 abaaa?

ScatFacts(abaa)

{aaa,aba,baa}

ScatFactz(abaaa)

{aaa, aba,baa}

Simon’s Congruence Example

abaa ~3 abaaa? abba ~3; baab?

ScatFacts(abaa)

{aaa,aba,baa}

ScatFactz(abaaa)

{aaa, aba,baa}

Simon’s Congruence

abaa ~3 abaaa?

ScatFactz(abaa)

{aaa,aba,baa}

ScatFactz(abaaa)

{aaa, aba,baa}

Example

abba ~3; baab?

ScatFactsz(abba)

{aba, abb, bba}

Simon’s Congruence

abaa ~3 abaaa?

ScatFactz(abaa)

{aaa,aba,baa}

ScatFactz(abaaa)

{aaa, aba,baa}

Example

abba ~3; baab?

ScatFactsz(abba)

{aba, abb, bba}

ScatFactz(baab)

{aab,baa,bab}

Simon’s Congruence

abaa ~3 abaaa?

ScatFactz(abaa)

{aaa, aba,baa}

ScatFactz(abaaa)

{aaa, aba,baa}

Example

abba ~3; baab?

ScatFactz(abba)

{aba, abb,bba}

ScatFactz(baab)

{aab,baa,bab}

©

Simon’s Congruence Comparing Words

Definition.
The words v and v are Simon congruent modulo k € Ny if

ScatFacty(u) = ScatFacty(v) forall ¢ <k

Simon’s Congruence Comparing Words

Definition.
The words u and v are Simon congruent modulo k € Ny if

ScatFacty(u) = ScatFacty(v) forall ¢ <k

¢ what is the index |[~*/ ~ | for a fixed k € N?

Simon's Congruence Motivation for Universality

Motivated by the classical universality problem for languages:

Simon's Congruence Motivation for Universality

Motivated by the classical universality problem for languages:

Problem.
Given: w € X*, k € Ny
Goal: Decide whether ScatFact(w) = £¥?

Scattered Factor Universality Definition

Definition.
A word w € X* is called k-universal if

ScatFact,(w) = X*.

e (w) largest number k such that ScatFacty(w) = ¥

Scattered Factor Universality Definition

Definition.
A word w € X* is called k-universal if

ScatFacty(w) = X*.

e ((w) largest number k such that ScatFact,(w) = £¥

e this is only a small part of the way towards the index, thus...

Scattered Factor Universality

Definition

Definition.

A word w € ~* is called m-nearly k-universal if

| ScatFacty(w)| = |Z|* — m.

m-nearly k-Universality Examples

e abacdbaacdbadbacba is 3-universal

m-nearly k-Universality Examples

® abacdbaacdbadbacba is 3-universal
® |et's write it more conveniently: abacd.baacd. .ba

m-nearly k-Universality Examples

® abacdbaacdbadbacba is 3-universal
® |et's write it more conveniently: abacd.baacd. .ba
e abacdbaacdbacbaba is nearly 3-universal

m-nearly k-Universality Examples

® abacdbaacdbadbacba is 3-universal
® |et's write it more conveniently: abacd.baacd. .ba
e abacdbaacdbacbaba is nearly 3-universal
¢ |et's write it more conveniently, too: abacd.baacd.bacbaba

m-nearly k-Universality Examples

® abacdbaacdbadbacba is 3-universal
® |et's write it more conveniently: abacd.baacd. .ba
e abacdbaacdbacbaba is nearly 3-universal

¢ |et's write it more conveniently, too: abacd.baacd.bacbaba
® ddd is indeed absent!

m-nearly k-Universality Examples

® abacdbaacdbadbacba is 3-universal
® |et's write it more conveniently: abacd.baacd. .ba
e abacdbaacdbacbaba is nearly 3-universal

¢ |et's write it more conveniently, too: abacd.baacd.bacbaba
® ddd is indeed absent!
® why is it the only one?

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
N4

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
N4

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
'/ 4

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
'/ 4

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
o v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc
a C

b
v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

d C

b
v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

d C

b
v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v
Rest
r(w) = bc

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v
of Arches Rest

w)=13 r(w) = bc

Arch Factorisation (Hebrard)

aabacbcbcabcabc

a b c
v v

of Arches Rest Modus
uw) =3 r(w) =bc m(aabachcbcabcabc) =

"Formalisation"

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

of Arches Rest Modus

(w)=3 r(w)=bc m(aabachcbcabcabc) =caa

k-universal Words Characterisation

Theorem.
A word w € X* is k-universal iff (W) > k.

k-universal Words Characterisation

Theorem.
A word w € X* is k-universal iff «(w) > k.

Corollary.
All words with > k arches are in one congruence class w.r.t.
Nk.

Nearly k-universal Words Considerations

Is it possible to have only k — 2 arches?

Nearly k-universal Words Considerations

Is it possible to have only k — 2 arches?

\ ar ax az. a4 as, nob '

DN V= PN 7T WS P O

Nearly k-universal Words Considerations

Is it possible to have only k — 2 arches?

\ dai, dz az. a4 as. nob .

W_/W_A

® aiayaszazasbhag and ajajazasasba, not scattered factors of length 7!

Nearly k-universal Words Considerations

Is it possible to have only k — 2 arches?

aj ap as a4 dg nob

| | | | | | |

//_/\/U_Z'

® aiayaszazasha; and ajasazasasba, not scattered factors of length 7!

Nearly k-universal words have k — 1 arches.

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

ay ap as a4 as noa,b

| | | | | | |

_/WW_A

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

\ aq a asz a4 a5 noa,b

| I | | | |
1
W\-/W\‘%

® aiajyaszazasaand ajajaszasash not scattered factors of length 6!

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

ay a as ay ds noa,b

® a;aazasasaand ajaaszasashb not scattered factors of length 6!

Nearly k-universal words have |X| — 1 letters in the rest.

Nearly k-universal Words Characterisation?

Do we have iff ?

Nearly k-universal Words Characterisation?

Do we have iff ?

cbbacabbccaab

e 3 arches

Nearly k-universal Words Characterisation?

Do we have iff 72
cbbacabbccaab
® 3 arches

* r(w) = {ab} = ¥\{c}

Nearly k-universal Words Characterisation?

Do we have iff ?

cbbacabbccaab

® abac absent

Nearly k-universal Words Characterisation?

Do we have iff ?

cbbacabbccaab

® abac absent
® gaac absent

Nearly k-Universal Example

bcbaaccbabcabacbcbaac

Nearly k-Universal Example

bc

Nearly k-Universal Example

Nearly k-Universal Example

bcbaaccb ab

Nearly k-Universal Example

bcbaaccbabe ab

Nearly k-Universal Example

bcbaaccbabcabac be

Nearly k-Universal

bcbaaccbabcabacbceba ac

Example

Nearly k-Universal Characterisation

Theorem.
A word w € £* is nearly k-universal iff
1 uw)=k-1

2. for all u € PerfUnivy, and all v € PerfUniv,, with
k = ki + k; + 1 and x € ¥* with w = uxv® we have
lalph(x)| = |£| -1

NEERVAGSRIVEIEEIRW)¢l Congruence Classes

Each word in X determines a congruence class w.r.t. ~.

NEERVAGSRIVEIEEIRW)¢l Congruence Classes

Each word in X determines a congruence class w.r.t. ~.

|u| = |abccab| =6

NEERVAGSRIVEIEEIRW)¢l Congruence Classes

Each word in X determines a congruence class w.r.t. ~.

lu| = |abccab| = 6 - 5 arches and rest

NEERVAGSRIVEIEEIRW)¢l Congruence Classes

Each word in X determines a congruence class w.r.t. ~.

l_/ﬁ_/ﬁ_/ﬁ\/ﬁ\/ﬁw
lu| = |abccab| = 6 d 5 arches and rest

Shortlex Normal Form u = abccab

Shortlex Normal Form u = abccab

A e & S / L S SR S\ TP

Shortlex Normal Form u = abccab

e /118 i i

S S FEaass O

Shortlex Normal Form u = abccab

e /118 de. o

S S SEas \ O

Shortlex Normal Form u = abccab

e /118 fe. i

T " v\

Shortlex Normal Form u = abccab

e /118 fe. i

S —
b ¢ r(w)

Shortlex Normal Form u = abccab

| it e _Tola

vl ~_gry. 7
b & r(w)

Shortlex Normal Form u = abccab

Qe v [fele, [ols

~71 V1 "~ gFy-— T F
b & r(w)

Shortlex Normal Form u = abccab

Qe v [fele, [ols

~71 V1 "~ gFy-— T F
b & r(w)

Shortlex Normal Form u = abccab

0= [o 7/ - _tole
A= YO /7 s
b ¢ r(w)

Shortlex Normal Form u = abccab

LY

Bla [elo 7/ - _tole
A= YO [7 S
b ¢ r(w)

Shortlex Normal Form u = abccab
“Tele felv. Yo Yale ol
IS = S S 7 2 S S SR

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
elsle Telo Yol Yale Iola
IS = S S 7 2 S S SR

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
e fble ac el [6] [ale, fols_
WA S/ Z7 S S SR

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
oo [Bla e [elo v [fale ol

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
oo [bla, ac [elo, b [e manm = I
SN = S e SNy /= "N

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
oo [bla, ac [elo, b [e mmm = I
SN = S e SNy /= "N

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
oc [Bla, ac [elb,ab ;*a e

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form u = abccab
oc o], ac [elb, ab ;*a e
AN SV SN

a ¢ r(wf) b ¢ r(w)

bcba.accb.abec.abac.beba.ac is the shortlex normal form for abccab.

Shortlex Normal Form (faster) u = abccab

Ve
e /1 i i
o

~1 N~ gry.— —
a ¢ r(wF)

Shortlex Normal Form (faster) u = abccab

‘n- i i
v

vvv
a ¢ r(wh)

Shortlex Normal Form (faster) u = abccab

_/WW\%'
wk)

aé¢r(

Shortlex Normal Form (faster) u = abccab

h
\/WW\%‘
wk)

aé¢r(

Shortlex Normal Form (faster) u = abccab

“be [p]a_ac [e]b 0 i

a ¢ r(wF)

Shortlex Normal Form (faster) u = abccab

Kb?a ac [c]b_ ab]]

a ¢ r(wF)

Shortlex Normal Form (faster) u = abccab

bc a ac (c|b ab C
cbe ola ac [elo v [6] fale

a ¢ r(wF)

Shortlex Normal Form (faster) u = abccab

bc a ac (c|b ab C
“be [ola, ac [elo v [6] av [a]e

a ¢ r(wF)

Shortlex Normal Form (faster) u = abccab

bc a ac |c|b ab a
e [pla, ac[elo o> [G]avfale, [ola,

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form (faster) u = abccab

bc a ac |c|b ab a
ve [bla, ac [e]o v [6] av [alc be[pla,

a ¢ r(wk) b ¢ r(w)

Shortlex Normal Form (faster) u = abccab

bc a ac (c|b ab aac
“oe ola, ac felo, b [€] ab [alc, e fo]a

a ¢ r(wk) b¢ f(W)

Shortlex Normal Form (faster) u = abccab

bc a ac [c|b ab aac
“oe ola, ac [elo, b [€] ab [alc, ve fola

a ¢ r(wk) b¢ f(W)

a5-Factorisation Refinement

a-factorisation Refinement

o (%) 39 (6% 3z Oy 3 Qs s (e 73

a-factorisation Refinement

S B mmm Bs ‘
WM
® «; to fill up arches with 5,_4 and 5;

e first and last letter in 8; unique e |etters in o arbitrarily often and
permuted

2-Nearly k-Universal Still nice

Theorem.
A word w € ~*is 2-nearly k-universal iff
1. (w)=k—-1,

2. there exists i € [k] such that for all j € [k]\{i} we have
® |alph(«j(w))| = |Z| — 2 and
* [alph(oj(w)) = =] — 1.

2-Nearly k-Universal Still nice

Theorem.
A word w € ¥*is 2-nearly k-universal iff
1. uw)=k-1,

2. there exists i € [k] such that for all j € [k]\{/} we have
® |alph(«j(w))| = |X| — 2 and
* [alph(ey(w)) = =] — 1.

Corollary.
The 2-nearly k-universal words contribute k(%!)|Z[*~1 con-
gruence classes to ¥*/ ~.

3-Nearly k-Universal getting ugly

> ={a,b}, k=2

dddad. ..

3-Nearly k-Universal getting ugly

¥ ={a,b}, k=2

dddd. ..

® ab, ba, and bb absent

3-Nearly k-Universal getting ugly

¥ ={a,b}, k=2

dddd. ..

® ab, ba, and bb absent
e ,(w) =0 (not k — 1!)

3-Nearly k-Universal Characterisation

Theorem.
A word w € £* is 3-nearly k-universal iff

1. eitherw € x’x* fork =2, |X| = 2,and x € ¥ or

3-Nearly k-Universal Characterisation

Theorem.

A word w € £* is 3-nearly k-universal iff
1. eitherw € x’x* fork =2, |X| = 2,and x € ¥ or
2. ((w)=k—-1and

3-Nearly k-Universal Characterisation

Theorem.
A word w € £* is 3-nearly k-universal iff

1. eitherw € x’x* fork =2, |X| = 2,and x € ¥ or
2. ((w)=k—-1and
¢ there exists i € [k] with |alph(«;(w))| = |X| — 3 and
lalph(aj(w))| = |X| — 1 forallj e [k]\{i} or

3-Nearly k-Universal Characterisation

Theorem.
A word w € £* is 3-nearly k-universal iff
1. eitherw € x’x* fork =2, |X| = 2,and x € ¥ or
2. ((w)=k—-1and
¢ there exists i € [k] with |alph(«;(w))| = |X| — 3 and
lalph(aj(w))| = |X| — 1 forallj e [k]\{i} or
e there exists j € [k — 1] with
lalph(ai(w))| = |air1(w)| = |X| — 2 and the
concatenation of one pair of letters is a scattered
factor of 5i(w); all other a; miss exactly one letter.

3-Nearly k-Universal Example

_/WU !

notb,c not a,b

3-Nearly k-Universal Example

abd bdc _ad Badc_cd “dab_abc “cd abd
\-/WU 1

notb, c not a,b

absent:
e ccbdc

3-Nearly k-Universal Example

abd bdc _ad Badc_cd “dab_abc “cd abd
\-/WU 1

notb, c not a,b

absent:
e ccbdc
e ccadc

3-Nearly k-Universal Example

abd bdc _ad Badc_cd “dab_abc “cd abd
\-/WU 1

notb, c not a,b

absent:
e ccbdc
® ccadc
® cbbdc

Repetition

k—UniversaIity 2nd Characterisation

Theorem.
A word w € X* is k-universal iff

ScatFact,(w) = ScatFact,(w?).

k—UniversaIity 2nd Characterisation

Theorem.
A word w € X* is k-universal iff

ScatFact(w) = ScatFact,(w?).

.:>\/

* <=w> %arches =/
e —w< % arches = m(w)rm(w) or m(w)m(w) ¢& ScatFact<,(w) 4

Universality of Repetitions

¢ ,(w) = k= w" has at least kn arches

Universality of Repetitions

® (w) = k= w" has at least kn arches

aabb

Universality of Repetitions

® ((w) = k= w" has at least kn arches

aabblaabb

Universality of Repetitions

® (w) = k= w" has at least kn arches
aabbjaabb

when do we have the additional arch?

Circular k-Universality Conjugates

Definition.
Awordw € X*iscircular k-universal (((w) = k) if a conjugate
of w is k-universal.

Y ={a,b,c,d} and

abbccdabacdbdc

Y ={a,b,c,d} and

abbccdabacd

® not 3-universal: dda is missing

Y ={a,b,c,d} and
abbccd bdc

® not 3-universal: dda is missing
® 2-universal

Y ={a,b,c,d} and

abbccda bdc-a

N) A

e not 3-universal: dda is missing
e 2-universal
® 3 conjugate is 3-universal

Y ={a,b,c,d} and

abbccda bdc-a

I) A

® not 3-universal: dda is missing
e 2-universal

® a conjugate is 3-universal (u,v € L* are conjugates iff there exist x,y € ©*
with u = xy and v = yx)

Repetitions (w*), ¢(w?)

Definition.

® w(s) = u«(w?) and (u(s) = ((w*)

Repetitions (w*), ¢(w?)

Definition.

® w(s) = u«(w?) and (u(s) = ((w*)

Repetitions (w*), ¢(w?)

Definition.

® w(s) = u«(w?) and (u(s) = ((w*)

® Viy(s) = tw(s) — tw(s — 1) (growth of the universality w.r.t. powers)

Repetitions (w*), ¢(w?)

Definition.
® 1,(5) = t(w®) and (u(s) = C(W*)
® Viy(s) = tw(s) — tw(s — 1) (growth of the universality w.r.t. powers)

Theorem.
weYzkseN

o if ((w) =(w)+1then(w’) =5s-1(w)+s—1

Repetitions (w*), ¢(w?)

Definition.
® 1,(5) = t(w®) and (u(s) = C(W*)
® Viy(s) = tw(s) — tw(s — 1) (growth of the universality w.r.t. powers)

Theorem.
weYzkseN

o if ((w) =(w)+1then(w’) =5s-1(w)+s—1
(W) =s-uw)+s—1, if(w)=1(w)+1,

e if |X| = 2 then
= {L(WS) =5s-uw), otherwise

Example Converse Statements

babc C

Example Converse Statements

babc C

* (w)=((w)=2
o (W) =5 (2k+1)
o (W3) =7 (3k+l)

Converse Statements

* (w)=((w)=2
o (W) =5 (2k+1)
o (W3 =7 (3k+1)

When do we have Vi, (s) = k and when Vi, (s) = k + 1

babc

C

Converse Statements

How to get an Equivalence? The Rest

babc c ba bcca

p

How to get an Equivalence? The Rest

babc c . ba bcca

p

o o(w?) = (W) + u(p~tw)

How to get an Equivalence? The Rest

babc c . ba bcca

p

o (W) =u(w)+u(p7tW)
e p = r(wR)Ris longest prefix of w with +(p~1w) = «(w)

Characterisation of the Growth ws = wslw

Proposition.
v(wu) = o(w) + o(u) + Liff alph(r(w)r(uf)) = £

Characterisation of the Growth

Proposition.
v(wu) = o(w) + o(u) + Liff alph(r(w)r(uf)) = £

Corollary.
Viw(s) = o(w) + Liff alph(w*=1r(wf)) = £

| W row) | vy

>z

Characterisation of the Growth ws = wslw

Proposition.
v(wu) = o(w) + o(u) + Liff alph(r(w)r(uf)) = X

Corollary.
Viw(s) = o(w) + Liff alph(w*=1r(wf)) = £

| w row) | vy 112 |

D

~+ Vi, and s — r(w*) depend on each other

Remainder Function s = r(w?)

e notice r(w®) = r(r(w*~*w)) (r(w*) = r(uw) for some u)

Remainder Function s = r(w?)

e notice r(w®) = r(r(w*~*w)) (r(w*) = r(uw) for some u)
® alph(u) = alph(v) C X implies r(uw) = r(vw)

Remainder Function s = r(w?)

e notice r(w®) = r(r(w*~*w)) (r(w*) = r(uw) for some u)

¢ alph(u) = alph(v) C X implies r(uw) = r(vw

* alph(r(ws)) = alph(r(w?)) implies r(w**") = r(w!*") for all € N
(the converse is not true!)

Remainder Function s = r(w?)

e notice r(w®) = r(r(w*~*w)) (r(w*) = r(uw) for some u)

¢ alph(u) = alph(v) C X implies r(uw) = r(vw

* alph(r(ws)) = alph(r(w?)) implies r(w**") = r(w!*") for all € N
(the converse is not true!)

* alph(r(w*)) = alph(r(w")) iff alph(r(w**')) = alph(r(w*"))

Remainder Function s = r(w?)

e notice r(w®) = r(r(w*=tw)) (r(w%) = r(uw) for some v)

¢ alph(u) = alph(v) C X implies r(uw) = r(vw)

e alph(r(w?®)) = alph(r(w?)) implies r(ws*') = r
(the converse is not true!)

e alph(r(w")) = alph(r(w")) iff alph(r(w*+)) = alph(r(w*+"))

(wit) foralli € N

Proposition.
The growth of the universality index, V., is eventually periodic.

Remainder Function s = r(w?)

e notice r(w®) = r(r(w*=tw)) (r(w*) = r(uw) for some v)

® alph(u) = alph(v) C X implies r(uw) = r(vw)

e alph(r(w®)) = alph(r(w?)) implies r(w**") = r(w'*') for all i € N
(the converse is not true!)

o alph(r(w*)) = alph(r(w")) iff alph(r(w*+)) = alph(r(w!*"))

Proposition.
The growth of the universality index, V., is eventually periodic.

Notice: [{alph(r(w®))|s € No}| < |Z]

Periodicity

Theorem.
Forall w € ¥* there exist s, t € [|X|] with s < t such that

1. r(w*t) = r(w!*) for all j € N,

Periodicity

Theorem.
Forall w € ¥* there exist s, t € [|X|] with s < t such that

1. r(w*t) = r(w!*) for all j € N,
2. alph(r(ws*')) = alph(r(w!*')) for all i € N,

Periodicity

Theorem.
Forall w € ¥* there exist s, t € [|X|] with s < t such that

1. r(w*t) = r(w!*) for all j € N,
2. alph(r(ws*')) = alph(r(w!*')) for all i € N,
3. Viw(s+i)=Viu(t+i)foralle N

Periodicity

Theorem.
Forall w € ¥* there exist s, t € [|X|] with s < t such that

1. r(w*t) = r(w!*) for all j € N,
2. alph(r(ws*')) = alph(r(w!*')) for all i € N,
3. Viw(s+i)=Viu(t+i)foralle N

® - beginning ats + 1, Vi, has period t — s

Remainder Function I s = r(w?)

e we investigated w® = w* 1w

Remainder Function I s = r(w?)

e we investigated w® = w* 1w
e what if we change to w® = wws~1?

Remainder Function I s = r(w?)

e we investigated w® = w*~ 1w

¢ what if we change to w® = ww*~1?

Lemma.
r(w) # r(wst1) then
® Viy(s+1) = o(w) iff r(w?) is suffix of r(ws+1)

Remainder Function I s = r(w?)

e we investigated w® = w*~ 1w

¢ what if we change to w® = ww*~1?

Lemma.
r(w) # r(wst1) then
® Viy(s+1) = o(w) iff r(w?) is suffix of r(ws+1)
® Viy(s+1) = o(w) + Liff r(w™1) is suffix of r(ws)

Remainder Function Il Alphabet

Corollary.
alph(r(w®)) # alph(r(ws*1)) then
® Viy(s+1) = «(w) iff alph(r(w®)) C alph(r(w**1))

Remainder Function Il Alphabet

Corollary.
alph(r(w?)) # alph(r(w**1)) then
® Viy(s+1) = «(w) iff alph(r(w®)) C alph(r(w**1))
® Viy(s+1) = «(w) + Liff alph(r(w1)) C alph(r(w®))

Remainder Function I

Alphabet

Corollary.
alph(r(w®)) # alph(r(ws*1)) then
® Viy(s+ 1) = «(w) iff alph(r(w®)) C alph(r(w1))
® Viy(s+ 1) =u(w) + 1iff alph(r(w"1)) c alph(r(w®))

When is s — r(w*) eventually constant? (~ is the corollary applicable?)

Remainder Function Il Eventually Constant

Lemma.
s — r(w?) eventually constant iff V., eventually constant

Remainder Function Il Eventually Constant

Lemma.
s — r(w*) eventually constant iff V.,, eventually constant

Corollary.
¢(w) = «(w) + 1 then s — r(w*) eventually constant

Remainder Function Il Eventually Constant

Lemma.
s — r(w?) eventually constant iff V.,, eventually constant

Corollary.
¢(w) = 1(w) + 1 then s — r(w?®) eventually constant

~~ Viy(s) = k on an interval [¢ + 1,n] then alph(r(w%)) C ... C alph(r(w"))
(equivalence if the chain is strict)

Chains Ascending

e alph(r(w)) c ... c alph(r(w!*/>I+1)) implies |alph(r(w®))| = s — ¢
forallse [¢,0+ |X| — 1]

Chains Ascending

e alph(r(w)) c ... c alph(r(w!*/>I+1)) implies |alph(r(w®))| = s — ¢
forallse [¢,0+ |X| — 1]
® - strictly ascending chains of length |X| + 1 cannot exist

Chains Ascending

e alph(r(w)) C ... C alph(r(w!t/>*1)) implies |alph(r(w®))| = s — ¢
forallse [¢,0+ |X| — 1]
e - strictly ascending chains of length || + 1 cannot exist

Proposition.
® Viy(s) = u(w) forall s € [1,|X]] implies Viy(s) = «(w) forall s € N

Chains Ascending

e alph(r(w)) C ... C alph(r(w!t/>*1)) implies |alph(r(w®))| = s — ¢
forallse [¢,0+ |X| — 1]
e - strictly ascending chains of length || + 1 cannot exist

Proposition.
® Viy(s) = u(w) forall s € [1,|X]] implies Viy(s) = «(w) forall s € N
® Viy(s) = u(w) forall s € Niff V(,(s) = «(w) forall s € [1, |X| — 1]

Generalisation | Ascending Chains

Theorem.
t(w) >0
® ((w)=1uw)+1implies t(w*) =su(w) +5s—1

Generalisation | Ascending Chains

Theorem.
t(w) >0
® ((w)=1uw)+1implies t(w*) =su(w) +5s—1
® V(u(t) =(w) forall t € [1,|X| — 1] implies t(W*) = su(w)

Generalisation |l Descending Chains

e alph(r(w)) o ... D alph(r(w!*!>+1)) implies |alph(r(w‘*))| = |£| =1 —s
for alls € [0, || — 1]

Generalisation |l Descending Chains

e alph(r(w)) o ... D alph(r(w!*!>+1)) implies |alph(r(w‘*))| = |£| =1 —s
foralls € [0, |X| — 1]
® - strictly descending chains of length |X| cannot exist

Generalisation |l Descending Chains

e alph(r(w’)) o ... D alph(r(w*1*I+1)) implies |alph(r(W/**))| = |Z| -1 —s
foralls € [0,|X]| — 1]
e - strictly descending chains of length |X| cannot exist

Theorem.
The following statements are equivalent

1. Viy(s) = u(w)+1foralls e [2,|X]]

Generalisation |l Descending Chains

e alph(r(w’)) o ... D alph(r(w*1*I+1)) implies |alph(r(W/**))| = |Z| -1 —s
foralls € [0,|X]| — 1]
e - strictly descending chains of length |X| cannot exist

Theorem.
The following statements are equivalent

1. Viy(s) = u(w)+1foralls e [2,|X]]
2. Viy(s) =v(w) +1foralls € N>,

Generalisation |l

e alph(r(w’)) o ... D alph(r(w*1*I+1)) implies |alph(r(W/**))| = |Z| -1 —s
foralls € [0,|X]| — 1]

e - strictly descending chains of length |X| cannot exist

Descending Chains

Theorem.

1. Viu(s)
2. Viy(s)
3. ¢(w) =

The following statements are equivalent

= (w) + 1foralls € [2,|X]]
=(w) + 1forall s € N>
v(w)+1

Computational Results

Theorem.

® 1y(n) forall n € Ny can be computed in constant time with a
preprocessing of O(|X||w|)

Computational Results

Theorem.

® 1y(n) forall n € Ny can be computed in constant time with a
preprocessing of O(|X||w|)

® ((w) can be computed in time O(|Z||w|)

Laura Barker

Sebastian Bernhard Germann

Katharina Harwardt
Lukas Haschke
Annika Huch

Florin Manea

Annika Mayrock
Dirk Nowotka

Thank you for your attention!

