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Scattered Factors

Definition

Definition.

X1, . X1 €T

A word u = u[l]---u[n] € * scattered factor of v € * if

v = xqu[l]xu[2] - - - Xpu[n]Xpa1
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Simon’s Congruence

abaa ~3 abaaa?

ScatFactz(abaa)

{aaa, aba,baa}

ScatFactz(abaaa)

{aaa, aba,baa}

Example

abba ~3; baab?

ScatFactz(abba)

{aba, abb,bba}

ScatFactz(baab)

{aab,baa,bab}

©



Simon’s Congruence Comparing Words

Definition.
The words v and v are Simon congruent modulo k € Ny if
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Simon’s Congruence Comparing Words

Definition.
The words u and v are Simon congruent modulo k € Ny if

ScatFacty(u) = ScatFacty(v) forall ¢ <k

¢ what is the index |[~*/ ~ | for a fixed k € N?



Simon's Congruence Motivation for Universality

Motivated by the classical universality problem for languages:



Simon's Congruence Motivation for Universality

Motivated by the classical universality problem for languages:

Problem.
Given: w € X*, k € Ny
Goal: Decide whether ScatFact(w) = £¥?
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Scattered Factor Universality Definition

Definition.
A word w € X* is called k-universal if

ScatFacty(w) = X*.

e ((w) largest number k such that ScatFact,(w) = £¥

e this is only a small part of the way towards the index, thus...



Scattered Factor Universality

Definition

Definition.

A word w € ~* is called m-nearly k-universal if

| ScatFacty(w)| = |Z|* — m.
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m-nearly k-Universality Examples

® abacdbaacdbadbacba is 3-universal
® |et's write it more conveniently: abacd.baacd. .ba
e abacdbaacdbacbaba is nearly 3-universal

¢ |et's write it more conveniently, too: abacd.baacd.bacbaba
® ddd is indeed absent!
® why is it the only one?
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Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
v v

# of Arches Rest Modus

(w)=3  r(w)=bc m(aabachcbcabcabc) =caa



k-universal Words Characterisation

Theorem.
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k-universal Words Characterisation

Theorem.
A word w € X* is k-universal iff «(w) > k.

Corollary.
All words with > k arches are in one congruence class w.r.t.
Nk.
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Nearly k-universal Words Considerations

Is it possible to have only k — 2 arches?

aj ap as a4 dg nob

| | | | | | |

\_/\_/\_/\/U\_Z'

® aiayaszazasha; and ajasazasasba, not scattered factors of length 7!

Nearly k-universal words have k — 1 arches.
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Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

ay a as ay ds noa,b

® a;aazasasaand ajaaszasashb not scattered factors of length 6!

Nearly k-universal words have |X| — 1 letters in the rest.
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Nearly k-universal Words Characterisation?

Do we have iff 72
cbbacabbccaab
® 3 arches

* r(w) = {ab} = ¥\{c}
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Nearly k-universal Words Characterisation?

Do we have iff ?

cbbacabbccaab

® abac absent
® gaac absent



Nearly k-Universal Example
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Nearly k-Universal Example
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Nearly k-Universal Example

bcbaaccbabcabac be



Nearly k-Universal

bcbaaccbabcabacbceba ac

Example



Nearly k-Universal Characterisation

Theorem.
A word w € £* is nearly k-universal iff
1 uw)=k-1

2. for all u € PerfUnivy, and all v € PerfUniv,, with
k = ki + k; + 1 and x € ¥* with w = uxv® we have
lalph(x)| = |£| -1
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NEERVAGSRIVEIEEIRW )¢l  Congruence Classes

Each word in X determines a congruence class w.r.t. ~.

l\_/ﬁ\_/ﬁ\_/ﬁ\/ﬁ\/ﬁw
lu| = |abccab| = 6 d 5 arches and rest
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Shortlex Normal Form u = abccab
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Shortlex Normal Form u = abccab
oc o], ac [elb, ab ;*a e
AN SV SN

a ¢ r(wf) b ¢ r(w)

bcba.accb.abec.abac.beba.ac is the shortlex normal form for abccab.
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Shortlex Normal Form (faster) u = abccab
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Shortlex Normal Form (faster) u = abccab

bc a ac |c|b ab a
ve [bla, ac [e]o v [6] av [alc be[pla,

a ¢ r(wk) b ¢ r(w)



Shortlex Normal Form (faster) u = abccab
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Shortlex Normal Form (faster) u = abccab

bc a ac [c|b ab aac
“oe ola, ac [elo, b [€] ab [alc, ve fola

a ¢ r(wk) b¢ f(W)
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a-factorisation Refinement

S B mmm Bs ‘
WM
® «; to fill up arches with 5,_4 and 5;

e first and last letter in 8; unique e |etters in o arbitrarily often and
permuted




2-Nearly k-Universal Still nice

Theorem.
A word w € ~*is 2-nearly k-universal iff
1. (w)=k—-1,

2. there exists i € [k] such that for all j € [k]\{i} we have
® |alph(«j(w))| = |Z| — 2 and
* [alph(oj(w)) = =] — 1.




2-Nearly k-Universal Still nice

Theorem.
A word w € ¥*is 2-nearly k-universal iff
1. uw)=k-1,

2. there exists i € [k] such that for all j € [k]\{/} we have
® |alph(«j(w))| = |X| — 2 and
* [alph(ey(w)) = =] — 1.

Corollary.
The 2-nearly k-universal words contribute k(%!)|Z[*~1 con-
gruence classes to ¥*/ ~.
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3-Nearly k-Universal getting ugly

¥ ={a,b}, k=2

dddd. ..

® ab, ba, and bb absent
e ,(w) =0 (not k — 1!)
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3-Nearly k-Universal Characterisation

Theorem.
A word w € £* is 3-nearly k-universal iff
1. eitherw € x’x* fork =2, |X| = 2,and x € ¥ or
2. ((w)=k—-1and
¢ there exists i € [k] with |alph(«;(w))| = |X| — 3 and
lalph(aj(w))| = |X| — 1 forallj e [k]\{i} or
e there exists j € [k — 1] with
lalph(ai(w))| = |air1(w)| = |X| — 2 and the
concatenation of one pair of letters is a scattered
factor of 5i(w); all other a; miss exactly one letter.
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3-Nearly k-Universal Example

abd bdc _ad Badc_cd “dab_abc “cd abd
\-/WU 1

notb, c not a,b

absent:
e ccbdc
® ccadc
® cbbdc



Repetition



k—UniversaIity 2nd Characterisation

Theorem.
A word w € X* is k-universal iff

ScatFact,(w) = ScatFact,(w?).




k—UniversaIity 2nd Characterisation

Theorem.
A word w € X* is k-universal iff

ScatFact(w) = ScatFact,(w?).

.:>\/

* <=w> %arches =/
e —w< % arches = m(w)rm(w) or m(w)m(w) ¢& ScatFact<,(w) 4



Universality of Repetitions
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Universality of Repetitions

® (w) = k= w" has at least kn arches
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Universality of Repetitions

® ((w) = k= w" has at least kn arches

aabblaabb



Universality of Repetitions

® (w) = k= w" has at least kn arches
aabbjaabb

when do we have the additional arch?



Circular k-Universality Conjugates

Definition.
Awordw € X*iscircular k-universal (((w) = k) if a conjugate
of w is k-universal.




Y ={a,b,c,d} and

abbccdabacdbdc



Y ={a,b,c,d} and

abbccdabacd

® not 3-universal: dda is missing



Y ={a,b,c,d} and
abbccd bdc

® not 3-universal: dda is missing
® 2-universal



Y ={a,b,c,d} and

abbccda bdc-a

N ) A

e not 3-universal: dda is missing
e 2-universal
® 3 conjugate is 3-universal



Y ={a,b,c,d} and

abbccda bdc-a

I ) A

® not 3-universal: dda is missing
e 2-universal

® a conjugate is 3-universal (u,v € L* are conjugates iff there exist x,y € ©*
with u = xy and v = yx)
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Definition.
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Repetitions (w*), ¢(w?)

Definition.

® w(s) = u«(w?) and (u(s) = ((w*)

® Viy(s) = tw(s) — tw(s — 1) (growth of the universality w.r.t. powers)




Repetitions (w*), ¢(w?)

Definition.
® 1,(5) = t(w®) and (u(s) = C(W*)
® Viy(s) = tw(s) — tw(s — 1) (growth of the universality w.r.t. powers)

Theorem.
weYzkseN

o if ((w) =(w)+1then(w’) =5s-1(w)+s—1




Repetitions (w*), ¢(w?)

Definition.
® 1,(5) = t(w®) and (u(s) = C(W*)
® Viy(s) = tw(s) — tw(s — 1) (growth of the universality w.r.t. powers)

Theorem.
weYzkseN

o if ((w) =(w)+1then(w’) =5s-1(w)+s—1
(W) =s-uw)+s—1, if(w)=1(w)+1,

e if |X| = 2 then
= {L(WS) =5s-uw), otherwise
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Example Converse Statements

babc C



* (w)=((w)=2
o (W) =5 (2k+1)
o (W3) =7 (3k+l)

Converse Statements



* (w)=((w)=2
o (W) =5 (2k+1)
o (W3 =7 (3k+1)

When do we have Vi, (s) = k and when Vi, (s) = k + 1

babc

C

Converse Statements



How to get an Equivalence? The Rest

babc c ba bcca

p



How to get an Equivalence? The Rest

babc c . ba bcca

p

o o(w?) = (W) + u(p~tw)



How to get an Equivalence? The Rest

babc c . ba bcca

p

o (W) =u(w)+u(p7tW)
e p = r(wR)Ris longest prefix of w with +(p~1w) = «(w)



Characterisation of the Growth ws = wslw

Proposition.
v(wu) = o(w) + o(u) + Liff alph(r(w)r(uf)) = £




Characterisation of the Growth

Proposition.
v(wu) = o(w) + o(u) + Liff alph(r(w)r(uf)) = £

Corollary.
Viw(s) = o(w) + Liff alph(w*=1r(wf)) = £

| W row) | vy

>z



Characterisation of the Growth ws = wslw

Proposition.
v(wu) = o(w) + o(u) + Liff alph(r(w)r(uf)) = X

Corollary.
Viw(s) = o(w) + Liff alph(w*=1r(wf)) = £

| w row) | vy 112 |

D

~+ Vi, and s — r(w*) depend on each other
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Remainder Function s = r(w?)

e notice r(w®) = r(r(w*~*w)) (r(w*) = r(uw) for some u)

¢ alph(u) = alph(v) C X implies r(uw) = r(vw

* alph(r(ws)) = alph(r(w?)) implies r(w**") = r(w!*") for all € N
(the converse is not true!)

* alph(r(w*)) = alph(r(w")) iff alph(r(w**')) = alph(r(w*"))



Remainder Function s = r(w?)

e notice r(w®) = r(r(w*=tw)) (r(w%) = r(uw) for some v)

¢ alph(u) = alph(v) C X implies r(uw) = r(vw)

e alph(r(w?®)) = alph(r(w?)) implies r(ws*') = r
(the converse is not true!)

e alph(r(w")) = alph(r(w")) iff alph(r(w*+)) = alph(r(w*+"))
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e notice r(w®) = r(r(w*=tw)) (r(w*) = r(uw) for some v)

® alph(u) = alph(v) C X implies r(uw) = r(vw)

e alph(r(w®)) = alph(r(w?)) implies r(w**") = r(w'*') for all i € N
(the converse is not true!)

o alph(r(w*)) = alph(r(w")) iff alph(r(w*+)) = alph(r(w!*"))

Proposition.
The growth of the universality index, V., is eventually periodic.

Notice: [{alph(r(w®))|s € No}| < |Z]
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Periodicity

Theorem.
Forall w € ¥* there exist s, t € [|X|] with s < t such that

1. r(w*t) = r(w!*) for all j € N,
2. alph(r(ws*')) = alph(r(w!*')) for all i € N,
3. Viw(s+i)=Viu(t+i)foralle N

® - beginning ats + 1, Vi, has period t — s
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¢ what if we change to w® = ww*~1?

Lemma.
r(w) # r(wst1) then
® Viy(s+1) = o(w) iff r(w?) is suffix of r(ws+1)
® Viy(s+1) = o(w) + Liff r(w™1) is suffix of r(ws)




Remainder Function Il Alphabet

Corollary.
alph(r(w®)) # alph(r(ws*1)) then
® Viy(s+1) = «(w) iff alph(r(w®)) C alph(r(w**1))




Remainder Function Il Alphabet

Corollary.
alph(r(w?)) # alph(r(w**1)) then
® Viy(s+1) = «(w) iff alph(r(w®)) C alph(r(w**1))
® Viy(s+1) = «(w) + Liff alph(r(w1)) C alph(r(w®))




Remainder Function I

Alphabet

Corollary.
alph(r(w®)) # alph(r(ws*1)) then
® Viy(s+ 1) = «(w) iff alph(r(w®)) C alph(r(w1))
® Viy(s+ 1) =u(w) + 1iff alph(r(w"1)) c alph(r(w®))

When is s — r(w*) eventually constant? (~ is the corollary applicable?)
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Remainder Function Il Eventually Constant

Lemma.
s — r(w?) eventually constant iff V.,, eventually constant

Corollary.
¢(w) = 1(w) + 1 then s — r(w?®) eventually constant

~~ Viy(s) = k on an interval [¢ + 1,n] then alph(r(w%)) C ... C alph(r(w"))
(equivalence if the chain is strict)
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e - strictly ascending chains of length || + 1 cannot exist

Proposition.
® Viy(s) = u(w) forall s € [1,|X]] implies Viy(s) = «(w) forall s € N
® Viy(s) = u(w) forall s € Niff V(,(s) = «(w) forall s € [1, |X| — 1]
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t(w) >0
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Theorem.
The following statements are equivalent
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Generalisation |l

e alph(r(w’)) o ... D alph(r(w*1*I+1)) implies |alph(r(W/**))| = |Z| -1 —s
foralls € [0,|X]| — 1]

e - strictly descending chains of length |X| cannot exist

Descending Chains

Theorem.

1. Viu(s)
2. Viy(s)
3. ¢(w) =

The following statements are equivalent

= (w) + 1foralls € [2,|X]]
=(w) + 1forall s € N>
v(w)+1




Computational Results

Theorem.

® 1y(n) forall n € Ny can be computed in constant time with a
preprocessing of O(|X||w|)




Computational Results

Theorem.

® 1y(n) forall n € Ny can be computed in constant time with a
preprocessing of O(|X||w|)

® ((w) can be computed in time O(|Z||w|)
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