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What is a Scattered Factor? Example

palindrome

palm and lime dome



Scattered Factors Definition

Definition.
A word u = u[1] · · · u[n] ∈ Σ∗ scattered factor of v ∈ Σ∗ if

∃x1, . . . xn+1 ∈ Σ∗ : v = x1u[1]x2u[2] · · · xnu[n]xn+1



Simon’s Congruence Example

∼k



Simon’s Congruence Example

abaa ∼3 abaaa?

∼k



Simon’s Congruence Example

abaa ∼3 abaaa?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k



Simon’s Congruence Example

abaa ∼3 abaaa?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}



Simon’s Congruence Example

abaa ∼3 abaaa?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}



Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}



Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa) ScatFact3(abba)

= =

{aaa,aba,baa} {aba,abb,bba}∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}



Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa) ScatFact3(abba)

= =

{aaa,aba,baa} {aba,abb,bba}∼k
ScatFact3(abaaa) ScatFact3(baab)

= =

{aaa,aba,baa} {aab,baa,bab}



Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa) ScatFact3(abba)

= =

{aaa,aba,baa} {aba,abb,bba}∼k
ScatFact3(abaaa) ScatFact3(baab)

= =

{aaa,aba,baa} {aab,baa,bab}



Simon’s Congruence Comparing Words

Definition.
The words u and v are Simon congruent modulo k ∈ N0 if

ScatFact`(u) = ScatFact`(v) for all ` ≤ k



Simon’s Congruence Comparing Words

Definition.
The words u and v are Simon congruent modulo k ∈ N0 if

ScatFact`(u) = ScatFact`(v) for all ` ≤ k

• what is the index |Σ∗/ ∼k | for a fixed k ∈ N?
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Simon’s Congruence Motivation for Universality

Motivated by the classical universality problem for languages:

Problem.
Given: w ∈ Σ∗, k ∈ N0
Goal: Decide whether ScatFactk(w) = Σk?
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Scattered Factor Universality Definition

Definition.
A word w ∈ Σ∗ is called k-universal if

ScatFactk(w) = Σk.

• ι(w) largest number k such that ScatFactk(w) = Σk

• this is only a small part of the way towards the index, thus...



Scattered Factor Universality Definition

Definition.
A word w ∈ Σ∗ is called m-nearly k-universal if

| ScatFactk(w)| = |Σ|k −m.



m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal

• let’s write it more conveniently: abacd.baacd.badbac.ba
• abacdbaacdbacbaba is nearly 3-universal

• let’s write it more conveniently, too: abacd.baacd.bacbaba
• ddd is indeed absent!
• why is it the only one?
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k-universal Words Characterisation

Theorem.
A word w ∈ Σ∗ is k-universal iff ι(w) ≥ k.

Corollary.
All words with ≥ k arches are in one congruence class w.r.t.
∼k.
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• a1a2a3a4a5ba1 and a1a2a3a4a5ba2 not scattered factors of length 7!

Nearly k-universal words have k − 1 arches.
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Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

a1 a2 a3 a4 a5 no a, b

• a1a2a3a4a5a and a1a2a3a4a5b not scattered factors of length 6!

Nearly k-universal words have |Σ| − 1 letters in the rest.
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Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

cbbacabbccaab
• 3 arches
• r(w) = {ab} = Σ\{c}
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Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

cbbacabbccaab
• abac absent
• aaac absent
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Nearly k-Universal Example

bcbaaccbabcabacbcba ac



Nearly k-Universal Characterisation

Theorem.
A word w ∈ Σ∗ is nearly k-universal iff
1. ι(w) = k − 1
2. for all u ∈ PerfUnivk1 and all v ∈ PerfUnivk2 with
k = k1 + k2 + 1 and x ∈ Σ∗ with w = uxvR we have
|alph(x)| = |Σ| − 1
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Shortlex Normal Form u = abccab

a b c c abc ac ab ab bc acb c c a b

a /∈ r(wR) b /∈ r(w)

bcba.accb.abc.abac.bcba.ac is the shortlex normal form for abccab.
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αβ-factorisation Refinement

β1 β2 β3 β4 β5α1 α2 α3 α4 α5 α6

• first and last letter in βi unique
• αi to fill up arches with βi−1 and βi
• letters in αi arbitrarily often and
permuted



2-Nearly k-Universal Still nice

Theorem.
A word w ∈ Σ∗ is 2-nearly k-universal iff
1. ι(w) = k − 1,
2. there exists i ∈ [k] such that for all j ∈ [k]\{i} we have

• |alph(αi(w))| = |Σ| − 2 and
• |alph(αj(w))| = |Σ| − 1.
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Theorem.
A word w ∈ Σ∗ is 2-nearly k-universal iff
1. ι(w) = k − 1,
2. there exists i ∈ [k] such that for all j ∈ [k]\{i} we have

• |alph(αi(w))| = |Σ| − 2 and
• |alph(αj(w))| = |Σ| − 1.

Corollary.
The 2-nearly k-universal words contribute k

(|Σ|
2

)
|Σ|k−1 con-

gruence classes to Σ∗/ ∼k.
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2. ι(w) = k − 1 and

• there exists i ∈ [k] with |alph(αi(w))| = |Σ| − 3 and
|alph(αj(w))| = |Σ| − 1 for all j ∈ [k]\{i} or

• there exists i ∈ [k − 1] with
|alph(αi(w))| = |αi+1(w)| = |Σ| − 2 and the
concatenation of one pair of letters is a scattered
factor of βi(w); all other αj miss exactly one letter.
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bdc badc dab cdabd ad cd abc abd

not b,c not a,b

absent:
• ccbdc
• ccadc
• cbbdc
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Theorem.
A word w ∈ Σ∗ is k-universal iff

ScatFactk(w) = ScatFactk(w2).



k-Universality 2nd Characterisation

Theorem.
A word w ∈ Σ∗ is k-universal iff

ScatFactk(w) = ScatFactk(w2).

• ⇒
√

• ⇐ w ≥ k
2 arches⇒

√

• ⇐ w < k
2 arches⇒ m(w)rm(w) or m(w)m(w) 6∈ ScatFact≤k(w)  
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Universality of Repetitions

• ι(w) = k⇒ wn has at least kn arches

aabb|aabb

when do we have the additional arch?



Circular k-Universality Conjugates

Definition.
Awordw ∈ Σ∗ is circular k-universal (ζ(w) = k) if a conjugate
of w is k-universal.
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Example
Σ = {a,b,c,d} and

abbccdabacdbdc·a

• not 3-universal: dda is missing
• 2-universal
• a conjugate is 3-universal (u, v ∈ Σ∗ are conjugates iff there exist x, y ∈ Σ∗

with u = xy and v = yx)
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Example Converse Statements

babccaabc
• ι(w) = ζ(w) = 2
• ι(w2) = 5 (2k+1)
• ι(w3) = 7 (3k+1)

When do we have ∇ιw(s) = k and when ∇ιw(s) = k + 1
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Proposition.
ι(wu) = ι(w) + ι(u) + 1 iff alph(r(w)r(uR)) = Σ

Corollary.
∇ιw(s) = ι(w) + 1 iff alph(ws−1r(wR)) = Σ

 ∇ιw and s 7→ r(ws) depend on each other
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• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)
• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)
• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Proposition.
The growth of the universality index, ∇ιw , is eventually periodic.

Notice: |{alph(r(ws))| s ∈ N0}| ≤ |Σ|



Periodicity

Theorem.
For all w ∈ Σ∗ there exist s, t ∈ [|Σ|] with s < t such that
1. r(ws+i) = r(wt+i) for all i ∈ N,

2. alph(r(ws+i)) = alph(r(wt+i)) for all i ∈ N,
3. ∇ιw(s+ i) = ∇ιw(t + i) for all ∈ N

•  beginning at s+ 1, ∇ιw has period t − s
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Remainder Function II Alphabet

Corollary.
alph(r(ws)) 6= alph(r(ws+1)) then
• ∇ιw(s+ 1) = ι(w) iff alph(r(ws)) ⊂ alph(r(ws+1))

• ∇ιw(s+ 1) = ι(w) + 1 iff alph(r(ws+1)) ⊂ alph(r(ws))

When is s 7→ r(ws) eventually constant? (∼ is the corollary applicable?)
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Remainder Function II Eventually Constant

Lemma.
s 7→ r(ws) eventually constant iff ∇ιw eventually constant

Corollary.
ζ(w) = ι(w) + 1 then s 7→ r(ws) eventually constant

 ∇ιw(s) = k on an interval [`+ 1, n] then alph(r(w`)) ⊆ . . . ⊆ alph(r(wn))
(equivalence if the chain is strict)



Chains Ascending
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for all s ∈ [`, `+ |Σ| − 1]

•  strictly ascending chains of length |Σ|+ 1 cannot exist
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