
Scattered Factor Universality -
Investigating Simon’s Congruence
Pamela Fleischmann

One World Combinatorics on Words Seminar 2023

m-Nearly k-Universality

What is a Scattered Factor? Example

palindrome

What is a Scattered Factor? Example

palindrome

palm

What is a Scattered Factor? Example

palindrome

palm and

What is a Scattered Factor? Example

palindrome

palm and lime

What is a Scattered Factor? Example

palindrome

palm and lime dome

Scattered Factors Definition

Definition.
A word u = u[1] · · · u[n] ∈ Σ∗ scattered factor of v ∈ Σ∗ if

∃x1, . . . xn+1 ∈ Σ∗ : v = x1u[1]x2u[2] · · · xnu[n]xn+1

Simon’s Congruence Example

∼k

Simon’s Congruence Example

abaa ∼3 abaaa?

∼k

Simon’s Congruence Example

abaa ∼3 abaaa?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k

Simon’s Congruence Example

abaa ∼3 abaaa?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}

Simon’s Congruence Example

abaa ∼3 abaaa?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}

Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa)

=

{aaa,aba,baa} ∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}

Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa) ScatFact3(abba)

= =

{aaa,aba,baa} {aba,abb,bba}∼k
ScatFact3(abaaa)

=

{aaa,aba,baa}

Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa) ScatFact3(abba)

= =

{aaa,aba,baa} {aba,abb,bba}∼k
ScatFact3(abaaa) ScatFact3(baab)

= =

{aaa,aba,baa} {aab,baa,bab}

Simon’s Congruence Example

abaa ∼3 abaaa? abba ∼3 baab?

ScatFact3(abaa) ScatFact3(abba)

= =

{aaa,aba,baa} {aba,abb,bba}∼k
ScatFact3(abaaa) ScatFact3(baab)

= =

{aaa,aba,baa} {aab,baa,bab}

Simon’s Congruence Comparing Words

Definition.
The words u and v are Simon congruent modulo k ∈ N0 if

ScatFact`(u) = ScatFact`(v) for all ` ≤ k

Simon’s Congruence Comparing Words

Definition.
The words u and v are Simon congruent modulo k ∈ N0 if

ScatFact`(u) = ScatFact`(v) for all ` ≤ k

• what is the index |Σ∗/ ∼k | for a fixed k ∈ N?

Simon’s Congruence Motivation for Universality

Motivated by the classical universality problem for languages:

Simon’s Congruence Motivation for Universality

Motivated by the classical universality problem for languages:

Problem.
Given: w ∈ Σ∗, k ∈ N0
Goal: Decide whether ScatFactk(w) = Σk?

Scattered Factor Universality Definition

Definition.
A word w ∈ Σ∗ is called k-universal if

ScatFactk(w) = Σk.

• ι(w) largest number k such that ScatFactk(w) = Σk

Scattered Factor Universality Definition

Definition.
A word w ∈ Σ∗ is called k-universal if

ScatFactk(w) = Σk.

• ι(w) largest number k such that ScatFactk(w) = Σk

• this is only a small part of the way towards the index, thus...

Scattered Factor Universality Definition

Definition.
A word w ∈ Σ∗ is called m-nearly k-universal if

| ScatFactk(w)| = |Σ|k −m.

m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal

• let’s write it more conveniently: abacd.baacd.badbac.ba
• abacdbaacdbacbaba is nearly 3-universal

• let’s write it more conveniently, too: abacd.baacd.bacbaba
• ddd is indeed absent!
• why is it the only one?

m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal
• let’s write it more conveniently: abacd.baacd.badbac.ba

• abacdbaacdbacbaba is nearly 3-universal

• let’s write it more conveniently, too: abacd.baacd.bacbaba
• ddd is indeed absent!
• why is it the only one?

m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal
• let’s write it more conveniently: abacd.baacd.badbac.ba

• abacdbaacdbacbaba is nearly 3-universal

• let’s write it more conveniently, too: abacd.baacd.bacbaba
• ddd is indeed absent!
• why is it the only one?

m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal
• let’s write it more conveniently: abacd.baacd.badbac.ba

• abacdbaacdbacbaba is nearly 3-universal
• let’s write it more conveniently, too: abacd.baacd.bacbaba

• ddd is indeed absent!
• why is it the only one?

m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal
• let’s write it more conveniently: abacd.baacd.badbac.ba

• abacdbaacdbacbaba is nearly 3-universal
• let’s write it more conveniently, too: abacd.baacd.bacbaba
• ddd is indeed absent!

• why is it the only one?

m-nearly k-Universality Examples

• abacdbaacdbadbacba is 3-universal
• let’s write it more conveniently: abacd.baacd.badbac.ba

• abacdbaacdbacbaba is nearly 3-universal
• let’s write it more conveniently, too: abacd.baacd.bacbaba
• ddd is indeed absent!
• why is it the only one?

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X X

X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X X

X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X

X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X

X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c
X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X

X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches

Rest

Modus
ι(w) = 3

r(w) = bc

m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest

Modus

ι(w) = 3 r(w) = bc

m(aabacbcbcabcabc) =caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =

caa

Arch Factorisation (Hebrard) "Formalisation"

aabacbcbcabcabc

a b c

X

X X

of Arches Rest Modus
ι(w) = 3 r(w) = bc m(aabacbcbcabcabc) =caa

k-universal Words Characterisation

Theorem.
A word w ∈ Σ∗ is k-universal iff ι(w) ≥ k.

k-universal Words Characterisation

Theorem.
A word w ∈ Σ∗ is k-universal iff ι(w) ≥ k.

Corollary.
All words with ≥ k arches are in one congruence class w.r.t.
∼k.

Nearly k-universal Words Considerations

Is it possible to have only k − 2 arches?

Nearly k-universal Words Considerations

Is it possible to have only k − 2 arches?

a1 a2 a3 a4 a5 no b

Nearly k-universal Words Considerations

Is it possible to have only k − 2 arches?

a1 a2 a3 a4 a5 no b

• a1a2a3a4a5ba1 and a1a2a3a4a5ba2 not scattered factors of length 7!

Nearly k-universal Words Considerations

Is it possible to have only k − 2 arches?

a1 a2 a3 a4 a5 no b

• a1a2a3a4a5ba1 and a1a2a3a4a5ba2 not scattered factors of length 7!

Nearly k-universal words have k − 1 arches.

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

a1 a2 a3 a4 a5 no a, b

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

a1 a2 a3 a4 a5 no a, b

• a1a2a3a4a5a and a1a2a3a4a5b not scattered factors of length 6!

Nearly k-universal Words Considerations

Is it possible to have two or more missing letters in the rest?

a1 a2 a3 a4 a5 no a, b

• a1a2a3a4a5a and a1a2a3a4a5b not scattered factors of length 6!

Nearly k-universal words have |Σ| − 1 letters in the rest.

Nearly k-universal Words Characterisation?

Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

Nearly k-universal Words Characterisation?

Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

cbbacabbccaab
• 3 arches

Nearly k-universal Words Characterisation?

Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

cbbacabbccaab
• 3 arches
• r(w) = {ab} = Σ\{c}

Nearly k-universal Words Characterisation?

Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

cbbacabbccaab
• abac absent

Nearly k-universal Words Characterisation?

Do we have w nearly k-universal iff ι(w) = k − 1 and |alph(r(w))| = |Σ| − 1?

cbbacabbccaab
• abac absent
• aaac absent

Nearly k-Universal Example

bcbaaccbabcabacbcbaac

Nearly k-Universal Example

bcbaaccbabcabacbcbaac

Nearly k-Universal Example

bcbaaccbabcabacbcbaac

Nearly k-Universal Example

bcbaaccb ab cabacbcbaac

Nearly k-Universal Example

bcbaaccbabc ab acbcbaac

Nearly k-Universal Example

bcbaaccbabcabac bc baac

Nearly k-Universal Example

bcbaaccbabcabacbcba ac

Nearly k-Universal Characterisation

Theorem.
A word w ∈ Σ∗ is nearly k-universal iff
1. ι(w) = k − 1
2. for all u ∈ PerfUnivk1 and all v ∈ PerfUnivk2 with
k = k1 + k2 + 1 and x ∈ Σ∗ with w = uxvR we have
|alph(x)| = |Σ| − 1

Nearly k-Universal Words Congruence Classes

Each word in Σk determines a congruence class w.r.t. ∼k.

|u| = |abccab| = 6 5 arches and rest

Nearly k-Universal Words Congruence Classes

Each word in Σk determines a congruence class w.r.t. ∼k.

|u| = |abccab| = 6

5 arches and rest

Nearly k-Universal Words Congruence Classes

Each word in Σk determines a congruence class w.r.t. ∼k.

|u| = |abccab| = 6 5 arches and rest

Nearly k-Universal Words Congruence Classes

Each word in Σk determines a congruence class w.r.t. ∼k.

|u| = |abccab| = 6 5 arches and rest

Shortlex Normal Form u = abccab

a

Shortlex Normal Form u = abccab

a b

Shortlex Normal Form u = abccab

a b cc

Shortlex Normal Form u = abccab

a b c cc

Shortlex Normal Form u = abccab

a b c c ac

Shortlex Normal Form u = abccab

a b c c ac

b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c ac b

b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c ac a b

b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c ac a b

b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c ac c a b

b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c ab c c a b

b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c ab c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc b c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc acb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc ac abb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc ac ab abb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc ac ab ab bcb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc ac ab ab bc acb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form u = abccab

a b c c abc ac ab ab bc acb c c a b

a /∈ r(wR) b /∈ r(w)

bcba.accb.abc.abac.bcba.ac is the shortlex normal form for abccab.

Shortlex Normal Form (faster) u = abccab

ab c

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

abc b c

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a bbc b c

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a bbc acb c

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a b cbc acb c c

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a b cbc ac abb c c

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a b c cbc ac abb c c a

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a b c cbc ac ab abb c c a

a /∈ r(wR)

Shortlex Normal Form (faster) u = abccab

a b c c abc ac ab abb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form (faster) u = abccab

a b c c abc ac ab ab bcb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form (faster) u = abccab

a b c c abc ac ab ab bc acb c c a b

a /∈ r(wR) b /∈ r(w)

Shortlex Normal Form (faster) u = abccab

a b c c abc ac ab ab bc acb c c a b

a /∈ r(wR) b /∈ r(w)

αβ-Factorisation Refinement

αβ-factorisation Refinement

β1 β2 β3 β4 β5α1 α2 α3 α4 α5 α6

αβ-factorisation Refinement

β1 β2 β3 β4 β5α1 α2 α3 α4 α5 α6

• first and last letter in βi unique
• αi to fill up arches with βi−1 and βi
• letters in αi arbitrarily often and
permuted

2-Nearly k-Universal Still nice

Theorem.
A word w ∈ Σ∗ is 2-nearly k-universal iff
1. ι(w) = k − 1,
2. there exists i ∈ [k] such that for all j ∈ [k]\{i} we have

• |alph(αi(w))| = |Σ| − 2 and
• |alph(αj(w))| = |Σ| − 1.

2-Nearly k-Universal Still nice

Theorem.
A word w ∈ Σ∗ is 2-nearly k-universal iff
1. ι(w) = k − 1,
2. there exists i ∈ [k] such that for all j ∈ [k]\{i} we have

• |alph(αi(w))| = |Σ| − 2 and
• |alph(αj(w))| = |Σ| − 1.

Corollary.
The 2-nearly k-universal words contribute k

(|Σ|
2

)
|Σ|k−1 con-

gruence classes to Σ∗/ ∼k.

3-Nearly k-Universal getting ugly

Σ = {a,b}, k = 2

aaaa . . .

3-Nearly k-Universal getting ugly

Σ = {a,b}, k = 2

aaaa . . .
• ab,ba, and bb absent

• ι(w) = 0 (not k − 1!)

3-Nearly k-Universal getting ugly

Σ = {a,b}, k = 2

aaaa . . .
• ab,ba, and bb absent
• ι(w) = 0 (not k − 1!)

3-Nearly k-Universal Characterisation

Theorem.
A word w ∈ Σ∗ is 3-nearly k-universal iff
1. either w ∈ x2x∗ for k = 2, |Σ| = 2, and x ∈ Σ or

2. ι(w) = k − 1 and

• there exists i ∈ [k] with |alph(αi(w))| = |Σ| − 3 and
|alph(αj(w))| = |Σ| − 1 for all j ∈ [k]\{i} or

• there exists i ∈ [k − 1] with
|alph(αi(w))| = |αi+1(w)| = |Σ| − 2 and the
concatenation of one pair of letters is a scattered
factor of βi(w); all other αj miss exactly one letter.

3-Nearly k-Universal Characterisation

Theorem.
A word w ∈ Σ∗ is 3-nearly k-universal iff
1. either w ∈ x2x∗ for k = 2, |Σ| = 2, and x ∈ Σ or
2. ι(w) = k − 1 and

• there exists i ∈ [k] with |alph(αi(w))| = |Σ| − 3 and
|alph(αj(w))| = |Σ| − 1 for all j ∈ [k]\{i} or

• there exists i ∈ [k − 1] with
|alph(αi(w))| = |αi+1(w)| = |Σ| − 2 and the
concatenation of one pair of letters is a scattered
factor of βi(w); all other αj miss exactly one letter.

3-Nearly k-Universal Characterisation

Theorem.
A word w ∈ Σ∗ is 3-nearly k-universal iff
1. either w ∈ x2x∗ for k = 2, |Σ| = 2, and x ∈ Σ or
2. ι(w) = k − 1 and

• there exists i ∈ [k] with |alph(αi(w))| = |Σ| − 3 and
|alph(αj(w))| = |Σ| − 1 for all j ∈ [k]\{i} or

• there exists i ∈ [k − 1] with
|alph(αi(w))| = |αi+1(w)| = |Σ| − 2 and the
concatenation of one pair of letters is a scattered
factor of βi(w); all other αj miss exactly one letter.

3-Nearly k-Universal Characterisation

Theorem.
A word w ∈ Σ∗ is 3-nearly k-universal iff
1. either w ∈ x2x∗ for k = 2, |Σ| = 2, and x ∈ Σ or
2. ι(w) = k − 1 and

• there exists i ∈ [k] with |alph(αi(w))| = |Σ| − 3 and
|alph(αj(w))| = |Σ| − 1 for all j ∈ [k]\{i} or

• there exists i ∈ [k − 1] with
|alph(αi(w))| = |αi+1(w)| = |Σ| − 2 and the
concatenation of one pair of letters is a scattered
factor of βi(w); all other αj miss exactly one letter.

3-Nearly k-Universal Example

bdc badc dab cdabd ad cd abc abd

not b,c not a,b

3-Nearly k-Universal Example

bdc badc dab cdabd ad cd abc abd

not b,c not a,b

absent:
• ccbdc

• ccadc
• cbbdc

3-Nearly k-Universal Example

bdc badc dab cdabd ad cd abc abd

not b,c not a,b

absent:
• ccbdc
• ccadc

• cbbdc

3-Nearly k-Universal Example

bdc badc dab cdabd ad cd abc abd

not b,c not a,b

absent:
• ccbdc
• ccadc
• cbbdc

Repetition

k-Universality 2nd Characterisation

Theorem.
A word w ∈ Σ∗ is k-universal iff

ScatFactk(w) = ScatFactk(w2).

k-Universality 2nd Characterisation

Theorem.
A word w ∈ Σ∗ is k-universal iff

ScatFactk(w) = ScatFactk(w2).

• ⇒
√

• ⇐ w ≥ k
2 arches⇒

√

• ⇐ w < k
2 arches⇒ m(w)rm(w) or m(w)m(w) 6∈ ScatFact≤k(w)

Universality of Repetitions

• ι(w) = k⇒ wn has at least kn arches

Universality of Repetitions

• ι(w) = k⇒ wn has at least kn arches

aabb

Universality of Repetitions

• ι(w) = k⇒ wn has at least kn arches

aabb|aabb

Universality of Repetitions

• ι(w) = k⇒ wn has at least kn arches

aabb|aabb

when do we have the additional arch?

Circular k-Universality Conjugates

Definition.
Awordw ∈ Σ∗ is circular k-universal (ζ(w) = k) if a conjugate
of w is k-universal.

Example

Σ = {a,b,c,d} and

abbccdabacdbdc

• not 3-universal: dda is missing
• 2-universal
• a conjugate is 3-universal

Example

Σ = {a,b,c,d} and

abbccdabacdbdc

• not 3-universal: dda is missing

• 2-universal
• a conjugate is 3-universal

Example

Σ = {a,b,c,d} and

abbccdabacdbdc
• not 3-universal: dda is missing
• 2-universal

• a conjugate is 3-universal

Example
Σ = {a,b,c,d} and

abbccdabacdbdc·a

• not 3-universal: dda is missing
• 2-universal
• a conjugate is 3-universal

Example
Σ = {a,b,c,d} and

abbccdabacdbdc·a

• not 3-universal: dda is missing
• 2-universal
• a conjugate is 3-universal (u, v ∈ Σ∗ are conjugates iff there exist x, y ∈ Σ∗

with u = xy and v = yx)

Repetitions ι(ws), ζ(ws)

Definition.
• ιw(s) = ι(ws) and ζw(s) = ζ(ws)

• ∇ιw(s) = ιw(s)− ιw(s− 1) (growth of the universality w.r.t. powers)

Repetitions ι(ws), ζ(ws)

Definition.
• ιw(s) = ι(ws) and ζw(s) = ζ(ws)

• ∇ιw(s) = ιw(s)− ιw(s− 1) (growth of the universality w.r.t. powers)

Repetitions ι(ws), ζ(ws)

Definition.
• ιw(s) = ι(ws) and ζw(s) = ζ(ws)
• ∇ιw(s) = ιw(s)− ιw(s− 1) (growth of the universality w.r.t. powers)

Repetitions ι(ws), ζ(ws)

Definition.
• ιw(s) = ι(ws) and ζw(s) = ζ(ws)
• ∇ιw(s) = ιw(s)− ιw(s− 1) (growth of the universality w.r.t. powers)

Theorem.
w ∈ Σ≥k , s ∈ N
• if ζ(w) = ι(w) + 1 then ι(ws) = s · ι(w) + s− 1

• if |Σ| = 2 then
{
ι(ws) = s · ι(w) + s− 1, if ζ(w) = ι(w) + 1,
ι(ws) = s · ι(w), otherwise

Repetitions ι(ws), ζ(ws)

Definition.
• ιw(s) = ι(ws) and ζw(s) = ζ(ws)
• ∇ιw(s) = ιw(s)− ιw(s− 1) (growth of the universality w.r.t. powers)

Theorem.
w ∈ Σ≥k , s ∈ N
• if ζ(w) = ι(w) + 1 then ι(ws) = s · ι(w) + s− 1

• if |Σ| = 2 then
{
ι(ws) = s · ι(w) + s− 1, if ζ(w) = ι(w) + 1,
ι(ws) = s · ι(w), otherwise

Example Converse Statements

babccaabc
• ι(w) = ζ(w) = 2

• ι(w2) = 5 (2k+1)
• ι(w3) = 7 (3k+1)

Example Converse Statements

babccaabc
• ι(w) = ζ(w) = 2
• ι(w2) = 5 (2k+1)

• ι(w3) = 7 (3k+1)

Example Converse Statements

babccaabc
• ι(w) = ζ(w) = 2
• ι(w2) = 5 (2k+1)
• ι(w3) = 7 (3k+1)

Example Converse Statements

babccaabc
• ι(w) = ζ(w) = 2
• ι(w2) = 5 (2k+1)
• ι(w3) = 7 (3k+1)

When do we have ∇ιw(s) = k and when ∇ιw(s) = k + 1

How to get an Equivalence? The Rest

babccaabc ba︸︷︷︸
p
bccaabc

How to get an Equivalence? The Rest

babccaabc ba︸︷︷︸
p
bccaabc

• ι(w2) = ι(w) + ι(p−1w)

• p = r(wR)R is longest prefix of w with ι(p−1w) = ι(w)

How to get an Equivalence? The Rest

babccaabc ba︸︷︷︸
p
bccaabc

• ι(w2) = ι(w) + ι(p−1w)

• p = r(wR)R is longest prefix of w with ι(p−1w) = ι(w)

Characterisation of the Growth ws = ws−1w

Proposition.
ι(wu) = ι(w) + ι(u) + 1 iff alph(r(w)r(uR)) = Σ

Characterisation of the Growth ws = ws−1w

Proposition.
ι(wu) = ι(w) + ι(u) + 1 iff alph(r(w)r(uR)) = Σ

Corollary.
∇ιw(s) = ι(w) + 1 iff alph(ws−1r(wR)) = Σ

Characterisation of the Growth ws = ws−1w

Proposition.
ι(wu) = ι(w) + ι(u) + 1 iff alph(r(w)r(uR)) = Σ

Corollary.
∇ιw(s) = ι(w) + 1 iff alph(ws−1r(wR)) = Σ

 ∇ιw and s 7→ r(ws) depend on each other

Remainder Function s 7→ r(ws)

• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)

• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)

• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Remainder Function s 7→ r(ws)

• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)
• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)

• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Remainder Function s 7→ r(ws)

• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)
• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)

• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Remainder Function s 7→ r(ws)

• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)
• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)
• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Remainder Function s 7→ r(ws)

• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)
• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)
• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Proposition.
The growth of the universality index, ∇ιw , is eventually periodic.

Remainder Function s 7→ r(ws)

• notice r(ws) = r(r(ws−1w)) (r(ws) = r(uw) for some u)
• alph(u) = alph(v) ⊂ Σ implies r(uw) = r(vw)

• alph(r(ws)) = alph(r(wt)) implies r(ws+i) = r(wt+i) for all i ∈ N
(the converse is not true!)
• alph(r(ws)) = alph(r(wt)) iff alph(r(ws+i)) = alph(r(wt+i))

Proposition.
The growth of the universality index, ∇ιw , is eventually periodic.

Notice: |{alph(r(ws))| s ∈ N0}| ≤ |Σ|

Periodicity

Theorem.
For all w ∈ Σ∗ there exist s, t ∈ [|Σ|] with s < t such that
1. r(ws+i) = r(wt+i) for all i ∈ N,

2. alph(r(ws+i)) = alph(r(wt+i)) for all i ∈ N,
3. ∇ιw(s+ i) = ∇ιw(t + i) for all ∈ N

• beginning at s+ 1, ∇ιw has period t − s

Periodicity

Theorem.
For all w ∈ Σ∗ there exist s, t ∈ [|Σ|] with s < t such that
1. r(ws+i) = r(wt+i) for all i ∈ N,
2. alph(r(ws+i)) = alph(r(wt+i)) for all i ∈ N,

3. ∇ιw(s+ i) = ∇ιw(t + i) for all ∈ N

• beginning at s+ 1, ∇ιw has period t − s

Periodicity

Theorem.
For all w ∈ Σ∗ there exist s, t ∈ [|Σ|] with s < t such that
1. r(ws+i) = r(wt+i) for all i ∈ N,
2. alph(r(ws+i)) = alph(r(wt+i)) for all i ∈ N,
3. ∇ιw(s+ i) = ∇ιw(t + i) for all ∈ N

• beginning at s+ 1, ∇ιw has period t − s

Periodicity

Theorem.
For all w ∈ Σ∗ there exist s, t ∈ [|Σ|] with s < t such that
1. r(ws+i) = r(wt+i) for all i ∈ N,
2. alph(r(ws+i)) = alph(r(wt+i)) for all i ∈ N,
3. ∇ιw(s+ i) = ∇ιw(t + i) for all ∈ N

• beginning at s+ 1, ∇ιw has period t − s

Remainder Function II s 7→ r(ws)

• we investigated ws = ws−1w

• what if we change to ws = wws−1?

Remainder Function II s 7→ r(ws)

• we investigated ws = ws−1w
• what if we change to ws = wws−1?

Remainder Function II s 7→ r(ws)

• we investigated ws = ws−1w
• what if we change to ws = wws−1?

Lemma.
r(ws) 6= r(ws+1) then
• ∇ιw(s+ 1) = ι(w) iff r(ws) is suffix of r(ws+1)

• ∇ιw(s+ 1) = ι(w) + 1 iff r(ws+1) is suffix of r(ws)

Remainder Function II s 7→ r(ws)

• we investigated ws = ws−1w
• what if we change to ws = wws−1?

Lemma.
r(ws) 6= r(ws+1) then
• ∇ιw(s+ 1) = ι(w) iff r(ws) is suffix of r(ws+1)

• ∇ιw(s+ 1) = ι(w) + 1 iff r(ws+1) is suffix of r(ws)

Remainder Function II Alphabet

Corollary.
alph(r(ws)) 6= alph(r(ws+1)) then
• ∇ιw(s+ 1) = ι(w) iff alph(r(ws)) ⊂ alph(r(ws+1))

• ∇ιw(s+ 1) = ι(w) + 1 iff alph(r(ws+1)) ⊂ alph(r(ws))

Remainder Function II Alphabet

Corollary.
alph(r(ws)) 6= alph(r(ws+1)) then
• ∇ιw(s+ 1) = ι(w) iff alph(r(ws)) ⊂ alph(r(ws+1))

• ∇ιw(s+ 1) = ι(w) + 1 iff alph(r(ws+1)) ⊂ alph(r(ws))

Remainder Function II Alphabet

Corollary.
alph(r(ws)) 6= alph(r(ws+1)) then
• ∇ιw(s+ 1) = ι(w) iff alph(r(ws)) ⊂ alph(r(ws+1))

• ∇ιw(s+ 1) = ι(w) + 1 iff alph(r(ws+1)) ⊂ alph(r(ws))

When is s 7→ r(ws) eventually constant? (∼ is the corollary applicable?)

Remainder Function II Eventually Constant

Lemma.
s 7→ r(ws) eventually constant iff ∇ιw eventually constant

Remainder Function II Eventually Constant

Lemma.
s 7→ r(ws) eventually constant iff ∇ιw eventually constant

Corollary.
ζ(w) = ι(w) + 1 then s 7→ r(ws) eventually constant

Remainder Function II Eventually Constant

Lemma.
s 7→ r(ws) eventually constant iff ∇ιw eventually constant

Corollary.
ζ(w) = ι(w) + 1 then s 7→ r(ws) eventually constant

 ∇ιw(s) = k on an interval [`+ 1, n] then alph(r(w`)) ⊆ . . . ⊆ alph(r(wn))
(equivalence if the chain is strict)

Chains Ascending

• alph(r(w`)) ⊂ . . . ⊂ alph(r(w`+|Σ|+1)) implies |alph(r(ws))| = s− `
for all s ∈ [`, `+ |Σ| − 1]

• strictly ascending chains of length |Σ|+ 1 cannot exist

Chains Ascending

• alph(r(w`)) ⊂ . . . ⊂ alph(r(w`+|Σ|+1)) implies |alph(r(ws))| = s− `
for all s ∈ [`, `+ |Σ| − 1]

• strictly ascending chains of length |Σ|+ 1 cannot exist

Chains Ascending

• alph(r(w`)) ⊂ . . . ⊂ alph(r(w`+|Σ|+1)) implies |alph(r(ws))| = s− `
for all s ∈ [`, `+ |Σ| − 1]

• strictly ascending chains of length |Σ|+ 1 cannot exist

Proposition.
• ∇ιw(s) = ι(w) for all s ∈ [1, |Σ|] implies ∇ιw(s) = ι(w) for all s ∈ N

• ∇ιw(s) = ι(w) for all s ∈ N iff ∇ζw(s) = ι(w) for all s ∈ [1, |Σ| − 1]

Chains Ascending

• alph(r(w`)) ⊂ . . . ⊂ alph(r(w`+|Σ|+1)) implies |alph(r(ws))| = s− `
for all s ∈ [`, `+ |Σ| − 1]

• strictly ascending chains of length |Σ|+ 1 cannot exist

Proposition.
• ∇ιw(s) = ι(w) for all s ∈ [1, |Σ|] implies ∇ιw(s) = ι(w) for all s ∈ N
• ∇ιw(s) = ι(w) for all s ∈ N iff ∇ζw(s) = ι(w) for all s ∈ [1, |Σ| − 1]

Generalisation I Ascending Chains

Theorem.
ι(w) > 0
• ζ(w) = ι(w) + 1 implies ι(ws) = sι(w) + s− 1

• ∇ζw(t) = ι(w) for all t ∈ [1, |Σ| − 1] implies ι(ws) = sι(w)

Generalisation I Ascending Chains

Theorem.
ι(w) > 0
• ζ(w) = ι(w) + 1 implies ι(ws) = sι(w) + s− 1
• ∇ζw(t) = ι(w) for all t ∈ [1, |Σ| − 1] implies ι(ws) = sι(w)

Generalisation II Descending Chains

• alph(r(w`)) ⊃ . . . ⊃ alph(r(w`+|Σ|+1)) implies |alph(r(w`+s))| = |Σ| − 1− s
for all s ∈ [0, |Σ| − 1]

• strictly descending chains of length |Σ| cannot exist

Generalisation II Descending Chains

• alph(r(w`)) ⊃ . . . ⊃ alph(r(w`+|Σ|+1)) implies |alph(r(w`+s))| = |Σ| − 1− s
for all s ∈ [0, |Σ| − 1]

• strictly descending chains of length |Σ| cannot exist

Generalisation II Descending Chains

• alph(r(w`)) ⊃ . . . ⊃ alph(r(w`+|Σ|+1)) implies |alph(r(w`+s))| = |Σ| − 1− s
for all s ∈ [0, |Σ| − 1]

• strictly descending chains of length |Σ| cannot exist

Theorem.
The following statements are equivalent
1. ∇ιw(s) = ι(w) + 1 for all s ∈ [2, |Σ|]

2. ∇ιw(s) = ι(w) + 1 for all s ∈ N≥2
3. ζ(w) = ι(w) + 1

Generalisation II Descending Chains

• alph(r(w`)) ⊃ . . . ⊃ alph(r(w`+|Σ|+1)) implies |alph(r(w`+s))| = |Σ| − 1− s
for all s ∈ [0, |Σ| − 1]

• strictly descending chains of length |Σ| cannot exist

Theorem.
The following statements are equivalent
1. ∇ιw(s) = ι(w) + 1 for all s ∈ [2, |Σ|]
2. ∇ιw(s) = ι(w) + 1 for all s ∈ N≥2

3. ζ(w) = ι(w) + 1

Generalisation II Descending Chains

• alph(r(w`)) ⊃ . . . ⊃ alph(r(w`+|Σ|+1)) implies |alph(r(w`+s))| = |Σ| − 1− s
for all s ∈ [0, |Σ| − 1]

• strictly descending chains of length |Σ| cannot exist

Theorem.
The following statements are equivalent
1. ∇ιw(s) = ι(w) + 1 for all s ∈ [2, |Σ|]
2. ∇ιw(s) = ι(w) + 1 for all s ∈ N≥2
3. ζ(w) = ι(w) + 1

Computational Results

Theorem.
• ιw(n) for all n ∈ N0 can be computed in constant time with a
preprocessing of O(|Σ||w|)

• ζ(w) can be computed in time O(|Σ||w|)

Computational Results

Theorem.
• ιw(n) for all n ∈ N0 can be computed in constant time with a
preprocessing of O(|Σ||w|)
• ζ(w) can be computed in time O(|Σ||w|)

Thanks to

• Laura Barker
• Sebastian Bernhard Germann
• Katharina Harwardt
• Lukas Haschke
• Annika Huch
• Florin Manea
• Annika Mayrock
• Dirk Nowotka

Thank you for your attention!

