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Recap: Word Equations

▶ A fundamental object within Combinatorics on Words
▶ Have the form u = v , where u and v are words comprised of

▶ constants, taken from a finite alphabet Σ = {a, b, ...}.
▶ variables, taken from a finite alphabet Ξ = {X ,Y , ...}.

▶ Examples:
XabYc = ZXcY Y = XX
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Recap: Word Equations

▶ Solution: an assignment h to the variables which makes both
sides identical.

▶ Examples:
XabYc = ZXcY

e.g., X → bab, Y → cc , Z → ba.

e.g., X → ba, Y → baba = (ba)2.

X → w , Y → w2, for any w ∈ Σ∗
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Expressing Formal Languages via Word Equations

Y = XX

▶ Fix h(Y ).

▶ Then we can complete h to a solution if and only if h(Y ) is a
square.

▶ Idea: given a word equation e and a variable Y , the set of
possible h(Y ) occurring in solutions h is a formal language L.

▶ We say “e expresses L via its variable Y ”.

e.g., What language does Yaa = X expresses via its variable X?



Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Expressing Formal Languages via Word Equations

Y = XX

▶ Fix h(Y ).

▶ Then we can complete h to a solution if and only if h(Y ) is a
square.

▶ Idea: given a word equation e and a variable Y , the set of
possible h(Y ) occurring in solutions h is a formal language L.

▶ We say “e expresses L via its variable Y ”.

e.g., Yaa = X expresses L(Σ∗aa) via its variable X .
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The Class WE

▶ WE: the class of languages “expressible” by word equations in
this way.

▶ Not very well understood.

▶ Closure properties are unusual:

Theorem (Karhumäki et al. 2000)

WE is closed under union, concatenation, and finite perturbation.
WE is not closed under complementation or Kleene star, but if
|L| = 1, L∗ ∈ WE.
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WE and Other Classes

▶ Also: every pattern language is expressible.
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What Have I Been Doing?

Theorem (Day et al. 2022)

It is undecidable whether the language expressed via a variable in a
word equation is regular.

I have been investigating the “reverse” statement:

Conjecture

It is decidable whether a regular language is in WE.

▶ I have introduced some necessary and sufficient conditions for
a language to be expressible.

▶ closure of WE under union and concatenation ⇒ Focus on
submonoid languages X ∗ ⊂ Σ∗.
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X is a Set of Powers of a Single Word

Let X = {a2, a3}. Is X ∗ expressible?

X ∗ = {a}∗\{a}, so yes.

More generally,

Proposition

Let w ∈ Σ+, and E ⊆ N. Let X = {w i : i ∈E}. Then X ∗ ∈ WE.

Proof idea: All sufficiently large powers of w must be in X ∗. So
X ∗ is obtained from w∗ by removing finitely many words.
Expressibility then follows from the closure properties.
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A Tool for Showing Inexpressibility

Kahrhumäki et al. have introduced a “pumping lemma”, which
can be used to prove inexpressibility for a language L.

1. Assume to the contrary that L ∈ WE ,

2. Choose a “good” factorisation scheme F,

3. Pick some w ∈ L with lots of distinct F-factors,

4. Kahrhumäki : some F-factors of w can be replaced with any
word, and membership of L is preserved.

5. Replace those F-factors to yield a word w ′ /∈ L: a
contradiction.
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A Useful Factorisation Scheme

Definition

Let h ∈ Σ+. To obtain the Fh-factorisation of w ∈ Σ∗, we split w
to the left of each occurrence of the factor h in w , (even for
overlapping occurrences of h).
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A Useful Factorisation Scheme

Examples of Faa-factorisation:

abaaabbaab, aaaaa, bbbbbba.

Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
result.
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result.



Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Factorisation Scheme

Examples of Faa-factorisation:

ab|a|aabb|aab, a|a|a|aa, bbbbbba.

Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
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Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
result.
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Thinness

A thin language is one having a “forbidden” factor z .
e.g.,

L = {anbn : n ∈ N}

is thin (we can take z = ba).

L = {aa, bbab, bbabb}∗

is thin (we can take z = b5).
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Expressibility for Thin Submonoids

First main result:

Theorem

A thin submonoid X ∗ is expressible if and only the words in X are
pairwise commutative.

Proof idea: We showed (⇐) earlier. For (⇒), we prove the
contrapositive using Fh-factorisation in the Karhumäki tool.
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A Useful Idea from the Proof

▶ We need to demonstrate that our constructed word w has k
distinct Fh-factors.

▶ To do this, we introduce disjoint intervals I1,I2,...,Ik ⊂ R.

▶ We then argue that, for each Ij , w has an Fh-factor whose
length lies in Ij .

▶ Thus w has at least k distinct Fh-factors.
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An Example

Let Σ = {a, b}, and let X = {a, aba, bb}. Is X ∗ ∈ WE?

a
b

a, b

a

b

a, b

b

a

ababa always takes the automaton to its sink state. So ababa is a
forbidden factor for X ∗; X ∗ is thin. The elements of X are not
pairwise commutative. So from our result, X ∗ /∈ WE .
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Well-Formed Regular Expressions

▶ We call a regular expression “well-formed” if it is equal to ∅,
or avoids the symbol ∅.

▶ It is elementary to rewrite any regular expression so that it is
well-formed.

▶ The “well-formed” regular expressions are completely
“additive”.

▶ i.e., we cannot have “destructive” sub-expressions L∅ ≡ ∅.
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Expressibility for Thin Regular Languages

Second main result:

Theorem

Let L be regular and thin. Let R be any well-formed regular
expression for L. Then L ∈ WE if and only if, for every
sub-expression Y ∗ of R, the words of L(Y ) are pairwise
commutative.

▶ The proof extends that of the previous result.

▶ Notice: R can be (pretty much) any regular expression for L.

▶ Corollary: Expressibility is decidable for thin regular languages.



Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

An Example

▶ Let Σ = {a, b, c}, and consider

L = {w : any even positions in w must contain b}.

▶ L is not a submonoid: a ∈ L, but aa /∈ L.

▶ L is thin: a forbidden factor is z = aa.

▶ A regular expression for L is R := (Σb)∗(Σ|ε).
▶ In R, the Kleene star is applied to the non-commutative set

{ab, bb, cb}.
▶ Second main result ⇒ L /∈ WE .
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Motivation

▶ L is called dense if it is not thin; this case is less
straightforward.

▶ Idea: at the last step of the Karhumäki tool, we need to be
more thoughtful about what we “pump in”.

▶ Solution: refine the Fh technique to guarantee that we pump
in only one place.

▶ This lets us investigate some dense submonoids X ∗.
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Third Main Result

Theorem

Let X ⊂ Σ+ contain distinct words w1,w2 such that

▶ no proper left-factor of w1 or w2 is in X ,

▶ no proper right-factor of w1 or w2 is in X ,

▶ no words in X have w1 or w2 as a proper left-factor,

▶ no words in X have w1 or w2 as a proper right-factor.

Then X ∗ ∈ WE if and only if Σ ⊆ X.

Proof idea: Use w in the Karhumäki tool made up of just w1 and
w2. We can pump some z /∈ X ∗ into w in exactly one place using
our refined method. From the premises, we can “strip” everything
off the pumped word to conclude that z ∈ X ∗: a contradiction.
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Third Main Result: Corollaries

This result allows us to characterise the expressibility of X ∗ in
following cases:

▶ the lengths of words in X have a common divisor p > 1,

▶ X is bifix, (i.e., no word in X is a left- nor a right-factor of
any other),

▶ X is a power of a “code”,
...
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An Example

Let Σ = {a, b}, and X = {aaa, aab, ab, ba, bb}. Is X ∗ ∈ WE?

▶ Take w1 = aaa, w2 = ba.

▶ The proper left- and right-factors of w1 and w2 are aa, a, and
b, none of which are in X .

▶ No word in X has w1 or w2 as a proper left- or right-factor.

▶ Σ ̸⊆ X .

▶ Third main result ⇒ X ∗ /∈ WE .
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X Obtained From a Tree

Let |Σ| = n. An n-ary rooted tree T represents a set X ⊂ Σ+

according to the possible “downward” paths in T. For instance,

X = {aa, aba, abb, b},

X = {aa, ab, ac , b, c}, X = {bia : i ∈ N}.

▶ The sets representable in this way are called “maximal prefix”.

▶ Given a tree T, we want to know whether the corresponding
(dense) submonoid X ∗ is expressible.
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X Obtained From a Tree

Let |Σ| = n. An n-ary rooted tree T represents a set X ⊂ Σ+

according to the possible “downward” paths in T. For instance,

X = {aa, aba, abb, b}, X = {aa, ab, ac , b, c}, X = {bia : i ∈ N}.

▶ The sets representable in this way are called “maximal prefix”.

▶ Given a tree T, we want to know whether the corresponding
(dense) submonoid X ∗ is expressible.
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Synchronised Trees

Given a maximal prefix set X , and its tree T, we can interpret T
as an automaton A for X ∗, e.g.,

If A is synchronised, we call X synchronised too.

e.g., the above X is synchronised; a synchronising word is z = bb.
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Synchronised Trees

Synchronised Synchronised Not Synchronised
z = b z = a

If X is regular and synchronised, there is a technique we can apply
to obtain a “nice” regular expression for X ∗:
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A “Nice” Regular Expression for X ∗

▶ Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

▶ Idea: In words from X ∗, we can isolate the last occurrence of
any z ∈ Z .

▶ Observation: Any word may precede this last occurrence.

▶ Observation: We “catch up” with the X -factorisation after
reading this last occurrence.

▶ Compute regular expressions RZ for Z and R ′ for X ∗ ∩ LZ ,
using standard techniques.

▶ A regular expression for X ∗ is then

R := (Σ∗RZ |ε)R ′
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Why is this Technique Helpful?

R = (Σ∗RZ |ε)R ′

▶ L(R ′) = X ∗ ∩ LZ is regular and thin.

▶ By our earlier result, it is easy to check whether L(R ′) ∈ WE .

▶ If L(R ′) ∈ WE , then the closure properties give
X ∗ = L(R) ∈ WE .

▶ Unfortunately, if L(R ′) /∈ WE , it is still possible that
X ∗ = L(R) ∈ WE .
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Some Applications

R = (Σ∗RZ |ε)R ′

X = {aa, ab, baa, bab, bb} X = L(b∗a(a|b))
Z = {baa, bab} Z = {baa, bab}
L(R ′) = X ∗ ∩ LZ L(R ′) = X ∗ ∩ LZ

R ′ = (aa)∗(ab|ε)(bb)∗ R ′ = (aa)∗(ab|ε)
⇒ L(R ′) expressible ⇒ L(R ′) expressible
⇒ X ∗ expressible ⇒ X ∗ expressible

▶ The left tree here is a ‘pruned’ version of the right tree.
Performing this pruning at any depth yields an expressible
submonoid.
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Some Applications: Families of Trees

(1-parameter family)

(2-parameter family)

X ∗ is always expressible

X ∗ is always expressible
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Fourth Main Result

Proposition

Let X be maximal prefix and not synchronised. Then every regular
expression for X ∗ has a sub-expression Y ∗ for which both

▶ L(Y ) is not pairwise commutative, and

▶ Y ̸= Σ.

Proof idea: by contradiction

▶ We suspect that the above conclusion implies X ∗ /∈ WE .

▶ Certainly, if we wanted to show expressibility for such an X ∗,
we could not use the same technique we have been using in
the synchronised case.
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Two Open Problems

Open Problem

Let L ∈ REG. Suppose that every regular expression for L has a
sub-expression Y ∗ for which

▶ L(Y ) is not pairwise commutative, and

▶ Y ̸= Σ.

Does this imply that L /∈ WE?

Open Problem

Given L ∈ REG, is the property “L ∈ WE” decidable?

We suspect that in both cases, the answer is “yes”.
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Thank You!
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