
Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Examining the Class of Formal Languages which
are Expressible via Word Equations

Matthew Konefal

Loughborough University

February 2023

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Recap: Word Equations

▶ A fundamental object within Combinatorics on Words
▶ Have the form u = v , where u and v are words comprised of

▶ constants, taken from a finite alphabet Σ = {a, b, ...}.
▶ variables, taken from a finite alphabet Ξ = {X ,Y , ...}.

▶ Examples:
XabYc = ZXcY Y = XX

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Recap: Word Equations

▶ Solution: an assignment h to the variables which makes both
sides identical.

▶ Examples:
XabYc = ZXcY

e.g., X → bab, Y → cc , Z → ba.

e.g., X → ba, Y → baba = (ba)2.

X → w , Y → w2, for any w ∈ Σ∗

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Recap: Word Equations

▶ Solution: an assignment h to the variables which makes both
sides identical.

▶ Examples:
bababccc = bababccc

e.g., X → bab, Y → cc , Z → ba.

e.g., X → ba, Y → baba = (ba)2.

X → w , Y → w2, for any w ∈ Σ∗

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Recap: Word Equations
▶ Solution: an assignment h to the variables which makes both

sides identical.

▶ Examples:
bababccc = bababccc

e.g., X → bab, Y → cc , Z → ba.

Y = XX

e.g., X → ba, Y → baba = (ba)2.

X → w , Y → w2, for any w ∈ Σ∗

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Recap: Word Equations
▶ Solution: an assignment h to the variables which makes both

sides identical.

▶ Examples:
bababccc = bababccc

e.g., X → bab, Y → cc , Z → ba.

baba = baba

e.g., X → ba, Y → baba = (ba)2.

X → w , Y → w2, for any w ∈ Σ∗

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Recap: Word Equations
▶ Solution: an assignment h to the variables which makes both

sides identical.

▶ Examples:
bababccc = bababccc

e.g., X → bab, Y → cc , Z → ba.

Y = XX

e.g., X → ba, Y → baba = (ba)2.

X → w , Y → w2, for any w ∈ Σ∗

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Expressing Formal Languages via Word Equations

Y = XX

▶ Fix h(Y).

▶ Then we can complete h to a solution if and only if h(Y) is a
square.

▶ Idea: given a word equation e and a variable Y , the set of
possible h(Y) occurring in solutions h is a formal language L.

▶ We say “e expresses L via its variable Y ”.

e.g., What language does Yaa = X expresses via its variable X?

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Expressing Formal Languages via Word Equations

Y = XX

▶ Fix h(Y).

▶ Then we can complete h to a solution if and only if h(Y) is a
square.

▶ Idea: given a word equation e and a variable Y , the set of
possible h(Y) occurring in solutions h is a formal language L.

▶ We say “e expresses L via its variable Y ”.

e.g., Yaa = X expresses L(Σ∗aa) via its variable X .

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

The Class WE

▶ WE: the class of languages “expressible” by word equations in
this way.

▶ Not very well understood.

▶ Closure properties are unusual:

Theorem (Karhumäki et al. 2000)

WE is closed under union, concatenation, and finite perturbation.
WE is not closed under complementation or Kleene star, but if
|L| = 1, L∗ ∈ WE.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

WE and Other Classes

▶ Also: every pattern language is expressible.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

WE and Other Classes

▶ Also: every pattern language is expressible.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

What Have I Been Doing?

Theorem (Day et al. 2022)

It is undecidable whether the language expressed via a variable in a
word equation is regular.

I have been investigating the “reverse” statement:

Conjecture

It is decidable whether a regular language is in WE.

▶ I have introduced some necessary and sufficient conditions for
a language to be expressible.

▶ closure of WE under union and concatenation ⇒ Focus on
submonoid languages X ∗ ⊂ Σ∗.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X is a Set of Powers of a Single Word

Let X = {a2, a3}. Is X ∗ expressible?

X ∗ = {a}∗\{a}, so yes.

More generally,

Proposition

Let w ∈ Σ+, and E ⊆ N. Let X = {w i : i ∈E}. Then X ∗ ∈ WE.

Proof idea: All sufficiently large powers of w must be in X ∗. So
X ∗ is obtained from w∗ by removing finitely many words.
Expressibility then follows from the closure properties.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X is a Set of Powers of a Single Word

Let X = {a2, a3}. Is X ∗ expressible?

X ∗ = {a}∗\{a}, so yes.

More generally,

Proposition

Let w ∈ Σ+, and E ⊆ N. Let X = {w i : i ∈E}. Then X ∗ ∈ WE.

Proof idea: All sufficiently large powers of w must be in X ∗. So
X ∗ is obtained from w∗ by removing finitely many words.
Expressibility then follows from the closure properties.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X is a Set of Powers of a Single Word

Let X = {a2, a3}. Is X ∗ expressible?

X ∗ = {a}∗\{a}, so yes.
More generally,

Proposition

Let w ∈ Σ+, and E ⊆ N. Let X = {w i : i ∈E}. Then X ∗ ∈ WE.

Proof idea: All sufficiently large powers of w must be in X ∗. So
X ∗ is obtained from w∗ by removing finitely many words.
Expressibility then follows from the closure properties.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Tool for Showing Inexpressibility

Kahrhumäki et al. have introduced a “pumping lemma”, which
can be used to prove inexpressibility for a language L.

1. Assume to the contrary that L ∈ WE ,

2. Choose a “good” factorisation scheme F,

3. Pick some w ∈ L with lots of distinct F-factors,

4. Kahrhumäki : some F-factors of w can be replaced with any
word, and membership of L is preserved.

5. Replace those F-factors to yield a word w ′ /∈ L: a
contradiction.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Factorisation Scheme

Definition

Let h ∈ Σ+. To obtain the Fh-factorisation of w ∈ Σ∗, we split w
to the left of each occurrence of the factor h in w , (even for
overlapping occurrences of h).

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Factorisation Scheme

Examples of Faa-factorisation:

abaaabbaab, aaaaa, bbbbbba.

Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
result.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Factorisation Scheme

Examples of Faa-factorisation:

ab|a|aabb|aab, aaaaa, bbbbbba.

Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
result.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Factorisation Scheme

Examples of Faa-factorisation:

ab|a|aabb|aab, a|a|a|aa, bbbbbba.

Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
result.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Factorisation Scheme

Examples of Faa-factorisation:

ab|a|aabb|aab, a|a|a|aa, bbbbbba.

Lemma

For any h, Fh-factorisation is suitable for use in the Karhumäki
result.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Thinness

A thin language is one having a “forbidden” factor z .
e.g.,

L = {anbn : n ∈ N}

is thin (we can take z = ba).

L = {aa, bbab, bbabb}∗

is thin (we can take z = b5).

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Expressibility for Thin Submonoids

First main result:

Theorem

A thin submonoid X ∗ is expressible if and only the words in X are
pairwise commutative.

Proof idea: We showed (⇐) earlier. For (⇒), we prove the
contrapositive using Fh-factorisation in the Karhumäki tool.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A Useful Idea from the Proof

▶ We need to demonstrate that our constructed word w has k
distinct Fh-factors.

▶ To do this, we introduce disjoint intervals I1,I2,...,Ik ⊂ R.

▶ We then argue that, for each Ij , w has an Fh-factor whose
length lies in Ij .

▶ Thus w has at least k distinct Fh-factors.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

An Example

Let Σ = {a, b}, and let X = {a, aba, bb}. Is X ∗ ∈ WE?

a
b

a, b

a

b

a, b

b

a

ababa always takes the automaton to its sink state. So ababa is a
forbidden factor for X ∗; X ∗ is thin. The elements of X are not
pairwise commutative. So from our result, X ∗ /∈ WE .

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Well-Formed Regular Expressions

▶ We call a regular expression “well-formed” if it is equal to ∅,
or avoids the symbol ∅.

▶ It is elementary to rewrite any regular expression so that it is
well-formed.

▶ The “well-formed” regular expressions are completely
“additive”.

▶ i.e., we cannot have “destructive” sub-expressions L∅ ≡ ∅.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Expressibility for Thin Regular Languages

Second main result:

Theorem

Let L be regular and thin. Let R be any well-formed regular
expression for L. Then L ∈ WE if and only if, for every
sub-expression Y ∗ of R, the words of L(Y) are pairwise
commutative.

▶ The proof extends that of the previous result.

▶ Notice: R can be (pretty much) any regular expression for L.

▶ Corollary: Expressibility is decidable for thin regular languages.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

An Example

▶ Let Σ = {a, b, c}, and consider

L = {w : any even positions in w must contain b}.

▶ L is not a submonoid: a ∈ L, but aa /∈ L.

▶ L is thin: a forbidden factor is z = aa.

▶ A regular expression for L is R := (Σb)∗(Σ|ε).
▶ In R, the Kleene star is applied to the non-commutative set

{ab, bb, cb}.
▶ Second main result ⇒ L /∈ WE .

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Motivation

▶ L is called dense if it is not thin; this case is less
straightforward.

▶ Idea: at the last step of the Karhumäki tool, we need to be
more thoughtful about what we “pump in”.

▶ Solution: refine the Fh technique to guarantee that we pump
in only one place.

▶ This lets us investigate some dense submonoids X ∗.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Third Main Result

Theorem

Let X ⊂ Σ+ contain distinct words w1,w2 such that

▶ no proper left-factor of w1 or w2 is in X ,

▶ no proper right-factor of w1 or w2 is in X ,

▶ no words in X have w1 or w2 as a proper left-factor,

▶ no words in X have w1 or w2 as a proper right-factor.

Then X ∗ ∈ WE if and only if Σ ⊆ X.

Proof idea: Use w in the Karhumäki tool made up of just w1 and
w2. We can pump some z /∈ X ∗ into w in exactly one place using
our refined method. From the premises, we can “strip” everything
off the pumped word to conclude that z ∈ X ∗: a contradiction.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Third Main Result: Corollaries

This result allows us to characterise the expressibility of X ∗ in
following cases:

▶ the lengths of words in X have a common divisor p > 1,

▶ X is bifix, (i.e., no word in X is a left- nor a right-factor of
any other),

▶ X is a power of a “code”,
...

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

An Example

Let Σ = {a, b}, and X = {aaa, aab, ab, ba, bb}. Is X ∗ ∈ WE?

▶ Take w1 = aaa, w2 = ba.

▶ The proper left- and right-factors of w1 and w2 are aa, a, and
b, none of which are in X .

▶ No word in X has w1 or w2 as a proper left- or right-factor.

▶ Σ ̸⊆ X .

▶ Third main result ⇒ X ∗ /∈ WE .

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X Obtained From a Tree

Let |Σ| = n. An n-ary rooted tree T represents a set X ⊂ Σ+

according to the possible “downward” paths in T. For instance,

X = {aa, aba, abb, b},

X = {aa, ab, ac , b, c}, X = {bia : i ∈ N}.

▶ The sets representable in this way are called “maximal prefix”.

▶ Given a tree T, we want to know whether the corresponding
(dense) submonoid X ∗ is expressible.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X Obtained From a Tree

Let |Σ| = n. An n-ary rooted tree T represents a set X ⊂ Σ+

according to the possible “downward” paths in T. For instance,

X = {aa, aba, abb, b},

X = {aa, ab, ac , b, c}, X = {bia : i ∈ N}.

▶ The sets representable in this way are called “maximal prefix”.

▶ Given a tree T, we want to know whether the corresponding
(dense) submonoid X ∗ is expressible.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X Obtained From a Tree

Let |Σ| = n. An n-ary rooted tree T represents a set X ⊂ Σ+

according to the possible “downward” paths in T. For instance,

X = {aa, aba, abb, b}, X = {aa, ab, ac , b, c},

X = {bia : i ∈ N}.

▶ The sets representable in this way are called “maximal prefix”.

▶ Given a tree T, we want to know whether the corresponding
(dense) submonoid X ∗ is expressible.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

X Obtained From a Tree

Let |Σ| = n. An n-ary rooted tree T represents a set X ⊂ Σ+

according to the possible “downward” paths in T. For instance,

X = {aa, aba, abb, b}, X = {aa, ab, ac , b, c}, X = {bia : i ∈ N}.

▶ The sets representable in this way are called “maximal prefix”.

▶ Given a tree T, we want to know whether the corresponding
(dense) submonoid X ∗ is expressible.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Synchronised Trees

Given a maximal prefix set X , and its tree T, we can interpret T
as an automaton A for X ∗, e.g.,

If A is synchronised, we call X synchronised too.

e.g., the above X is synchronised; a synchronising word is z = bb.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Synchronised Trees

Synchronised Synchronised Not Synchronised
z = b z = a

If X is regular and synchronised, there is a technique we can apply
to obtain a “nice” regular expression for X ∗:

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Synchronised Trees

Synchronised Synchronised Not Synchronised
z = b z = a

If X is regular and synchronised, there is a technique we can apply
to obtain a “nice” regular expression for X ∗:

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A “Nice” Regular Expression for X ∗

▶ Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

▶ Idea: In words from X ∗, we can isolate the last occurrence of
any z ∈ Z .

▶ Observation: Any word may precede this last occurrence.

▶ Observation: We “catch up” with the X -factorisation after
reading this last occurrence.

▶ Compute regular expressions RZ for Z and R ′ for X ∗ ∩ LZ ,
using standard techniques.

▶ A regular expression for X ∗ is then

R := (Σ∗RZ |ε)R ′

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A “Nice” Regular Expression for X ∗

▶ Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

▶ Idea: In words from X ∗, we can isolate the last occurrence of
any z ∈ Z .

▶ Observation: Any word may precede this last occurrence.

▶ Observation: We “catch up” with the X -factorisation after
reading this last occurrence.

▶ Compute regular expressions RZ for Z and R ′ for X ∗ ∩ LZ ,
using standard techniques.

▶ A regular expression for X ∗ is then

R := (Σ∗RZ |ε)R ′

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A “Nice” Regular Expression for X ∗

▶ Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

▶ Idea: In words from X ∗, we can isolate the last occurrence of
any z ∈ Z .

▶ Observation: Any word may precede this last occurrence.

▶ Observation: We “catch up” with the X -factorisation after
reading this last occurrence.

▶ Compute regular expressions RZ for Z and R ′ for X ∗ ∩ LZ ,
using standard techniques.

▶ A regular expression for X ∗ is then

R := (Σ∗RZ |ε)R ′

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

A “Nice” Regular Expression for X ∗

▶ Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

▶ Idea: In words from X ∗, we can isolate the last occurrence of
any z ∈ Z .

▶ Observation: Any word may precede this last occurrence.

▶ Observation: We “catch up” with the X -factorisation after
reading this last occurrence.

▶ Compute regular expressions RZ for Z and R ′ for X ∗ ∩ LZ ,
using standard techniques.

▶ A regular expression for X ∗ is then

R := (Σ∗RZ |ε)R ′

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Why is this Technique Helpful?

R = (Σ∗RZ |ε)R ′

▶ L(R ′) = X ∗ ∩ LZ is regular and thin.

▶ By our earlier result, it is easy to check whether L(R ′) ∈ WE .

▶ If L(R ′) ∈ WE , then the closure properties give
X ∗ = L(R) ∈ WE .

▶ Unfortunately, if L(R ′) /∈ WE , it is still possible that
X ∗ = L(R) ∈ WE .

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Why is this Technique Helpful?

R = (Σ∗RZ |ε)R ′

▶ L(R ′) = X ∗ ∩ LZ is regular and thin.

▶ By our earlier result, it is easy to check whether L(R ′) ∈ WE .

▶ If L(R ′) ∈ WE , then the closure properties give
X ∗ = L(R) ∈ WE .

▶ Unfortunately, if L(R ′) /∈ WE , it is still possible that
X ∗ = L(R) ∈ WE .

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Some Applications

R = (Σ∗RZ |ε)R ′

X = {aa, ab, baa, bab, bb} X = L(b∗a(a|b))
Z = {baa, bab} Z = {baa, bab}
L(R ′) = X ∗ ∩ LZ L(R ′) = X ∗ ∩ LZ

R ′ = (aa)∗(ab|ε)(bb)∗ R ′ = (aa)∗(ab|ε)
⇒ L(R ′) expressible ⇒ L(R ′) expressible
⇒ X ∗ expressible ⇒ X ∗ expressible

▶ The left tree here is a ‘pruned’ version of the right tree.
Performing this pruning at any depth yields an expressible
submonoid.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Some Applications

R = (Σ∗RZ |ε)R ′

X = {aa, ab, baa, bab, bb}

X = L(b∗a(a|b))

Z = {baa, bab}

Z = {baa, bab}

L(R ′) = X ∗ ∩ LZ

L(R ′) = X ∗ ∩ LZ

R ′ = (aa)∗(ab|ε)(bb)∗

R ′ = (aa)∗(ab|ε)

⇒ L(R ′) expressible

⇒ L(R ′) expressible

⇒ X ∗ expressible

⇒ X ∗ expressible

▶ The left tree here is a ‘pruned’ version of the right tree.
Performing this pruning at any depth yields an expressible
submonoid.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Some Applications

R = (Σ∗RZ |ε)R ′

X = {aa, ab, baa, bab, bb} X = L(b∗a(a|b))
Z = {baa, bab} Z = {baa, bab}
L(R ′) = X ∗ ∩ LZ L(R ′) = X ∗ ∩ LZ

R ′ = (aa)∗(ab|ε)(bb)∗ R ′ = (aa)∗(ab|ε)
⇒ L(R ′) expressible ⇒ L(R ′) expressible
⇒ X ∗ expressible ⇒ X ∗ expressible

▶ The left tree here is a ‘pruned’ version of the right tree.
Performing this pruning at any depth yields an expressible
submonoid.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Some Applications

R = (Σ∗RZ |ε)R ′

X = {aa, ab, baa, bab, bb} X = L(b∗a(a|b))
Z = {baa, bab} Z = {baa, bab}
L(R ′) = X ∗ ∩ LZ L(R ′) = X ∗ ∩ LZ

R ′ = (aa)∗(ab|ε)(bb)∗ R ′ = (aa)∗(ab|ε)
⇒ L(R ′) expressible ⇒ L(R ′) expressible
⇒ X ∗ expressible ⇒ X ∗ expressible

▶ The left tree here is a ‘pruned’ version of the right tree.
Performing this pruning at any depth yields an expressible
submonoid.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Some Applications: Families of Trees

(1-parameter family)

(2-parameter family)

X ∗ is always expressible

X ∗ is always expressible

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Some Applications: Families of Trees

(1-parameter family) (2-parameter family)
X ∗ is always expressible X ∗ is always expressible

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Fourth Main Result

Proposition

Let X be maximal prefix and not synchronised. Then every regular
expression for X ∗ has a sub-expression Y ∗ for which both

▶ L(Y) is not pairwise commutative, and

▶ Y ̸= Σ.

Proof idea: by contradiction

▶ We suspect that the above conclusion implies X ∗ /∈ WE .

▶ Certainly, if we wanted to show expressibility for such an X ∗,
we could not use the same technique we have been using in
the synchronised case.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Two Open Problems

Open Problem

Let L ∈ REG. Suppose that every regular expression for L has a
sub-expression Y ∗ for which

▶ L(Y) is not pairwise commutative, and

▶ Y ̸= Σ.

Does this imply that L /∈ WE?

Open Problem

Given L ∈ REG, is the property “L ∈ WE” decidable?

We suspect that in both cases, the answer is “yes”.

Preliminaries Thin Languages Dense Submonoids Trees and Expressibility

Thank You!

	Preliminaries
	Thin Languages
	Dense Submonoids
	Trees and Expressibility

