Examining the Class of Formal Languages which are Expressible via Word Equations

Matthew Konefal

Loughborough University

February 2023

- A fundamental object within Combinatorics on Words
- Have the form u = v, where u and v are words comprised of
 - constants, taken from a finite alphabet $\Sigma = \{a, b, ...\}$.
 - variables, taken from a finite alphabet $\Xi = \{X, Y, ...\}$.

Examples:

$$XabYc = ZXcY$$
 $Y = XX$

Solution: an assignment h to the variables which makes both sides identical.

Examples:

$$XabYc = ZXcY$$

e.g.,
$$X \rightarrow bab$$
, $Y \rightarrow cc$, $Z \rightarrow ba$.

- Solution: an assignment h to the variables which makes both sides identical.
- Examples:

bababccc = *bababccc*

e.g.,
$$X \rightarrow bab$$
, $Y \rightarrow cc$, $Z \rightarrow ba$.

- Solution: an assignment h to the variables which makes both sides identical.
- Examples:

bababccc = *bababccc*

e.g.,
$$X o bab$$
, $Y o cc$, $Z o ba$.
 $Y = XX$
e.g., $X o ba$, $Y o baba = (ba)^2$.

- Solution: an assignment h to the variables which makes both sides identical.
- Examples:

bababccc = bababccc

e.g.,
$$X \rightarrow bab$$
, $Y \rightarrow cc$, $Z \rightarrow ba$.

baba = baba

e.g.,
$$X \rightarrow ba$$
, $Y \rightarrow baba = (ba)^2$.

- Solution: an assignment h to the variables which makes both sides identical.
- Examples:

bababccc = *bababccc*

e.g.,
$$X \rightarrow bab$$
, $Y \rightarrow cc$, $Z \rightarrow ba$.
 $Y = XX$
e.g., $X \rightarrow ba$, $Y \rightarrow baba = (ba)^2$.
 $X \rightarrow w$, $Y \rightarrow w^2$, for any $w \in \Sigma^*$

Expressing Formal Languages via Word Equations

Y = XX

Fix h(Y).

- Then we can complete h to a solution if and only if h(Y) is a square.
- Idea: given a word equation e and a variable Y, the set of possible h(Y) occurring in solutions h is a formal language L.
- ▶ We say "e expresses L via its variable Y".
- e.g., What language does Yaa = X expresses via its variable X?

Expressing Formal Languages via Word Equations

Y = XX

Fix h(Y).

- Then we can complete h to a solution if and only if h(Y) is a square.
- Idea: given a word equation e and a variable Y, the set of possible h(Y) occurring in solutions h is a formal language L.
- ▶ We say "e expresses L via its variable Y".

e.g., $Y_{aa} = X$ expresses $L(\Sigma^* aa)$ via its variable X.

The Class WE

- WE: the class of languages "expressible" by word equations in this way.
- ► Not very well understood.
- Closure properties are unusual:

Theorem (Karhumäki et al. 2000)

WE is closed under union, concatenation, and finite perturbation. WE is not closed under complementation or Kleene star, but if |L| = 1, $L^* \in WE$.

WE and Other Classes

Trees and Expressibility

WE and Other Classes

► Also: every pattern language is expressible.

What Have I Been Doing?

Theorem (Day et al. 2022)

It is undecidable whether the language expressed via a variable in a word equation is regular.

I have been investigating the "reverse" statement:

Conjecture

It is decidable whether a regular language is in WE.

- I have introduced some necessary and sufficient conditions for a language to be expressible.
- Closure of WE under union and concatenation ⇒ Focus on submonoid languages X^{*} ⊂ Σ^{*}.

X is a Set of Powers of a Single Word

Let $X = \{a^2, a^3\}$. Is X^* expressible?

X is a Set of Powers of a Single Word

Let $X = \{a^2, a^3\}$. Is X^* expressible?

 $X^* = \{a\}^* \setminus \{a\}$, so yes.

X is a Set of Powers of a Single Word

Let $X = \{a^2, a^3\}$. Is X^* expressible?

 $X^* = \{a\}^* \setminus \{a\}$, so yes. More generally,

Proposition

Let $w \in \Sigma^+$, and $\mathscr{C} \subseteq \mathbb{N}$. Let $X = \{w^i : i \in \mathscr{C}\}$. Then $X^* \in WE$.

Proof idea: All sufficiently large powers of w must be in X^* . So X^* is obtained from w^* by removing finitely many words. Expressibility then follows from the closure properties.

A Tool for Showing Inexpressibility

Kahrhumäki et al. have introduced a "pumping lemma", which can be used to prove inexpressibility for a language L.

- 1. Assume to the contrary that $L \in WE$,
- 2. Choose a "good" factorisation scheme \mathcal{F} ,
- 3. Pick some $w \in L$ with lots of distinct \mathcal{F} -factors,
- 4. Kahrhumäki : some \mathcal{F} -factors of w can be replaced with any word, and membership of L is preserved.
- 5. Replace those \mathscr{F} -factors to yield a word $w' \notin L$: a contradiction.

Definition

Let $h \in \Sigma^+$. To obtain the \mathscr{F}_h -factorisation of $w \in \Sigma^*$, we split w to the left of each occurrence of the factor h in w, (even for overlapping occurrences of h).

Examples of \mathcal{F}_{aa} -factorisation:

abaaabbaab, aaaaa, bbbbbba.

Examples of \mathcal{F}_{aa} -factorisation:

Examples of \mathcal{F}_{aa} -factorisation:

Examples of \mathcal{F}_{aa} -factorisation:

Lemma

For any h, \mathcal{F}_h -factorisation is suitable for use in the Karhumäki result.

Thinness

A thin language is one having a "forbidden" factor z. e.g.,

 $L = \{a^n b^n : n \in \mathbb{N}\}$

is thin (we can take z = ba).

 $L = \{aa, bbab, bbabb\}^*$

is thin (we can take $z = b^5$).

Expressibility for Thin Submonoids

First main result:

Theorem

A thin submonoid X^* is expressible if and only the words in X are pairwise commutative.

Proof idea: We showed (\Leftarrow) earlier. For (\Rightarrow), we prove the contrapositive using \mathcal{F}_h -factorisation in the Karhumäki tool.

A Useful Idea from the Proof

- We need to demonstrate that our constructed word w has k distinct \$\varsigma_h\$-factors.
- ▶ To do this, we introduce disjoint intervals $I_1, I_2, ..., I_k \subset \mathbb{R}$.

- ▶ We then argue that, for each I_j, w has an ℱ_h-factor whose length lies in I_j.
- ▶ Thus *w* has at least *k* distinct 𝒯_h-factors.

Trees and Expressibility 0000000000

An Example

Let
$$\Sigma = \{a, b\}$$
, and let $X = \{a, aba, bb\}$. Is $X^* \in WE$?

ababa always takes the automaton to its sink state. So ababa is a forbidden factor for X^* ; X^* is thin. The elements of X are not pairwise commutative. So from our result, $X^* \notin WE$.

Well-Formed Regular Expressions

- ► We call a regular expression "well-formed" if it is equal to Ø, or avoids the symbol Ø.
- It is elementary to rewrite any regular expression so that it is well-formed.
- The "well-formed" regular expressions are completely "additive".
- ▶ i.e., we cannot have "destructive" sub-expressions $L\emptyset \equiv \emptyset$.

Expressibility for Thin Regular Languages

Second main result:

Theorem

Let L be regular and thin. Let R be any well-formed regular expression for L. Then $L \in WE$ if and only if, for every sub-expression Y^* of R, the words of L(Y) are pairwise commutative.

- The proof extends that of the previous result.
- ▶ Notice: *R* can be (pretty much) any regular expression for *L*.
- Corollary: Expressibility is decidable for thin regular languages.

An Example

• Let $\Sigma = \{a, b, c\}$, and consider

 $L = \{w : \text{ any even positions in } w \text{ must contain } b\}.$

- *L* is not a submonoid: $a \in L$, but $aa \notin L$.
- L is thin: a forbidden factor is z = aa.
- A regular expression for *L* is $R := (\Sigma b)^* (\Sigma | \varepsilon)$.
- In R, the Kleene star is applied to the non-commutative set {ab, bb, cb}.
- Second main result $\Rightarrow L \notin WE$.

Motivation

- L is called dense if it is not thin; this case is less straightforward.
- Idea: at the last step of the Karhumäki tool, we need to be more thoughtful about what we "pump in".
- Solution: refine the \$\mathcal{F}_h\$ technique to guarantee that we pump in only one place.
- ▶ This lets us investigate some dense submonoids X^{*}.

Third Main Result

Theorem

Let $X \subset \Sigma^+$ contain distinct words w_1, w_2 such that

- ▶ no proper left-factor of w₁ or w₂ is in X,
- no proper right-factor of w_1 or w_2 is in X,
- no words in X have w_1 or w_2 as a proper left-factor,

• no words in X have w_1 or w_2 as a proper right-factor. Then $X^* \in WE$ if and only if $\Sigma \subseteq X$.

Proof idea: Use w in the Karhumäki tool made up of just w_1 and w_2 . We can pump some $z \notin X^*$ into w in exactly one place using our refined method. From the premises, we can "strip" everything off the pumped word to conclude that $z \in X^*$: a contradiction.

Third Main Result: Corollaries

This result allows us to characterise the expressibility of X^* in following cases:

- the lengths of words in X have a common divisor p > 1,
- X is bifix, (i.e., no word in X is a left- nor a right-factor of any other),
- ► X is a power of a "code",

٠

An Example

Let $\Sigma = \{a, b\}$, and $X = \{aaa, aab, ab, ba, bb\}$. Is $X^* \in WE$?

• Take
$$w_1 = aaa$$
, $w_2 = ba$.

- The proper left- and right-factors of w₁ and w₂ are aa, a, and b, none of which are in X.
- ▶ No word in X has w_1 or w_2 as a proper left- or right-factor.

► Σ ⊈ X.

• Third main result $\Rightarrow X^* \notin WE$.

Let $|\Sigma| = n$. An *n*-ary rooted tree \mathcal{T} represents a set $X \subset \Sigma^+$ according to the possible "downward" paths in \mathcal{T} . For instance,

Let $|\Sigma| = n$. An *n*-ary rooted tree \mathcal{T} represents a set $X \subset \Sigma^+$ according to the possible "downward" paths in \mathcal{T} . For instance,

Let $|\Sigma| = n$. An *n*-ary rooted tree \mathcal{T} represents a set $X \subset \Sigma^+$ according to the possible "downward" paths in \mathcal{T} . For instance,

Let $|\Sigma| = n$. An *n*-ary rooted tree \mathcal{T} represents a set $X \subset \Sigma^+$ according to the possible "downward" paths in \mathcal{T} . For instance,

The sets representable in this way are called "maximal prefix".

► Given a tree *T*, we want to know whether the corresponding (dense) submonoid X* is expressible.

Synchronised Trees

Given a maximal prefix set X, and its tree \mathcal{T} , we can interpret \mathcal{T} as an automaton \mathscr{A} for X^* , e.g.,

If \mathscr{A} is synchronised, we call X synchronised too.

e.g., the above X is synchronised; a synchronising word is z = bb.

Trees and Expressibility

Synchronised Trees

Synchronised Trees

If X is regular and synchronised, there is a technique we can apply to obtain a "nice" regular expression for X^* :

- Choose a finite set Z of words that synchronise the tree automaton of X to its root node.
- Idea: In words from X^{*}, we can isolate the last occurrence of any z ∈ Z.

- Choose a finite set Z of words that synchronise the tree automaton of X to its root node.
- Idea: In words from X^{*}, we can isolate the last occurrence of any z ∈ Z.
- Observation: Any word may precede this last occurrence.

- Choose a finite set Z of words that synchronise the tree automaton of X to its root node.
- Idea: In words from X^{*}, we can isolate the last occurrence of any z ∈ Z.
- Observation: Any word may precede this last occurrence.
- Observation: We "catch up" with the X-factorisation after reading this last occurrence.

- Choose a finite set Z of words that synchronise the tree automaton of X to its root node.
- Idea: In words from X^{*}, we can isolate the last occurrence of any z ∈ Z.
- Observation: Any word may precede this last occurrence.
- Observation: We "catch up" with the X-factorisation after reading this last occurrence.
- Compute regular expressions R_Z for Z and R' for X^{*} ∩ L_Z, using standard techniques.

$$R := (\Sigma^* R_Z | \varepsilon) R'$$

Why is this Technique Helpful?

 $R = (\Sigma^* R_Z | \varepsilon) R'$

- $L(R') = X^* \cap \overline{L_Z}$ is regular and thin.
- ▶ By our earlier result, it is easy to check whether $L(R') \in WE$.
- If L(R') ∈ WE, then the closure properties give X* = L(R) ∈ WE.

Why is this Technique Helpful?

 $R = (\Sigma^* R_Z | \varepsilon) R'$

•
$$L(R') = X^* \cap \overline{L_Z}$$
 is regular and thin.

▶ By our earlier result, it is easy to check whether $L(R') \in WE$.

- If L(R') ∈ WE, then the closure properties give X* = L(R) ∈ WE.
- Unfortunately, if $L(R') \notin WE$, it is still possible that $X^* = L(R) \in WE$.

Trees and Expressibility

Some Applications

Trees and Expressibility

Some Applications

Trees and Expressibility

Some Applications

 $R = (\Sigma^* R_Z | \varepsilon) R'$ $X = \{aa, ab, baa, bab, bb\}$ $Z = \{baa, bab\}$ $L(R') = X^* \cap \overline{L_Z}$ $R' = (aa)^*(ab|\varepsilon)(bb)^*$ $\Rightarrow L(R')$ expressible $\Rightarrow X^*$ expressible

 $X = L(b^*a(a|b))$ $Z = \{baa, bab\}$ $L(R') = X^* \cap \overline{L_Z}$ $R' = (aa)^*(ab|\varepsilon)$ $\Rightarrow L(R') \text{ expressible}$ $\Rightarrow X^* \text{ expressible}$

Trees and Expressibility

Some Applications

The left tree here is a 'pruned' version of the right tree. Performing this pruning at any depth yields an expressible submonoid.

Trees and Expressibility

Some Applications: Families of Trees

(1-parameter family) X* is always expressible

Trees and Expressibility

Some Applications: Families of Trees

(1-parameter family) X* is always expressible (2-parameter family) X* is always expressible

Fourth Main Result

Proposition

Let X be maximal prefix and not synchronised. Then every regular expression for X^* has a sub-expression Y^* for which both

L(Y) is not pairwise commutative, and

•
$$Y \neq \Sigma$$
.

Proof idea: by contradiction

- We suspect that the above conclusion implies $X^* \notin WE$.
- Certainly, if we wanted to show expressibility for such an X*, we could not use the same technique we have been using in the synchronised case.

Two Open Problems

Open Problem

Let $L \in REG$. Suppose that every regular expression for L has a sub-expression Y^* for which

L(Y) is not pairwise commutative, and

•
$$Y \neq \Sigma$$
.

Does this imply that $L \notin WE$?

Open Problem

Given $L \in REG$, is the property " $L \in WE$ " decidable?

We suspect that in both cases, the answer is "yes".

Thank You!