Examining the Class of Formal Languages which
are Expressible via Word Equations

Matthew Konefal

Loughborough University

February 2023

Preliminaries
00000

Recap: Word Equations

» A fundamental object within Combinatorics on Words

» Have the form u = v, where v and v are words comprised of
> constants, taken from a finite alphabet X = {a, b, ...}
» variables, taken from a finite alphabet = = {X, Y, ...}.

> Examples:
XabYc = ZXcY Y = XX

Preliminaries
(o] lelele]e]

Recap: Word Equations

» Solution: an assignment h to the variables which makes both
sides identical.

> Examples:
XabYc = ZXcY

eg., X — bab, Y — cc, Z — ba.

Preliminaries
(o] lelele]e]

Recap: Word Equations

» Solution: an assignment h to the variables which makes both
sides identical.

> Examples:
bababccc = bababccc

eg., X — bab, Y — cc, Z — ba.

Preliminaries
(o] lelele]e]

Recap: Word Equations

» Solution: an assignment h to the variables which makes both
sides identical.

> Examples:
bababccc = bababccc

e.g., X — bab, Y — cc, Z — ba.
Y = XX

eg, X — ba, Y — baba = (ba)?.

Preliminaries
(o] lelele]e]

Recap: Word Equations

» Solution: an assignment h to the variables which makes both
sides identical.

> Examples:
bababccc = bababccc

e.g., X — bab, Y — cc, Z — ba.
baba = baba

eg, X — ba, Y — baba = (ba)?.

Preliminaries
(o] lelele]e]

Recap: Word Equations

» Solution: an assignment h to the variables which makes both
sides identical.

> Examples:
bababccc = bababccc

e.g., X — bab, Y — cc, Z — ba.
Y = XX
eg, X — ba, Y — baba = (ba)?.

X = w, Y — w*, for any w € **

Preliminaries
[e]e] lele]e]

Expressing Formal Languages via Word Equations

Y = XX
> Fix h(Y).
» Then we can complete h to a solution if and only if A(Y) is a
square.

» ldea: given a word equation e and a variable Y, the set of
possible h(Y') occurring in solutions h is a formal language L.

> We say “e expresses L via its variable Y".

e.g., What language does Yaa = X expresses via its variable X?

Preliminaries
[e]e] lele]e]

Expressing Formal Languages via Word Equations

Y = XX
> Fix h(Y).
» Then we can complete h to a solution if and only if A(Y) is a
square.

> |dea: given a word equation e and a variable Y, the set of
possible h(Y') occurring in solutions h is a formal language L.

> We say “e expresses L via its variable Y.

e.g., Yaa = X expresses L(X*aa) via its variable X.

Preliminaries
[e]e]e] le]e]

The Class WE

» WE: the class of languages “expressible” by word equations in
this way.

» Not very well understood.

» Closure properties are unusual:

Theorem (Karhumaki et al. 2000)

WE is closed under union, concatenation, and finite perturbation.
WE is not closed under complementation or Kleene star, but if
L] =1, L* € WE.

Preliminaries
0000e0

WE and Other Classes

REC

REG

Preliminaries
0000e0

WE and Other Classes

REC

REG

P> Also: every pattern language is expressible.

Preliminaries
00000e

What Have | Been Doing?

Theorem (Day et al. 2022)

It is undecidable whether the language expressed via a variable in a
word equation is regular.

| have been investigating the “reverse” statement:

Conjecture

It is decidable whether a regular language is in WE.

» | have introduced some necessary and sufficient conditions for
a language to be expressible.

» closure of WE under union and concatenation = Focus on
submonoid languages X* C X*.

Thin Languages
©0000000000

X is a Set of Powers of a Single Word

Let X = {a°,a}. Is X* expressible?

Thin Languages
©0000000000

X is a Set of Powers of a Single Word

Let X = {a°,a}. Is X* expressible?

X* ={a}*\{a}, so yes.

Thin Languages
©0000000000

X is a Set of Powers of a Single Word

Let X = {a°,a}. Is X* expressible?

X* ={a}*\{a}, so yes.
More generally,

Proposition

Let we Xt and& CN. Let X = {w':i € &}. Then X* € WE.

Proof idea: All sufficiently large powers of w must be in X*. So
X* is obtained from w* by removing finitely many words.
Expressibility then follows from the closure properties.

Thin Languages
0®000000000

A Tool for Showing Inexpressibility

Kahrhumaki et al. have introduced a “pumping lemma”, which
can be used to prove inexpressibility for a language L.

1. Assume to the contrary that L € WE,

2. Choose a “good” factorisation scheme &,

3. Pick some w € L with lots of distinct #-factors,
4

. Kahrhumaki : some F-factors of w can be replaced with any
word, and membership of L is preserved.

5. Replace those F-factors to yield a word w’ ¢ L: a
contradiction.

Thin Languages
00@00000000

A Useful Factorisation Scheme

Definition

Let h € ¥*. To obtain the %,-factorisation of w € X*, we split w
to the left of each occurrence of the factor h in w, (even for
overlapping occurrences of h).

iyh w %h

Thin Languages
0000000000

A Useful Factorisation Scheme

Examples of &,,-factorisation:

abaaabbaab, aaaaa, bbbbbba.

|
|
;
| aa w aa
|
|
|

Thin Languages
0000000000

A Useful Factorisation Scheme

Examples of &,,-factorisation:

ablalaabb|aab, aaaaa, bbbbbba.

I
|
;
| aa w aa
|
|
|

Thin Languages
0000000000

A Useful Factorisation Scheme

Examples of &,,-factorisation:

ablalaabb|aab, alalalaa, bbbbbba.

I
|
;
| aa w aa
|
|
|

Thin Languages
0000000000

A Useful Factorisation Scheme

Examples of &,,-factorisation:

ablalaabb|aab, alalalaa, bbbbbba.

I
|
;
| aa w aa
|
|
|

Lemma

For any h, Fp-factorisation is suitable for use in the Karhumaki
result.

Thin Languages
0000@000000

Thinness

A thin language is one having a “forbidden” factor z.
e.g.,

L={a"b":ne N}
is thin (we can take z = ba).
L = {aa, bbab, bbabb}*

is thin (we can take z = b°).

Thin Languages
00000®00000

Expressibility for Thin Submonoids

First main result:

Theorem

A thin submonoid X* is expressible if and only the words in X are
pairwise commutative.

Proof idea: We showed (<) earlier. For (=), we prove the
contrapositive using Fj,-factorisation in the Karhumaki tool.

Thin Languages
000000@0000

A Useful Idea from the Proof

» We need to demonstrate that our constructed word w has k
distinct &j-factors.

» To do this, we introduce disjoint intervals I,bh,...,Ix C R.

4 A WA A\ 4 A\
\I/\ / \ /

1 2 I

» We then argue that, for each /;, w has an F-factor whose
length lies in /;.
» Thus w has at least k distinct #p-factors.

Thin Languages
00000008000

An Example
Let ¥ = {a, b}, and let X = {a, aba, bb}. Is X* € WE?

a,b

ababa always takes the automaton to its sink state. So ababa is a
forbidden factor for X*; X* is thin. The elements of X are not
pairwise commutative. So from our result, X* ¢ WE.

Thin Languages
00000000800

Well-Formed Regular Expressions

» We call a regular expression “well-formed” if it is equal to 0,
or avoids the symbol 0.

P It is elementary to rewrite any regular expression so that it is
well-formed.

> The “"well-formed” regular expressions are completely
“additive”.

» i.e., we cannot have “destructive” sub-expressions L() = ().

Thin Languages
00000000080

Expressibility for Thin Regular Languages

Second main result:

Theorem

Let L be regular and thin. Let R be any well-formed regular
expression for L. Then L € WE if and only if, for every
sub-expression Y* of R, the words of L(Y') are pairwise
commutative.

» The proof extends that of the previous result.
» Notice: R can be (pretty much) any regular expression for L.

» Corollary: Expressibility is decidable for thin regular languages.

Thin Languages
0000000000e

An Example

» Let ¥ = {a, b, c}, and consider
L ={w : any even positions in w must contain b}.
L is not a submonoid: a € L, but aa ¢ L.
A regular expression for L is R := (X b)*(X|e).
In R, the Kleene star is applied to the non-commutative set

{ab, bb, cb}.
» Second main result = L ¢ WE.

>
» [is thin: a forbidden factor is z = aa.
| 2
| 2

Dense Submonoids
€000

Motivation

>

>

L is called dense if it is not thin; this case is less
straightforward.

Idea: at the last step of the Karhumaki tool, we need to be
more thoughtful about what we “pump in”.

Solution: refine the %, technique to guarantee that we pump
in only one place.

This lets us investigate some dense submonoids X*.

Preliminaries Thin La ag Dense Submonoids

o] lele)]

Third Main Result

Theorem
Let X C X contain distinct words wi, ws such that
» no proper left-factor of wi or wy is in X,
» no proper right-factor of wy or wy is in X,
» no words in X have wy or wy as a proper left-factor,
» no words in X have wy or wy as a proper right-factor.
Then X* € WE if and only if ¥ C X.

Proof idea: Use w in the Karhumaki tool made up of just wy and
wa. We can pump some z ¢ X* into w in exactly one place using
our refined method. From the premises, we can “strip” everything
off the pumped word to conclude that z € X*: a contradiction.

Dense Submonoids
00®0

Third Main Result: Corollaries

This result allows us to characterise the expressibility of X* in
following cases:

» the lengths of words in X have a common divisor p > 1,

» X is bifix, (i.e., no word in X is a left- nor a right-factor of
any other),

» X is a power of a “code”,

Dense Submonoids
ocooe

An Example

Let X = {a, b}, and X = {aaa, aab, ab, ba, bb}. Is X* € WE?

» Take wy = aaa, wo = ba.

» The proper left- and right-factors of wy and ws are aa, a, and
b, none of which are in X.

» No word in X has wy or wy as a proper left- or right-factor.
> > Z X.
Third main result = X* ¢ WE.

v

Trees and Expressibility
©000000000

X Obtained From a Tree

Let |X| = n. An n-ary rooted tree I represents a set X C X T
according to the possible “downward” paths in . For instance,

X = {aa, aba, abb, b},

Trees and Expressibility
©000000000

X Obtained From a Tree

Let |X| = n. An n-ary rooted tree I represents a set X C X T
according to the possible “downward” paths in . For instance,

A

X = {aa, aba, abb, b},

Trees and Expressibility
©000000000

X Obtained From a Tree

Let |X| = n. An n-ary rooted tree I represents a set X C X T
according to the possible “downward” paths in . For instance,

A

X = {aa, aba, abb, b}, X = {aa,ab,ac,b,c},

Trees and Expressibility
©000000000

X Obtained From a Tree

Let |X| = n. An n-ary rooted tree I represents a set X C X T
according to the possible “downward” paths in . For instance,

A

X ={aa, aba,abb, b}, X ={aa,ab,ac,b,c}, X ={b'a:icN}.

» The sets representable in this way are called “maximal prefix".

> Given a tree I, we want to know whether the corresponding
(dense) submonoid X* is expressible.

Trees and Expressibility
0®00000000

Synchronised Trees

Given a maximal prefix set X, and its tree I, we can interpret I
as an automaton & for X*, e.g.,

S0

If of is synchronised, we call X synchronised too.

e.g., the above X is synchronised; a synchronising word is z = bb.

Trees and Expressibility
00®0000000

Synchronised Trees

AN

Synchronised Synchronised Not Synchronised
z=b z=a

Trees and Expressibility
00®0000000

Synchronised Trees

AN

Synchronised Synchronised Not Synchronised
z=b z=a

If X is regular and synchronised, there is a technique we can apply
to obtain a “nice” regular expression for X*:

Trees and Expressibility
000®000000

A “Nice” Regular Expression for X*
» Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

» Idea: In words from X*, we can isolate the last occurrence of
any z € Z.

Trees and Expressibility
000®000000

A “Nice” Regular Expression for X*

» Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

» Idea: In words from X*, we can isolate the last occurrence of
any z € Z.

» Observation: Any word may precede this last occurrence.

Trees and Expressibility
000®000000

A “Nice” Regular Expression for X*

>

Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

Idea: In words from X*, we can isolate the last occurrence of
any z € Z.

Observation: Any word may precede this last occurrence.

Observation: We “catch up” with the X-factorisation after
reading this last occurrence.

Trees and Expressibility
000®000000

A “Nice” Regular Expression for X*

>

Choose a finite set Z of words that synchronise the tree
automaton of X to its root node.

Idea: In words from X*, we can isolate the last occurrence of
any z € Z.

Observation: Any word may precede this last occurrence.

Observation: We “catch up” with the X-factorisation after
reading this last occurrence.

Compute regular expressions Rz for Z and R’ for X* N Lz,
using standard techniques.

A regular expression for X* is then

R := (Z*Rz|e)R’

Trees and Expressibility
0000@00000

Why is this Technique Helpful?

R = (S*Rz|e)R'

» L(R') = X* N Lz is regular and thin.
» By our earlier result, it is easy to check whether L(R’) € WE.

» If L(R') € WE, then the closure properties give
X* = L(R) € WE.

Trees and Expressibility
0000@00000

Why is this Technique Helpful?

R = (S*Rz|e)R'

» L(R') = X* N Lz is regular and thin.
» By our earlier result, it is easy to check whether L(R’) € WE.
» If L(R') € WE, then the closure properties give
X*=L(R) € WE.
» Unfortunately, if L(R") ¢ WE, it is still possible that
X* = L(R) € WE.

Trees and Expressibility
0000080000

Some Applications

R = (Z*Rz|e)R'

Trees and Expressibility
0000080000

Some Applications

R = (Z*Rz|e)R'

X = {aa, ab, baa, bab, bb}
Z = {baa, bab}
LR =X*N1Lz

R" = (aa)*(able)(bb)*
= L(R’) expressible
= X* expressible

Trees and Expressibility
0000080000

Some Applications

R = (Z*Rz|e)R'

X = {aa, ab, baa, bab, bb} X = L(b*a(alb))

Z = {baa, bab} Z = {baa, bab}

L(RY=X*NLz L(RY=X*NLz

R" = (aa)*(able)(bb)* R = (aa)*(able)
= L(R’) expressible = L(R’) expressible

= X* expressible = X* expressible

Trees and Expressibility
0000080000

Some Applications

X = {aa, ab, baa, bab, bb} X = L(b*a(alb))

R = (Z*Rz|e)R'

Z = {baa, bab} Z = {baa, bab}
L(RY=X*NLz LR =X*N1z
R" = (aa)*(able)(bb)* R = (aa)*(able)
= L(R’) expressible = L(R’) expressible
= X* expressible = X* expressible

» The left tree here is a ‘pruned’ version of the right tree.
Performing this pruning at any depth yields an expressible
submonoid.

Trees and Expressibility
0000008000

Some Applications: Families of Trees

(1-parameter family)
X* is always expressible

Trees and Expressibility
0000008000

Some Applications: Families of Trees

(1-parameter family) (2-parameter family)
X* is always expressible X* is always expressible

Trees and Expressibility
0000000800

Fourth Main Result

Proposition

Let X be maximal prefix and not synchronised. Then every regular
expression for X* has a sub-expression Y* for which both

» L(Y) is not pairwise commutative, and
> Y £%.

Proof idea: by contradiction
» We suspect that the above conclusion implies X* ¢ WE.

» Certainly, if we wanted to show expressibility for such an X*,
we could not use the same technique we have been using in
the synchronised case.

Trees and Expressibility
0000000080

Two Open Problems

Open Problem

Let L € REG. Suppose that every regular expression for L has a
sub-expression Y* for which

» L(Y) is not pairwise commutative, and
> Y AT
Does this imply that L ¢ WE?

Open Problem
Given L € REG, is the property “L € WE" decidable?

We suspect that in both cases, the answer is "yes”.

Trees and Expressibility

000000000 e

Thank You!

	Preliminaries
	Thin Languages
	Dense Submonoids
	Trees and Expressibility

