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Combinatorial games: definition

Berlekamp, Conway and Guy, Winning Ways, 1981
® 2 players
® Total information, no chance
® Finite number of turns, no draw

® Winner given by the last move.
Normal Convention: the player who cannot play loses.
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Go

3/30



“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on

the number, and possibly splits the heap.
The player who cannot play loses.
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“Taking and breaking” games

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
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Subtraction games

One cannot split a heap — Subtraction game
Defined by a set S C N:

® At his turn, a player removes k € S tokens from a heap, without
breaking it.

® The player who cannot play loses.

Example : § ={1,2,4}
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Subtraction games

One cannot split a heap — Subtraction game
Defined by a set S C N:

® At his turn, a player removes k € S tokens from a heap, without
breaking it.

® The player who cannot play loses.

Example : § ={1,2,4}
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Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

$={1,2,4}

® Playing in the game < Moving a token along the arcs
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Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

Playing in the game < Moving a token along the arcs
Starting from the sinks, one can determine the winner:

> N if the Next player can force the win,
> P if the Previous player can force the win.

From a P -position, all moves are to  -positions

Theorem

From a A -position, there is always a move to a 7 -position.

One of the players has a winning strategy.
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Main issue

(_[Outcome of the game]

Input : Game position
Output : First (/) or second (P) player wins?

. J

f_[Winning strategy]

Input : Game position
Output : If the game is A/, a winning move.

(. J
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Main issue

/_[Outcome of the game]

Input : Game position
Output : First (A') or second (7) player wins?

. J

,_[Winning strategy]

Input : Game position
Output : If the game is A/, a winning move.

(. J

These two problems can be solved using the DAG...but its size is often
exponential !

They are generally in PsracE
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A standard PSPACE problem

Quantified Boolean Formula (QBF)]

Input : Qx1Qoxa ... Quxn®(x1,...,x,) : Qi €{V,3}
Output : Is the formula true?
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A standard PSPACE problem

Quantified Boolean Formula (QBF)]

Input : Qx1Qoxa ... Quxn®(x1,...,x,) : Qi €{V,3}
Output : Is the formula true?

Description of a winning strategy?

“There exists a move for J1, such that, for all moves of J2, there exists a
move for J1..."

QBF-game :
® Board: logic formula ®(xq, ..., x,)
® Players assign boolean values to xi,...,x,, following this order.

® First player wins if at the end the formula is true.

Theorem Schaeffer, 1989 and Arora,Barak, 20091

Deciding if there is a winning strategy for the first player at QBF-game
is PSPACE-complete.
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Polynomiality of subtraction games
Consider the subtraction game S = {1,2,4} on n token.

n__|

0o 1 2 3 4 5 6 7 8 9 12
outcome | P N N P N N P N N P N N P
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Polynomiality of subtraction games
Consider the subtraction game S = {1,2,4} on n token.

I
n |0 1 2 3 4 5 6 7 8 9
outcome | P N N P N N P N N PN N P

A position nis P if and only if n =0 mod 3.

9/30



Polynomiality of subtraction games
Consider the subtraction game S = {1,2,4} on n token.
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A position nis P if and only if n =

o
3
o
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Proposition

Any finite subtraction game has its outcome sequence that is ultimately
periodic.
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Polynomiality of subtraction games
Consider the subtraction game S = {1,2,4} on n token.

n |0 1 2 3 4 5 6 7 8 9
outcome | P N N P N N P N N PN N P

A position nis P if and only if n =

o
3
o
o
w

Proposition

Any finite subtraction game has its outcome sequence that is ultimately
periodic.

— computing the outcome of the game is polynomial.

Open

Size of the preperiod and the period in function of 57 ]
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Breaking the heaps?

CRAM: Players take two tokens in a heap and can split it into two heaps.
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Breaking the heaps?

CRAM: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
— with sum of games

0000060000000
_l’_

X1 X2
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Computing the outcome of a sum

With a P -position:

oNoNo
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Computing the outcome of a sum

With a P -position: With only NV -positions:
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Computing the outcome of a sum

With a P -position:

oNoNo

With only N -positions:

W)+ (V)=
0000

-~J
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Computing the outcome of a sum

With a P -position: With only NV -positions:

®-0-0 @@
@0 606
o000 00

-~J

MMl
3

N

11/30



Computing the outcome of a sum

With a P -position: With only NV -positions:
00 OO
o0 00
0000 00

-~J

MMl
3

N

P N
N | PoN
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Grundy values
Let / € N. MeX (minimum excluded value) of / = min N'\ /.

MeX({0,1,3,5}) =2, MeX({2,3,6}) =0, MeX(§))=0.
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Grundy value of the sum of games

P N
N | PoN
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Grundy value of the sum of games

Theorem Sprague—Grundy]

Let x1, x> be two game positions. Then:

G(x1 +x) =G(x1) ® G(x)

where @ is the XOR operator.
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Grundy value of the sum of games

JTheorem Sprague—Grundy]

Let x1, x> be two game positions. Then:

G(x1 +x) =G(x1) ® G(x)

where @ is the XOR operator.

(. J

Corollary

The sum x; + x2 is P if and only if G(x1) = G(x2).

| J
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Grundy sequence

Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens.
For the subtraction game {1,2,4}:

n |01 2345 6 7 89 10 11 12
Gml0 1 20120120 1 2 0
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Grundy sequence

Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens.
For the subtraction game {1,2,4}:

n |01 23 456 7 89 10 11 12
Gml0 1 20120120 1 2 0

Theorem Berlekamp, Conway, Guy, 1981]

Finite subtraction games have ultimaltely periodic sequences. ]

For CRAM:

n [0 1
G(n)[0 0

2 3 45 6 7 8 9 10 11 12
11203110 3 3 2

Theorem Guy, Smith, 1956]

The Grundy sequence of CRAM is periodic with period 34 and prepe-
riod 53.
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Octal games

Played on several heaps of tokens. A move consists in choosing a heap
and, according to the rules:

® remove all the tokens from the heap, and delete this heap,
® remove some tokens from the heap, leaving 1 non-empty heap,
® remove some tokens from the heap, separating the remaining tokens
into 2 non-empty heaps.
The number of tokens that can be removed is given by the game rules via

an octal code
dye didrds--- d,'EO,...,?
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Octal games

Played on several heaps of tokens. A move consists in choosing a heap
and, according to the rules:

® remove all the tokens from the heap, and delete this heap,
® remove some tokens from the heap, leaving 1 non-empty heap,

® remove some tokens from the heap, separating the remaining tokens
into 2 non-empty heaps.

The number of tokens that can be removed is given by the game rules via

an octal code
dye didrds--- d,'EO,...,?

Examples:
® The subtraction game {1,2,4} is the octal game 0 e 3303.
® The game CRAM corresponds to the octal game 0 e 07.

® The game 0 @ 304 allows you to remove 1 token without splitting the
heap, or 3 tokens by necessarily dividing the heap.
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Guy's Conjecture

Conjecture Guy, 1956

The Grundy sequence of a finite octal game is ultimately periodic. ]
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Guy's Conjecture

Conjecture Guy, 1956]

The Grundy sequence of a finite octal game is ultimately periodic. ]

® For the game 0 @ 106, the Grundy sequence is ultimately periodic,
with a period of 328226140474, and a pre-period of 465384263797.

® The Grundy sequence of the game 0 e 007 (James Bond Game) is
conjectured to be periodic (tested up to 2%8)

® [t is open for very simple games like 0 @ 6!
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Which octal games are in P ?

Nontrivial Octal-Games with at most 3 places

Game sgv-sequence type  bitstring rare  last maxn maxG index lost depth period  preperiod except
6 0012012312340342... 0 0111011111111... 1584 20627 233 363 7775706554 14 1008823

04 0000111220331110... 0 0001110111111.. 22476 5020984 228 1689 248902928 38 5218954

06 0001122031122334... 0 i 224 22097 16360327 37

14 0100102122104144... 0 0011111111111... 1896 178727 232 85 1839780623 172 576735

16 0100122140142140... 0 0111111111111... 53 13935 - 23 229790 7 21577 149459 105351 16
.36 0102102132132430... 0 0111111111111... 516 11798 23 208 1762187846 14 17168

37 0120123123403421... 0 0111011111111.. 1583 20626 233 363 7775706553 13 1008822

45 0011223114432211... 0 111111111111 1 198 - 8 37 2 37 20 498 8
56 0102241132446621... 0 1101101111111... 46 1795 - 64 22778 2 7405 144 326640 26
64 0012341532154268... 0 0111110111111... 488 156751 233 262 1911635806 2470403814

74 0101232414623215... 0 1101101111111... 1386 15929 23! 512 76103606 2 137102

16 0102341623416732... 0 000000011001 219248 5208068 224 16814 4995486 2

004 0000011112220333.. 0 0001111111111.. 184854 15869181 225 6063 22057995 32

005 0001011222033411.. 1 1110101001011.. 95660 67070800 226 1059 3022366 -

006  0000111222033111.. 0 0000000101111.. 470413 16772624 224 6532 4798522 40

007 0001112203311104.. 0 0001110111111.. 22476 5029983 228 1689 248902027 37 5218954

014 0010010122123401... 0 011111111111 2037 64126 231 365 169860345 13 126438

015 0011010212230142... 0 0111111111111... 237 11973 235 101 2350397235 7 27036

016 0010122201014422.. 0 0010111111111..  21439102335997 227 1093 102705419 18 41416941

024 0001122304112532... 0 2 225 12371 30810166 26

026 0001122304112533... 0 ? 225 37903 33220674 27

034 0011022314014312... 0 1111111111111.. 1079 374473 234 256 26376 10 596840

054 0010122234411163.. 0 1011111111111... 38 796 - 41 33671802 3 16284 10015179 193235616 18
.055 0011122231114443... 0 1111111111111... 6 - 8 2 20 148 259 2
064 0001122334115533.. 0 0111111111111.. 6795528569986 229 523 275511554 3 28677643

104 0100010221224104... 1 1110111111111... 20 284 - 29 186892307 - 4178 11770282 197769598 9
106 0100012221440106... 1 1011011111111... 15 1103 - 31 1937780317 - 15343 328226140474 465384263797 25
114 0110011202120411... 0 1111111101111.. 100891 33547932 225 1610 20501458 11

125 0102110213011302... 0 ? 224 44406 16775217 145

126 0100213321042503.. 1 0111001110001.. 20444102973539 228 2222 265978 - 40637003

127 0102210441220144... 1 1000001111111... 693 27106 - 56 247341190 13551 4 46578 11
135 0112011203110312... 0 ? 224 27960 16768149 91

136 0110021302110223.. 0 ? 224 25272 15750407 40

142 0100222110332410.. 1 1100011101111.. 1357 117323 234 441 17142768844 - 411815

143 0101222010422150.. 0 1011111111111.. 9417 2561883 227 148 26789789 13 3047015

http://wuwhomes.uni-bielefeld.de/achim/octal.html
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Rewriting games
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Rewriting games

Rewriting games (Waldmann, 2002):
® Rewriting system (terminal)
® Starting from a word t, players alternate applying rules to the word.

® The player who can no longer apply a rule loses.

Example : Ry : ab — ¢, Ry, : aaa — b and t = aabbbaabaaa
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Rewriting games

Rewriting games (Waldmann, 2002):
® Rewriting system (terminal)
® Starting from a word t, players alternate applying rules to the word.
® The player who can no longer apply a rule loses.
Example : Ry : ab — ¢, Ry, : aaa — b and t = aabbbaabaaa
aabbbaabaaa — aabbbaaaa — aabbbba — abbba — bba
The first player can no longer play and loses.

Allows to model many games, including octal games.
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Octal games as rewrite games

Alphabet on two letters: a (for tokens), b (to separate the heaps)

Example: Game CRAM can be modeled with rules aa — ¢ and aa — b.

00066 _, 660066

aaaaaa aabaa
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Octal games as rewrite games

Alphabet on two letters: a (for tokens), b (to separate the heaps)

Example: Game CRAM can be modeled with rules aa — ¢ and aa — b.

00066 _, 660066

aaaaaa aabaa

The three rules of octal games can be translated with rewrite rules:
® Emptying a heap of k tokens: bakb — b

k+1

® Removing k without emptying: a*™* — a

® Removing k and splitting in 2: ak*? — aba
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Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lx: words with value k.

Theorem Waldmann, 2002)

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.
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Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lx: words with value k.

Theorem Waldmann, 2002)

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

= Find a DFA that determines if a given word ba*'ba*? - - - ba*"b satisfies
G(x1)® ... ®G(xn) = k.
® There exists a DFA that computes G(x;) Vi

® Before each new x;, we keep in memory the previous sum
G(x1)®...®G(x;—1): possible because the number of Grundy
classes is bounded (by M).

® The new sum can be computed by a DFA.

21/30



Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lx: words with value k.

Theorem Waldmann, 2002)

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

< The Ly are rational.
® [, Nba*b is rational.
® Rational language with one letter < [ Jba*P*b: k € N
® Partition of N = periods are multiple.
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(_[Theorem Waldmann, 2002)

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.
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/_[Conjecture Guy, 1956]

For any octal rewriting game, there is a finite number of non-empty
Grundy classes, and each class is a rational language.

21/30



Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lx: words with value k.

(_[Theorem Waldmann, 2002)

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

(. J

/_[Conjecture Guy, 1956]

For any octal rewriting game, there is a finite number of non-empty
Grundy classes, and each class is a rational language.

" J

With different rules? Rational classes?
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What about other types of rules?

® What happens if we can delete b's? — Taking-and-merging games
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of the form a¥ — ¢ or b’ — ¢

Notation: a’,ak, ... ak b% bf .. bfm
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What about other types of rules?

® What happens if we can delete b's? — Taking-and-merging games

Définition

A rewriting game is said to be “taking-and-merging” if all the rules are
of the form a¥ — ¢ or b’ — ¢

Notation: a’,ak, ... ak b% bf .. bfm

Question: Are the Grundy classes rational?
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A first example: the game a2, b

Rules: aa —+cand b — ¢
We construct the DAG starting with small words:
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Rules: aa —+cand b — ¢
We construct the DAG starting with small words:

1 1

@ ®
JORNORNO
JosN®

1



A first example: the game a2, b

Rules: aa —+cand b — ¢
We construct the DAG starting with small words:

1 1
0

oo
100



A first example: the game a2, b

Rules: aa —+cand b — ¢
We construct the DAG starting with small words:

1 1




A first example: the game a2, b

Rules: aa —+cand b — ¢
We construct the DAG starting with small words:

1 1

®
Youlo
0 <i:::>k4444444{liilb ‘HIIH'P\\\\\\\

1 1 0

The quantity |u|, + 2|u|p decreases by 2 after each move.
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A first example: the game a2, b

Rules: aa —+cand b — ¢
We construct the DAG starting with small words:

1 1

®
Yoo
\\

< \
T
()
The quantity |u|, + 2|u|p decreases by 2 after each move.
— G(u) = 0 iff |u|, + 2|ulp mod 4 € {0,1}
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The game a°, b is rational

Theorem D., Marsault, P., Rigo, 2020

The game {a°, b} has two classes of Grundy values £o and L;, each
forming a rational language.

DFA computing S(u) = (Jula + 2|u|p) mod 4:

State stands for Grundy value g and S(u) =s
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Rationality of rewriting games?

Theorem D., Marsault, P., Rigo, 2020

Let G be the rewriting game {ak a* ... b1 b% ...}, where
1<k <k <...and1<l; <l <...
The language Ly formed by the P -positions of G is not rational.
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Rationality of rewriting games?

Theorem D., Marsault, P., Rigo, 2020

Let G be the rewriting game {ak a* ... b1 b% ...}, where
1<k <k <...and1<l; <l <...
The language Ly formed by the P -positions of G is not rational.

Proof idea:

® |ntersection of Ly with

L= bél_l(abél_l)*(bakl_l)*.
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Rationality of rewriting games?

Theorem D., Marsault, P., Rigo, 2020

Let G be the rewriting game {ak a* ... b1 b% ...}, where
1<k <k <...and1<l; <l <...
The language Ly formed by the P -positions of G is not rational.

Proof idea:

® |ntersection of Ly with
L =1p4 Y (ab? 1) (bakr~1)*.

e By induction: b“~*(ab’~1)}(ba¥*~1)J from L is P iff i > .
® The intersection of L and Lg is not rational, and thus Lg is not
rational.

25/30



Games with two rules

Theorem D.,Marsault, P.,Rigo, 2020]

The game {a b’} has only two Grundy classes and the associated
languages Ly and L; are context-free.
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Games with two rules

Theorem D.,Marsault, P.,Rigo, 2020]

The game {a b’} has only two Grundy classes and the associated
languages Ly and L1 are context-free.

Proof:

® From a word u, there is a unique terminal word f(u).

All reductions u —* f(u) have the same length.

G(u) = 0 if and only if the previous sequence has an even length.

® Construction of a pushdown automaton that computes the parity of
the number of reductions.
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Games with two rules

Theorem D.,Marsault, P.,Rigo, 2020]

The game {a b’} has only two Grundy classes and the associated
languages Ly and L1 are context-free.

Proof:

® From a word u, there is a unique terminal word f(u).

All reductions u —* f(u) have the same length.

G(u) = 0 if and only if the previous sequence has an even length.

® Construction of a pushdown automaton that computes the parity of
the number of reductions.

Remark: If £ =1 (or k = 1), the stack is not longer needed and Lo, £
are rational. The number of moves is: |ul, + L%J

26/30



Games with a — s and b — ¢

e {a,a?*1 p}: G has 2 values, Lo and £; are rational.
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Games with a — s and b — ¢

e {a,a?*1 p}: G has 2 values, Lo and £; are rational.

® {a,a% b}: G has 4 values, computed by a DFA with 12 states.
e {a a* b} (no DFA found, G < 37)

® {a,a% a3 b}: G has 4 values, computed by a DFA with 8 states.

® {a,a% a3 a* b}:

(maxg(u))|u|:o,1,z,... =
0,1,2,3,4,5,5,6,7,7,7,7,7,8,9,9,10,11,11,12,13,13,13,14

Are the values for this game bounded?
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Computing the rationality more easily

Need to examine all the £;'s 7

Theorem Waldmann, 2002]

For an octal rewriting game:
Ly rational = Grundy is bounded + all £; are rational.
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Computing the rationality more easily

Need to examine all the £;'s 7

Theorem Waldmann, 2002]

For an octal rewriting game:
Ly rational = Grundy is bounded + all £; are rational.

® Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game =
periodicity of the whole sequence

® Does not seem to hold for taking-and-merging games:

> The game {a, a2,b,b2} has its language Lo rational.
> But
(maxG(u))|u| =0,1,2,...=

0,1,2,3,3,4,4,4,4,4,4,5,5,5,6,6,6,6,6,6,7,7,8,8
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Computing the rationality more easily

Need to examine all the £;'s 7

Theorem Waldmann, 2002]

For an octal rewriting game:
Ly rational = Grundy is bounded + all £; are rational.

® Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game =
periodicity of the whole sequence
® Does not seem to hold for taking-and-merging games:
> The game {a, a2,b,b2} has its language Lo rational.
> But
(maxG(u))|u| =0,1,2,...=
0,1,2,3,3,4,4,4,4,4,4,5,5/5,6,6,6,6,6,6,7,7,8,8
» Question : For the game a,a? b, b?, is G bounded? Is there an i
such that £; is not rational?
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Deciding P -position of a rewriting game is not decidable

Theorem DMP R,2020]

Given a rewriting game and a rational language L of starting positions,
it is undecidable to determine if there exists a 7 -position in Lg.
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Deciding P -position of a rewriting game is not decidable

/_[Theorem DMPR,2020)

Given a rewriting game and a rational language L of starting positions,
it is undecidable to determine if there exists a 7 -position in Lg.

|\ J

Conjecture

Given a rewriting game, it is undecidable to determine if the P-
positions are rational.

. J
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Conclusion

® Rewriting games generalize a large set of combinatorial games with
a nice equivalence between periodicity and regularity.

® Some very simple games are not solved yet like {a,a* b}.
What happens if we add the rule a — b ?
® |s there some relation between the DAG, the rules and the DFA ?

Which games are (not) rewriting games?
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Conclusion

® Rewriting games generalize a large set of combinatorial games with
a nice equivalence between periodicity and regularity.

® Some very simple games are not solved yet like {a,a* b}.
What happens if we add the rule a — b ?
® |s there some relation between the DAG, the rules and the DFA ?

Which games are (not) rewriting games?

Thank you !
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