Taking and merging games as rewrite games

Eric Duchêne and Aline Parreau

LIRIS, CNRS, Université Lyon 1

Joint work with Victor Marsault and Michel Rigo One World Combinatorics on Words Seminar, February 27th 2023

First part Combinatorial games

Berlekamp, Conway and Guy, Winning Ways, 1981

• 2 players

- 2 players
- Total information, no chance

- 2 players
- Total information, no chance
- Finite number of turns, no draw

- 2 players
- Total information, no chance
- Finite number of turns, no draw
- Winner given by the last move. Normal Convention: the player who cannot play loses.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

Board: Heaps of tokens

Rules: A player takes tokens in a single heap, with some constraints on the number, and possibly splits the heap.

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

Example : $S = \{1, 2, 4\}$

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

Example : $S = \{1, 2, 4\}$

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

Example : $S = \{1, 2, 4\}$

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

Example : $S = \{1, 2, 4\}$

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

Example : $S = \{1, 2, 4\}$

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

One cannot split a heap \rightarrow Subtraction game Defined by a set $S \subseteq \mathbb{N}$:

- At his turn, a player removes k ∈ S tokens from a heap, without breaking it.
- The player who cannot play loses.

```
Example : S = \{1, 2, 4\}
```

Any combinatorial game can be represented by a finite DAG.

• Playing in the game \Leftrightarrow Moving a token along the arcs

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - \blacktriangleright ${\cal N}$ if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - N if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a \mathcal{N} -position, there is always a move to a \mathcal{P} -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - \mathcal{N} if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a \mathcal{N} -position, there is always a move to a \mathcal{P} -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - \mathcal{N} if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a \mathcal{N} -position, there is always a move to a \mathcal{P} -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

- Playing in the game \Leftrightarrow Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - N if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a \mathcal{N} -position, there is always a move to a \mathcal{P} -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - N if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a \mathcal{N} -position, there is always a move to a \mathcal{P} -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - \mathcal{N} if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a \mathcal{N} -position, there is always a move to a \mathcal{P} -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

Any combinatorial game can be represented by a finite DAG.

- Playing in the game ⇔ Moving a token along the arcs
- Starting from the sinks, one can determine the winner:
 - N if the Next player can force the win,
 - $\blacktriangleright \mathcal{P}$ if the Previous player can force the win.
- From a $\mathcal N$ -position, there is always a move to a $\mathcal P$ -position.
- From a \mathcal{P} -position, all moves are to \mathcal{N} -positions

Theorem

One of the players has a winning strategy.

Main issue

Outcome of the game

Input : Game position Output : First (\mathcal{N}) or second (\mathcal{P}) player wins?

Winning strategy

Input : Game position Output : If the game is \mathcal{N} , a winning move.

Main issue

Outcome of the game

Input : Game position Output : First (\mathcal{N}) or second (\mathcal{P}) player wins?

Winning strategy

Input : Game position Output : If the game is \mathcal{N} , a winning move.

These two problems can be solved using the DAG...

Main issue

Outcome of the game

Input : Game position Output : First (N) or second (P) player wins?

Winning strategy

Input : Game position Output : If the game is \mathcal{N} , a winning move.

These two problems can be solved using the DAG...but its size is often exponential !

They are generally in $\ensuremath{\underline{\mathrm{PSPACE}}}$
A standard PSPACE problem

Quantified Boolean Formula (QBF)

Input : $Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Phi(x_1, \dots, x_n)$: $Q_i \in \{\forall, \exists\}$ Output : Is the formula true?

A standard PSPACE problem

Quantified Boolean Formula (QBF)

Input : $Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Phi(x_1, \dots, x_n)$: $Q_i \in \{\forall, \exists\}$ Output : Is the formula true?

Description of a winning strategy?

"There exists a move for J1, such that, for all moves of J2, there exists a move for J1..."

A standard PSPACE problem

Quantified Boolean Formula (QBF)

Input : $Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Phi(x_1, \dots, x_n)$: $Q_i \in \{\forall, \exists\}$ Output : Is the formula true?

Description of a winning strategy?

"There exists a move for J1, such that, for all moves of J2, there exists a move for J1..."

QBF-game :

- Board: logic formula $\Phi(x_1, \ldots, x_n)$
- Players assign boolean values to $x_1, ..., x_n$, following this order.
- First player wins if at the end the formula is true.

Theorem Schaeffer, 1989 and Arora, Barak, 2009

Deciding if there is a winning strategy for the first player at QBF-game is $\ensuremath{\mathrm{PSPACE}}$ -complete.

Consider the subtraction game $S = \{1, 2, 4\}$ on *n* token.

Consider the subtraction game $S = \{1, 2, 4\}$ on *n* token.

A position *n* is \mathcal{P} if and only if $n \equiv 0 \mod 3$.

Consider the subtraction game $S = \{1, 2, 4\}$ on *n* token.

п	0	1	2	3	4	5	6	7	8	9	10	11	12
outcome	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}									

A position *n* is \mathcal{P} if and only if $n \equiv 0 \mod 3$.

Proposition

Any finite subtraction game has its outcome sequence that is ultimately periodic.

Consider the subtraction game $S = \{1, 2, 4\}$ on *n* token.

п	0	1	2	3	4	5	6	7	8	9	10	11	12
outcome	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}									

A position *n* is \mathcal{P} if and only if $n \equiv 0 \mod 3$.

Proposition

Any finite subtraction game has its outcome sequence that is ultimately periodic.

 \rightarrow computing the outcome of the game is polynomial.

Consider the subtraction game $S = \{1, 2, 4\}$ on *n* token.

п	0	1	2	3	4	5	6	7	8	9	10	11	12
outcome	\mathcal{P}	\mathcal{N}	\mathcal{N}	\mathcal{P}									

A position *n* is \mathcal{P} if and only if $n \equiv 0 \mod 3$.

Proposition

Any finite subtraction game has its outcome sequence that is ultimately periodic.

 \rightarrow computing the outcome of the game is polynomial.

Open

Size of the preperiod and the period in function of S?

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

CRAM: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?

CRAM: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify? \rightarrow with sum of games

With a \mathcal{P} -position:

$$(\mathcal{P}) + (\mathbf{x}) \equiv (\mathbf{x})$$

With a \mathcal{P} -position:

$$(\mathcal{P}) + (\mathbf{x}) \equiv (\mathbf{x})$$

With only $\mathcal N\text{-}\mathsf{positions}:$

$$(\mathcal{N}) + (\mathcal{N}) \equiv ?$$

With a \mathcal{P} -position:

$$(\mathcal{P}) + (\mathbf{x}) \equiv (\mathbf{x})$$

With only $\mathcal N\text{-}\mathsf{positions}:$

$$(\mathcal{N}) + (\mathcal{N}) \equiv ?$$
$$(\mathcal{N}) + (\mathcal{N}) \equiv \mathcal{P}$$

With a \mathcal{P} -position:With only \mathcal{N} -positions: \mathcal{P} + \mathbf{X} \mathcal{P} + \mathbf{N} \mathcal{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P} \mathbf{P}

With a \mathcal{P} -position:With only \mathcal{N} -positions: \mathcal{P} + \mathbf{X} = \mathcal{P} + \mathbf{N} = \mathcal{P} + \mathbf{P} = \mathcal{P} + \mathbf{P} = \mathcal{P} = \mathcal{N}

$$\begin{array}{c|c} + & \mathcal{P} & \mathcal{N} \\ \hline \mathcal{P} & \mathcal{P} & \mathcal{N} \\ \mathcal{N} & \mathcal{N} & \mathcal{P} \text{ or } \mathcal{N} \end{array}$$

Let $I \subset \mathbb{N}$. MeX (minimum excluded value) of $I = \min \mathbb{N} \setminus I$.

 $\mathsf{MeX}(\{0,1,3,5\})=2, \quad \mathsf{MeX}(\{2,3,6\})=0, \quad \mathsf{MeX}(\emptyset)=0.$

Let $I \subset \mathbb{N}$. MeX (minimum excluded value) of $I = \min \mathbb{N} \setminus I$.

 $MeX(\{0,1,3,5\}) = 2$, $MeX(\{2,3,6\}) = 0$, $MeX(\emptyset) = 0$.

The Grundy value of a position x is given by

Let $I \subset \mathbb{N}$. MeX (minimum excluded value) of $I = \min \mathbb{N} \setminus I$.

 $MeX(\{0, 1, 3, 5\}) = 2$, $MeX(\{2, 3, 6\}) = 0$, $MeX(\emptyset) = 0$.

The Grundy value of a position x is given by

Let $I \subset \mathbb{N}$. MeX (minimum excluded value) of $I = \min \mathbb{N} \setminus I$.

 $MeX(\{0, 1, 3, 5\}) = 2$, $MeX(\{2, 3, 6\}) = 0$, $MeX(\emptyset) = 0$.

The Grundy value of a position x is given by

Let $I \subset \mathbb{N}$. MeX (minimum excluded value) of $I = \min \mathbb{N} \setminus I$.

 $MeX(\{0, 1, 3, 5\}) = 2$, $MeX(\{2, 3, 6\}) = 0$, $MeX(\emptyset) = 0$.

The Grundy value of a position x is given by

Grundy value of the sum of games

Grundy value of the sum of games

Theorem Sprague–Grundy

Let x_1, x_2 be two game positions. Then:

$$\mathcal{G}(x_1+x_2)=\mathcal{G}(x_1)\oplus \mathcal{G}(x_2)$$

where \oplus is the XOR operator.

Grundy value of the sum of games

Theorem Sprague–Grundy

Let x_1, x_2 be two game positions. Then:

$$\mathcal{G}(x_1+x_2)=\mathcal{G}(x_1)\oplus \mathcal{G}(x_2)$$

where \oplus is the XOR operator.

Corollary

The sum $x_1 + x_2$ is \mathcal{P} if and only if $\mathcal{G}(x_1) = \mathcal{G}(x_2)$.

Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens. For the subtraction game $\{1,2,4\}$:

Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens. For the subtraction game $\{1, 2, 4\}$:

Theorem Berlekamp, Conway, Guy, 1981

Finite subtraction games have ultimaltely periodic sequences.

Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens. For the subtraction game $\{1, 2, 4\}$:

Theorem Berlekamp, Conway, Guy, 1981

Finite subtraction games have ultimaltely periodic sequences.

For CRAM:

Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens. For the subtraction game $\{1, 2, 4\}$:

Theorem Berlekamp, Conway, Guy, 1981

Finite subtraction games have ultimaltely periodic sequences.

For CRAM:

Theorem Guy, Smith, 1956

The Grundy sequence of $_{\rm CRAM}$ is periodic with period 34 and preperiod 53.

Octal games

Played on several heaps of tokens. A move consists in choosing a heap and, according to the rules:

- remove all the tokens from the heap, and delete this heap,
- remove some tokens from the heap, leaving 1 non-empty heap,
- remove some tokens from the heap, separating the remaining tokens into 2 non-empty heaps.

The number of tokens that can be removed is given by the game rules via an octal code

$$d_0 \bullet d_1 d_2 d_3 \cdots \quad d_i \in \mathbf{0}, \ldots, \mathbf{7}$$

Octal games

Played on several heaps of tokens. A move consists in choosing a heap and, according to the rules:

- remove all the tokens from the heap, and delete this heap,
- remove some tokens from the heap, leaving 1 non-empty heap,
- remove some tokens from the heap, separating the remaining tokens into 2 non-empty heaps.

The number of tokens that can be removed is given by the game rules via an octal code

$$d_0 \bullet d_1 d_2 d_3 \cdots \quad d_i \in \mathbf{0}, \ldots, \mathbf{7}$$

Examples:

- The subtraction game {1,2,4} is the octal game 0 3303.
- The game CRAM corresponds to the octal game $0 \bullet 07$.
- The game 0 304 allows you to remove 1 token without splitting the heap, or 3 tokens by necessarily dividing the heap.
Conjecture Guy, 1956

The Grundy sequence of a finite octal game is ultimately periodic.

Conjecture Guy, 1956

The Grundy sequence of a finite octal game is ultimately periodic.

• For the game 0 • 106, the Grundy sequence is ultimately periodic, with a period of 328226140474, and a pre-period of 465384263797.

Conjecture Guy, 1956

The Grundy sequence of a finite octal game is ultimately periodic.

- For the game 0 106, the Grundy sequence is ultimately periodic, with a period of 328226140474, and a pre-period of 465384263797.
- The Grundy sequence of the game 0 007 (James Bond Game) is conjectured to be periodic (tested up to 2²⁸)

Conjecture Guy, 1956

The Grundy sequence of a finite octal game is ultimately periodic.

- For the game 0 106, the Grundy sequence is ultimately periodic, with a period of 328226140474, and a pre-period of 465384263797.
- The Grundy sequence of the game 0 007 (James Bond Game) is conjectured to be periodic (tested up to 2²⁸)
- It is open for very simple games like 0 6!

Which octal games are in P ?

Nontrivial Octal-Games with at most 3 places

Game	sgv-sequence	type bitstring		rare	last max n		max G	3 index los		depth	period preperiod		except	
.6	0012012312340342	. 0	0111011111111	1584	20627	233	363	7775706554	14	1008823				
.04	0000111220331110	. 0	0001110111111	22476	5029984	228	1689	248902928	38	5218954				
.06	0001122031122334	. 0	?			224	22097	16360327	37					
.14	0100102122104144	. 0	00111111111111	1896	178727	232	85	1839780623	172	576735				
.16	0100122140142140	. 0	01111111111111	53	13935	-	23	229790	7	21577	149459	105351	16	
.36	0102102132132430	. 0	01111111111111	516	11798	234	208	1762187846	14	17168				
.37	0120123123403421	. 0	0111011111111	1583	20626	233	363	7775706553	13	1008822				
.45	0011223114432211	. 0	111111111111111	11	198		8	37	2	37	20	498	8	
.56	0102241132446621	. 0	11011011111111	46	1795	-	64	22778	2	7405	144	326640	26	
.64	0012341532154268	. 0	0111110111111	488	156751	233	262	1911635806	2	470403814				
.74	0101232414623215	. 0	1101101111111	1386	15929	231	512	76103606	2	137102				
.76	0102341623416732	. 0	0000000110011	219248	5208068	224	16814	4995486	2					
.004	0000011112220333	. 0	00011111111111	184854	15869181	225	6063	22057995	32					
.005	0001011222033411	. 1	1110101001011	95660	67070800	226	1059	3022366	100					
.006	0000111222033111	. 0	0000000101111	470413	16772624	224	6532	4798522	40					
.007	0001112203311104	. 0	0001110111111	22476	5029983	228	1689	248902927	37	5218954				
.014	0010010122123401	. 0	01111111111111	2037	64126	231	365	169860345	13	126438				
.015	0011010212230142	. 0	01111111111111	237	11973	235	101	2350397235	7	27036				
.016	0010122201014422	. 0	0010111111111	21439	102335997	227	1093	102705419	18	41416941				
.024	0001122304112532	. 0	?			225	12371	30810166	26					
.026	0001122304112533	. 0	?			225	37903	33220674	27					
.034	0011022314014312	. 0	111111111111111	1079	374473	234	256	26376	10	596840				
.054	0010122234411163	. 0	10111111111111	38	796	-	41	33671802	3	16284	10015179	193235616	18	
.055	0011122231114443	. 0	111111111111111	6	43		8	51	2	20	148	259	2	
.064	0001122334115533	. 0	01111111111111	6795	528569986	229	523	275511554	3	28677643				
.104	0100010221224104	. 1	11101111111111	20	284	-	29	186892397	100	4178	11770282	197769598	9	
.106	0100012221440106	. 1	10110111111111	15	1103	-	31	1937780317	-	15343	3282261404744	65384263797	25	
.114	0110011202120411	. 0	111111111011111	100891	33547932	225	1610	20501458	11					
.125	0102110213011302	. 0	?			224	44496	16775217	145					
.126	0100213321042503	. 1	0111001110001	20444	102973539	228	2222	265978	-	40637003				
.127	0102210441220144	. 1	1000001111111	<u>693</u>	27106		56	24734	1190	13551	4	46578	11	
.135	0112011203110312	. 0	?			224	27960	16768149	91					
.136	0110021302110223	. 0	?			2^{24}	25272	15750407	40					
.142	0100222110332410	. 1	1100011101111	1357	117323	234	441	17142768844	-	411815				
.143	0101222010422150	. 0	10111111111111	9417	2561883	227	148	26789789	13	3047015				

http://wwwhomes.uni-bielefeld.de/achim/octal.html

Second Part Rewriting games

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : $ab \rightarrow \varepsilon$, R_2 : $aaa \rightarrow b$ and t = aabbbaabaaa

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : ab ightarrow arepsilon, R_2 : aaa ightarrow b and t = aabbbaabaaa

aabbba<mark>ab</mark>aaa

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : ab $\rightarrow \varepsilon$, R_2 : aaa \rightarrow b and t = aabbbaabaaa

aabbbaabaaa ightarrowaabbbaaaa

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : $ab \rightarrow \varepsilon$, R_2 : $aaa \rightarrow b$ and t = aabbbaabaaa

 $\texttt{aabbbaabaaa} \rightarrow \texttt{aabbbaaaaa} \rightarrow \texttt{aabbbba}$

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : $ab \rightarrow \varepsilon$, R_2 : $aaa \rightarrow b$ and t = aabbbaabaaa

aabbbaabaaa \rightarrow aabbbbaa
aa \rightarrow aabbbba \rightarrow abbba

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : ab $\rightarrow \varepsilon$, R_2 : aaa \rightarrow b and t = aabbbaabaaa

aabbbaabaaa \rightarrow aabbbaaaa \rightarrow aabbbba \rightarrow abbba \rightarrow bba

The first player can no longer play and loses.

Rewriting games (Waldmann, 2002):

- Rewriting system (terminal)
- Starting from a word t, players alternate applying rules to the word.
- The player who can no longer apply a rule loses.

Example : R_1 : ab $\rightarrow \varepsilon$, R_2 : aaa \rightarrow b and t = aabbbaabaaa

aabbbaabaaa \rightarrow aabbbaaaa \rightarrow aabbbba \rightarrow abbba \rightarrow bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

Octal games as rewrite games

Alphabet on two letters: a (for tokens), b (to separate the heaps)

Example: Game CRAM can be modeled with rules $aa \rightarrow \varepsilon$ and $aa \rightarrow b$.

Octal games as rewrite games

Alphabet on two letters: a (for tokens), b (to separate the heaps)

Example: Game CRAM can be modeled with rules $aa \rightarrow \varepsilon$ and $aa \rightarrow b$.

The three rules of octal games can be translated with rewrite rules:

- Emptying a heap of k tokens: $ba^kb \rightarrow b$
- Removing k without emptying: $a^{k+1} \rightarrow a$
- Removing k and splitting in 2: $a^{k+2} \rightarrow aba$

For each word t, there is a corresponding Grundy value $\mathcal{G}(t)$. Grundy class \mathcal{L}_k : words with value k.

Theorem Waldmann, 2002

The Grundy sequence of an octal game is ultimately periodic iff, in the associated rewriting game, there is a finite number of non-empty Grundy classes, and each class is rational.

For each word t, there is a corresponding Grundy value $\mathcal{G}(t)$. Grundy class \mathcal{L}_k : words with value k.

Theorem Waldmann, 2002

The Grundy sequence of an octal game is ultimately periodic iff, in the associated rewriting game, there is a finite number of non-empty Grundy classes, and each class is rational.

 \Rightarrow Find a DFA that determines if a given word $ba^{x_1}ba^{x_2}\cdots ba^{x_n}b$ satisfies $\mathcal{G}(x_1)\oplus\ldots\oplus \mathcal{G}(x_n)=k$.

- There exists a DFA that computes $\mathcal{G}(x_i) \forall i$
- Before each new x_i, we keep in memory the previous sum
 G(x₁) ⊕ . . . ⊕ G(x_{i-1}): possible because the number of Grundy classes is bounded (by M).
- The new sum can be computed by a DFA.

For each word t, there is a corresponding Grundy value $\mathcal{G}(t)$. Grundy class \mathcal{L}_k : words with value k.

Theorem Waldmann, 2002

The Grundy sequence of an octal game is ultimately periodic iff, in the associated rewriting game, there is a finite number of non-empty Grundy classes, and each class is rational.

- \leftarrow The \mathcal{L}_k are rational.
 - $\mathcal{L}_k \cap ba^*b$ is rational.
 - Rational language with one letter $\Leftrightarrow \bigcup \mathtt{ba}^{kp+\ell}\mathtt{b}: k \in \mathbb{N}$
 - Partition of $\mathbb{N} \Rightarrow$ periods are multiple.

For each word t, there is a corresponding Grundy value $\mathcal{G}(t)$. Grundy class \mathcal{L}_k : words with value k.

Theorem Waldmann, 2002

The Grundy sequence of an octal game is ultimately periodic iff, in the associated rewriting game, there is a finite number of non-empty Grundy classes, and each class is rational.

Conjecture Guy, 1956

For any octal rewriting game, there is a finite number of non-empty Grundy classes, and each class is a rational language.

For each word t, there is a corresponding Grundy value $\mathcal{G}(t)$. Grundy class \mathcal{L}_k : words with value k.

Theorem Waldmann, 2002

The Grundy sequence of an octal game is ultimately periodic iff, in the associated rewriting game, there is a finite number of non-empty Grundy classes, and each class is rational.

Conjecture Guy, 1956

For any octal rewriting game, there is a finite number of non-empty Grundy classes, and each class is a rational language.

With different rules? Rational classes?

What about other types of rules?

 \bullet What happens if we can delete <code>b's?</code> \rightarrow Taking-and-merging games

What about other types of rules?

• What happens if we can delete <code>b's?</code> \rightarrow Taking-and-merging games

Définition

A rewriting game is said to be "taking-and-merging" if all the rules are of the form $\mathbf{a}^k\to\varepsilon$ or $\mathbf{b}^\ell\to\varepsilon$

Notation: $\mathbf{a}^{k_1}, \mathbf{a}^{k_2}, \dots, \mathbf{a}^{k_n}, \mathbf{b}^{\ell_1}, \mathbf{b}^{\ell_2}, \dots \mathbf{b}^{\ell_m}$

What about other types of rules?

• What happens if we can delete b's? \rightarrow Taking-and-merging games

Définition

A rewriting game is said to be "taking-and-merging" if all the rules are of the form $\mathbf{a}^k\to\varepsilon$ or $\mathbf{b}^\ell\to\varepsilon$

Notation: $a^{k_1}, a^{k_2}, \dots, a^{k_n}, b^{\ell_1}, b^{\ell_2}, \dots b^{\ell_m}$

Question: Are the Grundy classes rational?

Rules: $aa \rightarrow \varepsilon$ and $b \rightarrow \varepsilon$ We construct the DAG starting with small words:

Rules: $aa \rightarrow \varepsilon$ and $b \rightarrow \varepsilon$ We construct the DAG starting with small words:

Rules: $aa \to \varepsilon$ and $b \to \varepsilon$ We construct the DAG starting with small words:

Rules: $aa \rightarrow \varepsilon$ and $b \rightarrow \varepsilon$

Rules: $aa \rightarrow \varepsilon$ and $b \rightarrow \varepsilon$

We construct the DAG starting with small words:

The quantity $|u|_a + 2|u|_b$ decreases by 2 after each move.

Rules: $aa \rightarrow \varepsilon$ and $b \rightarrow \varepsilon$

We construct the DAG starting with small words:

The quantity $|u|_a + 2|u|_b$ decreases by 2 after each move. $\rightarrow \mathcal{G}(u) = 0$ iff $|u|_a + 2|u|_b \mod 4 \in \{0, 1\}$

The game a^2 , b is rational

Theorem D., Marsault, P., Rigo, 2020

The game $\{a^2, b\}$ has two classes of Grundy values \mathcal{L}_0 and \mathcal{L}_1 , each forming a rational language.

DFA computing $S(u) = (|u|_a + 2|u|_b) \mod 4$:

State
$$(g.s)$$
 stands for Grundy value g and $S(u) = s$

Rationality of rewriting games?

Theorem D., Marsault, P., Rigo, 2020 Let G be the rewriting game $\{a^{k_1}, a^{k_2}, \dots, b^{\ell_1}, b^{\ell_2}, \dots\}$, where $1 < k_1 \le k_2 \le \dots$ and $1 < \ell_1 \le \ell_2 \le \dots$. The language \mathcal{L}_0 formed by the \mathcal{P} -positions of G is <u>not</u> rational.

Rationality of rewriting games?

Theorem D., Marsault, P., Rigo, 2020 Let G be the rewriting game $\{a^{k_1}, a^{k_2}, \dots, b^{\ell_1}, b^{\ell_2}, \dots\}$, where $1 < k_1 \le k_2 \le \dots$ and $1 < \ell_1 \le \ell_2 \le \dots$ The language \mathcal{L}_0 formed by the \mathcal{P} -positions of G is <u>not</u> rational.

Proof idea:

• Intersection of \mathcal{L}_0 with

$$L = b^{\ell_1 - 1} (ab^{\ell_1 - 1})^* (ba^{k_1 - 1})^*.$$
Rationality of rewriting games?

Theorem D., Marsault, P., Rigo, 2020

Let G be the rewriting game $\{a^{k_1}, a^{k_2}, \cdots, b^{\ell_1}, b^{\ell_2}, \cdots\}$, where $1 < k_1 \le k_2 \le \ldots$ and $1 < \ell_1 \le \ell_2 \le \ldots$. The language \mathcal{L}_0 formed by the \mathcal{P} -positions of G is <u>not</u> rational.

Proof idea:

• Intersection of \mathcal{L}_0 with

$$L = b^{\ell_1 - 1} (ab^{\ell_1 - 1})^* (ba^{k_1 - 1})^*.$$

- By induction: $b^{\ell_1-1}(ab^{\ell_1-1})^i(ba^{k_1-1})^j$ from L is \mathcal{P} iff $i \ge j$.
- The intersection of L and \mathcal{L}_0 is not rational, and thus \mathcal{L}_0 is not rational.

Theorem D., Marsault, P., Rigo, 2020

The game $\{a^k,b^\ell\}$ has only two Grundy classes and the associated languages \mathcal{L}_0 and \mathcal{L}_1 are context-free.

Theorem D., Marsault, P., Rigo, 2020

The game $\{a^k,b^\ell\}$ has only two Grundy classes and the associated languages \mathcal{L}_0 and \mathcal{L}_1 are context-free.

Proof:

- From a word u, there is a unique terminal word f(u).
- All reductions $u \longrightarrow^* f(u)$ have the same length.

Theorem D., Marsault, P., Rigo, 2020

The game $\{a^k,b^\ell\}$ has only two Grundy classes and the associated languages \mathcal{L}_0 and \mathcal{L}_1 are context-free.

Proof:

- From a word u, there is a unique terminal word f(u).
- All reductions $u \longrightarrow^* f(u)$ have the same length.
- $\mathcal{G}(u) = 0$ if and only if the previous sequence has an even length.
- Construction of a pushdown automaton that computes the parity of the number of reductions.

Theorem D., Marsault, P., Rigo, 2020

The game $\{a^k, b^\ell\}$ has only two Grundy classes and the associated languages \mathcal{L}_0 and \mathcal{L}_1 are context-free.

Proof:

- From a word u, there is a unique terminal word f(u).
- All reductions $u \longrightarrow^* f(u)$ have the same length.
- $\mathcal{G}(u) = 0$ if and only if the previous sequence has an even length.
- Construction of a pushdown automaton that computes the parity of the number of reductions.

Remark: If $\ell = 1$ (or k = 1), the stack is not longer needed and \mathcal{L}_0 , \mathcal{L}_1 are rational. The number of moves is: $|u|_{\mathbf{b}} + \lfloor \frac{|u|_{\mathbf{a}}}{k} \rfloor$.

• {a, a^{2k+1}, b }: \mathcal{G} has 2 values, \mathcal{L}_0 and \mathcal{L}_1 are rational.

- {a, a^{2k+1} , b}: \mathcal{G} has 2 values, \mathcal{L}_0 and \mathcal{L}_1 are rational.
- {a,a²,b}: ${\cal G}$ has 4 values, computed by a DFA with 12 states.

- {a, a^{2k+1}, b }: ${\cal G}$ has 2 values, ${\cal L}_0$ and ${\cal L}_1$ are rational.
- $\{a,a^2,b\}:~\mathcal{G}$ has 4 values, computed by a DFA with 12 states.
- $\{\texttt{a},\texttt{a}^4,\texttt{b}\}$:
- $\{a, a^2, a^3, b\}$:

- {a, a^{2k+1}, b }: ${\cal G}$ has 2 values, ${\cal L}_0$ and ${\cal L}_1$ are rational.
- {a,a²,b}: ${\cal G}$ has 4 values, computed by a DFA with 12 states.
- {a, a^4 , b}: open (no DFA found, $\mathcal{G} \leq 3$?)
- $\{a, a^2, a^3, b\}$:

- {a, a^{2k+1}, b }: \mathcal{G} has 2 values, \mathcal{L}_0 and \mathcal{L}_1 are rational.
- $\{a, a^2, b\}$: \mathcal{G} has 4 values, computed by a DFA with 12 states.
- {a, a^4 , b}: open (no DFA found, $\mathcal{G} \leq 3$?)
- $\{a, a^2, a^3, b\}$: \mathcal{G} has 4 values, computed by a DFA with 8 states.

- {a, a^{2k+1}, b }: \mathcal{G} has 2 values, \mathcal{L}_0 and \mathcal{L}_1 are rational.
- {a,a²,b}: ${\cal G}$ has 4 values, computed by a DFA with 12 states.
- {a, a^4 , b}: open (no DFA found, $\mathcal{G} \leq 3$?)
- $\{a,a^2,a^3,b\}:~\mathcal{G}$ has 4 values, computed by a DFA with 8 states.
- $\{a, a^2, a^3, a^4, b\}$: open

 $(\max \mathcal{G}(u))_{|u|=0,1,2,\ldots} =$

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

Need to examine all the \mathcal{L}_i 's ?

Theorem Waldmann, 2002

For an octal rewriting game: \mathcal{L}_0 rational \Rightarrow Grundy is bounded + all \mathcal{L}_i are rational.

```
Need to examine all the \mathcal{L}_i's ?
```

Theorem Waldmann, 2002

```
For an octal rewriting game:
\mathcal{L}_0 rational \Rightarrow Grundy is bounded + all \mathcal{L}_i are rational.
```

 Remark: does not mean that Periodicity of *P* -positions in Grundy sequence of octal game ⇒ periodicity of the whole sequence

```
Need to examine all the \mathcal{L}_i's ?
```

Theorem Waldmann, 2002

```
For an octal rewriting game:
\mathcal{L}_0 rational \Rightarrow Grundy is bounded + all \mathcal{L}_i are rational.
```

- Remark: does not mean that Periodicity of *P*-positions in Grundy sequence of octal game ⇒ periodicity of the whole sequence
- Does not seem to hold for taking-and-merging games:

Need to examine all the \mathcal{L}_i 's ?

Theorem Waldmann, 2002

```
For an octal rewriting game:
\mathcal{L}_0 rational \Rightarrow Grundy is bounded + all \mathcal{L}_i are rational.
```

- Remark: does not mean that Periodicity of *P*-positions in Grundy sequence of octal game ⇒ periodicity of the whole sequence
- Does not seem to hold for taking-and-merging games:
 - The game $\{a, a^2, b, b^2\}$ has its language \mathcal{L}_0 rational.

Need to examine all the \mathcal{L}_i 's ?

Theorem Waldmann, 2002

```
For an octal rewriting game:
\mathcal{L}_0 rational \Rightarrow Grundy is bounded + all \mathcal{L}_i are rational.
```

- Remark: does not mean that Periodicity of *P*-positions in Grundy sequence of octal game ⇒ periodicity of the whole sequence
- Does not seem to hold for taking-and-merging games:
 - The game $\{a, a^2, b, b^2\}$ has its language \mathcal{L}_0 rational.

But

 $(\max G(u))|u| = 0, 1, 2, \ldots =$ 0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

Need to examine all the \mathcal{L}_i 's ?

Theorem Waldmann, 2002

```
For an octal rewriting game:
\mathcal{L}_0 rational \Rightarrow Grundy is bounded + all \mathcal{L}_i are rational.
```

- Remark: does not mean that Periodicity of *P*-positions in Grundy sequence of octal game ⇒ periodicity of the whole sequence
- Does not seem to hold for taking-and-merging games:
 - The game $\{a, a^2, b, b^2\}$ has its language \mathcal{L}_0 rational.
 - But

 $(\max \mathcal{G}(u))|u| = 0, 1, 2, \ldots =$

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

Question : For the game a, a², b, b², is G bounded? Is there an i such that L_i is not rational?

Deciding \mathcal{P} -position of a rewriting game is not decidable

Theorem DMPR,2020

Given a rewriting game and a rational language \mathcal{L}_R of starting positions, it is undecidable to determine if there exists a \mathcal{P} -position in \mathcal{L}_R .

Deciding ${\mathcal{P}}\xspace$ -position of a rewriting game is not decidable

Theorem DMPR,2020

Given a rewriting game and a rational language \mathcal{L}_R of starting positions, it is undecidable to determine if there exists a \mathcal{P} -position in \mathcal{L}_R .

Conjecture

Given a rewriting game, it is undecidable to determine if the $\ensuremath{\mathcal{P}}$ - positions are rational.

Conclusion

- Rewriting games generalize a large set of combinatorial games with a nice equivalence between periodicity and regularity.
- Some very simple games are not solved yet like {a, a⁴, b}.
- What happens if we add the rule $a \rightarrow b$?
- Is there some relation between the DAG, the rules and the DFA ?
- Which games are (not) rewriting games?

Conclusion

- Rewriting games generalize a large set of combinatorial games with a nice equivalence between periodicity and regularity.
- Some very simple games are not solved yet like {a, a⁴, b}.
- What happens if we add the rule $a \rightarrow b$?
- Is there some relation between the DAG, the rules and the DFA ?
- Which games are (not) rewriting games?

Thank you !