
Taking and merging games as rewrite games

Eric Duchêne and Aline Parreau

LIRIS, CNRS, Université Lyon 1

Joint work with Victor Marsault and Michel Rigo
One World Combinatorics on Words Seminar, February 27th 2023

1/30

First part

Combinatorial games

2/30

Combinatorial games: definition

Berlekamp, Conway and Guy, Winning Ways, 1981

• 2 players

• Total information, no chance

• Finite number of turns, no draw

• Winner given by the last move.
Normal Convention: the player who cannot play loses.

Chess Tarot Othello Checkers

TicTacToe Ludo Go

3/30

Combinatorial games: definition

Berlekamp, Conway and Guy, Winning Ways, 1981

• 2 players

• Total information, no chance

• Finite number of turns, no draw

• Winner given by the last move.
Normal Convention: the player who cannot play loses.

Chess Tarot Othello Checkers

TicTacToe Ludo Go

3/30

Combinatorial games: definition

Berlekamp, Conway and Guy, Winning Ways, 1981

• 2 players

• Total information, no chance

• Finite number of turns, no draw

• Winner given by the last move.
Normal Convention: the player who cannot play loses.

Chess Tarot Othello Checkers

TicTacToe Ludo Go

3/30

Combinatorial games: definition

Berlekamp, Conway and Guy, Winning Ways, 1981

• 2 players

• Total information, no chance

• Finite number of turns, no draw

• Winner given by the last move.
Normal Convention: the player who cannot play loses.

Chess Tarot Othello Checkers

TicTacToe Ludo Go

3/30

Combinatorial games: definition

Berlekamp, Conway and Guy, Winning Ways, 1981

• 2 players

• Total information, no chance

• Finite number of turns, no draw

• Winner given by the last move.
Normal Convention: the player who cannot play loses.

Chess Tarot Othello Checkers

TicTacToe Ludo Go

3/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

“Taking and breaking” games

Board: Heaps of tokens
Rules: A player takes tokens in a single heap, with some constraints on
the number, and possibly splits the heap.
The player who cannot play loses.

Heap 0

Heap 1

Heap 2

Heap 3

Heap 4

Heap 5

4/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Subtraction games

One cannot split a heap → Subtraction game
Defined by a set S ⊆ N:
• At his turn, a player removes k ∈ S tokens from a heap, without

breaking it.

• The player who cannot play loses.

Example : S = {1, 2, 4}

5/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs

• Starting from the sinks, one can determine the winner:
▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

P

N

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

P

NN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Existence of a winning strategy
Any combinatorial game can be represented by a finite DAG.

01

2

3

4

5

6

7
8

S = {1, 2, 4}

PN

N

N

PNN

P

N

• Playing in the game ⇔ Moving a token along the arcs
• Starting from the sinks, one can determine the winner:

▶ N if the Next player can force the win,
▶ P if the Previous player can force the win.

• From a N -position, there is always a move to a P -position.

• From a P -position, all moves are to N -positions

One of the players has a winning strategy.

Theorem

6/30

Main issue

Input : Game position
Output : First (N) or second (P) player wins?

Outcome of the game

Input : Game position
Output : If the game is N , a winning move.

Winning strategy

These two problems can be solved using the DAG...but its size is often
exponential !

They are generally in Pspace

7/30

Main issue

Input : Game position
Output : First (N) or second (P) player wins?

Outcome of the game

Input : Game position
Output : If the game is N , a winning move.

Winning strategy

These two problems can be solved using the DAG...

but its size is often
exponential !

They are generally in Pspace

7/30

Main issue

Input : Game position
Output : First (N) or second (P) player wins?

Outcome of the game

Input : Game position
Output : If the game is N , a winning move.

Winning strategy

These two problems can be solved using the DAG...but its size is often
exponential !

They are generally in Pspace

7/30

A standard Pspace problem

Input : Q1x1Q2x2 . . .QnxnΦ(x1, . . . , xn) : Qi ∈ {∀,∃}
Output : Is the formula true?

Quantified Boolean Formula (QBF)

Description of a winning strategy?
“There exists a move for J1, such that, for all moves of J2, there exists a
move for J1...”

QBF-game :

• Board: logic formula Φ(x1, . . . , xn)

• Players assign boolean values to x1,...,xn, following this order.

• First player wins if at the end the formula is true.

Deciding if there is a winning strategy for the first player at QBF-game
is Pspace-complete.

Theorem Schaeffer, 1989 and Arora,Barak, 2009

8/30

A standard Pspace problem

Input : Q1x1Q2x2 . . .QnxnΦ(x1, . . . , xn) : Qi ∈ {∀,∃}
Output : Is the formula true?

Quantified Boolean Formula (QBF)

Description of a winning strategy?
“There exists a move for J1, such that, for all moves of J2, there exists a
move for J1...”

QBF-game :

• Board: logic formula Φ(x1, . . . , xn)

• Players assign boolean values to x1,...,xn, following this order.

• First player wins if at the end the formula is true.

Deciding if there is a winning strategy for the first player at QBF-game
is Pspace-complete.

Theorem Schaeffer, 1989 and Arora,Barak, 2009

8/30

A standard Pspace problem

Input : Q1x1Q2x2 . . .QnxnΦ(x1, . . . , xn) : Qi ∈ {∀,∃}
Output : Is the formula true?

Quantified Boolean Formula (QBF)

Description of a winning strategy?
“There exists a move for J1, such that, for all moves of J2, there exists a
move for J1...”

QBF-game :

• Board: logic formula Φ(x1, . . . , xn)

• Players assign boolean values to x1,...,xn, following this order.

• First player wins if at the end the formula is true.

Deciding if there is a winning strategy for the first player at QBF-game
is Pspace-complete.

Theorem Schaeffer, 1989 and Arora,Barak, 2009

8/30

Polynomiality of subtraction games
Consider the subtraction game S = {1, 2, 4} on n token.

01

2

3

4

5

6

7
8

PN

N

N

PNN

P

N

n 0 1 2 3 4 5 6 7 8 9 10 11 12
outcome P N N P N N P N N P N N P

A position n is P if and only if n ≡ 0 mod 3.

Any finite subtraction game has its outcome sequence that is ultimately
periodic.

Proposition

→ computing the outcome of the game is polynomial.

Size of the preperiod and the period in function of S?

Open

9/30

Polynomiality of subtraction games
Consider the subtraction game S = {1, 2, 4} on n token.

01

2

3

4

5

6

7
8

PN

N

N

PNN

P

N

n 0 1 2 3 4 5 6 7 8 9 10 11 12
outcome P N N P N N P N N P N N P

A position n is P if and only if n ≡ 0 mod 3.

Any finite subtraction game has its outcome sequence that is ultimately
periodic.

Proposition

→ computing the outcome of the game is polynomial.

Size of the preperiod and the period in function of S?

Open

9/30

Polynomiality of subtraction games
Consider the subtraction game S = {1, 2, 4} on n token.

01

2

3

4

5

6

7
8

PN

N

N

PNN

P

N

n 0 1 2 3 4 5 6 7 8 9 10 11 12
outcome P N N P N N P N N P N N P

A position n is P if and only if n ≡ 0 mod 3.

Any finite subtraction game has its outcome sequence that is ultimately
periodic.

Proposition

→ computing the outcome of the game is polynomial.

Size of the preperiod and the period in function of S?

Open

9/30

Polynomiality of subtraction games
Consider the subtraction game S = {1, 2, 4} on n token.

01

2

3

4

5

6

7
8

PN

N

N

PNN

P

N

n 0 1 2 3 4 5 6 7 8 9 10 11 12
outcome P N N P N N P N N P N N P

A position n is P if and only if n ≡ 0 mod 3.

Any finite subtraction game has its outcome sequence that is ultimately
periodic.

Proposition

→ computing the outcome of the game is polynomial.

Size of the preperiod and the period in function of S?

Open

9/30

Polynomiality of subtraction games
Consider the subtraction game S = {1, 2, 4} on n token.

01

2

3

4

5

6

7
8

PN

N

N

PNN

P

N

n 0 1 2 3 4 5 6 7 8 9 10 11 12
outcome P N N P N N P N N P N N P

A position n is P if and only if n ≡ 0 mod 3.

Any finite subtraction game has its outcome sequence that is ultimately
periodic.

Proposition

→ computing the outcome of the game is polynomial.

Size of the preperiod and the period in function of S?

Open

9/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?

→ with sum of games

x1 x2
+

10/30

Breaking the heaps?

cram: Players take two tokens in a heap and can split it into two heaps.

The number of positions is exponential, how to simplify?
→ with sum of games

x1 x2
+

10/30

Computing the outcome of a sum

With a P -position:

P + x ≡ x

With only N -positions:

N + N ≡ ?

+ ≡ P

+ ≡ N

+ P N
P P N
N N P or N

11/30

Computing the outcome of a sum

With a P -position:

P + x ≡ x

With only N -positions:

N + N ≡ ?

+ ≡ P

+ ≡ N

+ P N
P P N
N N P or N

11/30

Computing the outcome of a sum

With a P -position:

P + x ≡ x

With only N -positions:

N + N ≡ ?

+ ≡ P

+ ≡ N

+ P N
P P N
N N P or N

11/30

Computing the outcome of a sum

With a P -position:

P + x ≡ x

With only N -positions:

N + N ≡ ?

+ ≡ P

+ ≡ N

+ P N
P P N
N N P or N

11/30

Computing the outcome of a sum

With a P -position:

P + x ≡ x

With only N -positions:

N + N ≡ ?

+ ≡ P

+ ≡ N

+ P N
P P N
N N P or N

11/30

Grundy values
Let I ⊂ N. MeX (minimum excluded value) of I = min N \ I .

MeX({0, 1, 3, 5}) = 2, MeX({2, 3, 6}) = 0, MeX(∅) = 0.

The Grundy value of a position x is given by

G(x) = MeX(G(N+(x)))

01

2

3

4

5

6

7
8

01

2

0

1

2
1

0

2

G(x) = 0 if and only if x is P.

Proposition

12/30

Grundy values
Let I ⊂ N. MeX (minimum excluded value) of I = min N \ I .

MeX({0, 1, 3, 5}) = 2, MeX({2, 3, 6}) = 0, MeX(∅) = 0.

The Grundy value of a position x is given by

G(x) = MeX(G(N+(x)))

01

2

3

4

5

6

7
8

0

1

2

0

1

2
1

0

2

G(x) = 0 if and only if x is P.

Proposition

12/30

Grundy values
Let I ⊂ N. MeX (minimum excluded value) of I = min N \ I .

MeX({0, 1, 3, 5}) = 2, MeX({2, 3, 6}) = 0, MeX(∅) = 0.

The Grundy value of a position x is given by

G(x) = MeX(G(N+(x)))

01

2

3

4

5

6

7
8

01

2

0

1

2
1

0

2

G(x) = 0 if and only if x is P.

Proposition

12/30

Grundy values
Let I ⊂ N. MeX (minimum excluded value) of I = min N \ I .

MeX({0, 1, 3, 5}) = 2, MeX({2, 3, 6}) = 0, MeX(∅) = 0.

The Grundy value of a position x is given by

G(x) = MeX(G(N+(x)))

01

2

3

4

5

6

7
8

01

2

0

1

2
1

0

2

G(x) = 0 if and only if x is P.

Proposition

12/30

Grundy values
Let I ⊂ N. MeX (minimum excluded value) of I = min N \ I .

MeX({0, 1, 3, 5}) = 2, MeX({2, 3, 6}) = 0, MeX(∅) = 0.

The Grundy value of a position x is given by

G(x) = MeX(G(N+(x)))

01

2

3

4

5

6

7
8

01

2

0

1

2
1

0

2

G(x) = 0 if and only if x is P.

Proposition

12/30

Grundy value of the sum of games

+ P N
P P N
N N P or N

Let x1, x2 be two game positions. Then:

G(x1 + x2) = G(x1)⊕ G(x2)

where ⊕ is the XOR operator.

Theorem Sprague–Grundy

The sum x1 + x2 is P if and only if G(x1) = G(x2).

Corollary

13/30

Grundy value of the sum of games

+ P N
P P N
N N P or N

Let x1, x2 be two game positions. Then:

G(x1 + x2) = G(x1)⊕ G(x2)

where ⊕ is the XOR operator.

Theorem Sprague–Grundy

The sum x1 + x2 is P if and only if G(x1) = G(x2).

Corollary

13/30

Grundy value of the sum of games

+ P N
P P N
N N P or N

Let x1, x2 be two game positions. Then:

G(x1 + x2) = G(x1)⊕ G(x2)

where ⊕ is the XOR operator.

Theorem Sprague–Grundy

The sum x1 + x2 is P if and only if G(x1) = G(x2).

Corollary

13/30

Grundy sequence
Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens.
For the subtraction game {1, 2, 4}:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 1 2 0 1 2 0 1 2 0 1 2 0

Finite subtraction games have ultimaltely periodic sequences.

Theorem Berlekamp, Conway, Guy, 1981

For cram:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 0 1 1 2 0 3 1 1 0 3 3 2

The Grundy sequence of cram is periodic with period 34 and prepe-
riod 53.

Theorem Guy, Smith, 1956

14/30

Grundy sequence
Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens.
For the subtraction game {1, 2, 4}:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 1 2 0 1 2 0 1 2 0 1 2 0

Finite subtraction games have ultimaltely periodic sequences.

Theorem Berlekamp, Conway, Guy, 1981

For cram:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 0 1 1 2 0 3 1 1 0 3 3 2

The Grundy sequence of cram is periodic with period 34 and prepe-
riod 53.

Theorem Guy, Smith, 1956

14/30

Grundy sequence
Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens.
For the subtraction game {1, 2, 4}:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 1 2 0 1 2 0 1 2 0 1 2 0

Finite subtraction games have ultimaltely periodic sequences.

Theorem Berlekamp, Conway, Guy, 1981

For cram:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 0 1 1 2 0 3 1 1 0 3 3 2

The Grundy sequence of cram is periodic with period 34 and prepe-
riod 53.

Theorem Guy, Smith, 1956

14/30

Grundy sequence
Grundy sequence: sequence of grundy values for 1,2,3,..., n tokens.
For the subtraction game {1, 2, 4}:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 1 2 0 1 2 0 1 2 0 1 2 0

Finite subtraction games have ultimaltely periodic sequences.

Theorem Berlekamp, Conway, Guy, 1981

For cram:

n 0 1 2 3 4 5 6 7 8 9 10 11 12
G(n) 0 0 1 1 2 0 3 1 1 0 3 3 2

The Grundy sequence of cram is periodic with period 34 and prepe-
riod 53.

Theorem Guy, Smith, 1956

14/30

Octal games

Played on several heaps of tokens. A move consists in choosing a heap
and, according to the rules:

• remove all the tokens from the heap, and delete this heap,

• remove some tokens from the heap, leaving 1 non-empty heap,

• remove some tokens from the heap, separating the remaining tokens
into 2 non-empty heaps.

The number of tokens that can be removed is given by the game rules via
an octal code

d0 • d1d2d3 · · · di ∈ 0, . . . , 7

Examples:

• The subtraction game {1, 2, 4} is the octal game 0 • 3303.
• The game cram corresponds to the octal game 0 • 07.
• The game 0 • 304 allows you to remove 1 token without splitting the

heap, or 3 tokens by necessarily dividing the heap.

15/30

Octal games

Played on several heaps of tokens. A move consists in choosing a heap
and, according to the rules:

• remove all the tokens from the heap, and delete this heap,

• remove some tokens from the heap, leaving 1 non-empty heap,

• remove some tokens from the heap, separating the remaining tokens
into 2 non-empty heaps.

The number of tokens that can be removed is given by the game rules via
an octal code

d0 • d1d2d3 · · · di ∈ 0, . . . , 7

Examples:

• The subtraction game {1, 2, 4} is the octal game 0 • 3303.
• The game cram corresponds to the octal game 0 • 07.
• The game 0 • 304 allows you to remove 1 token without splitting the

heap, or 3 tokens by necessarily dividing the heap.

15/30

Guy’s Conjecture

The Grundy sequence of a finite octal game is ultimately periodic.

Conjecture Guy, 1956

• For the game 0 • 106, the Grundy sequence is ultimately periodic,
with a period of 328226140474, and a pre-period of 465384263797.

• The Grundy sequence of the game 0 • 007 (James Bond Game) is
conjectured to be periodic (tested up to 228)

• It is open for very simple games like 0 • 6!

16/30

Guy’s Conjecture

The Grundy sequence of a finite octal game is ultimately periodic.

Conjecture Guy, 1956

• For the game 0 • 106, the Grundy sequence is ultimately periodic,
with a period of 328226140474, and a pre-period of 465384263797.

• The Grundy sequence of the game 0 • 007 (James Bond Game) is
conjectured to be periodic (tested up to 228)

• It is open for very simple games like 0 • 6!

16/30

Guy’s Conjecture

The Grundy sequence of a finite octal game is ultimately periodic.

Conjecture Guy, 1956

• For the game 0 • 106, the Grundy sequence is ultimately periodic,
with a period of 328226140474, and a pre-period of 465384263797.

• The Grundy sequence of the game 0 • 007 (James Bond Game) is
conjectured to be periodic (tested up to 228)

• It is open for very simple games like 0 • 6!

16/30

Guy’s Conjecture

The Grundy sequence of a finite octal game is ultimately periodic.

Conjecture Guy, 1956

• For the game 0 • 106, the Grundy sequence is ultimately periodic,
with a period of 328226140474, and a pre-period of 465384263797.

• The Grundy sequence of the game 0 • 007 (James Bond Game) is
conjectured to be periodic (tested up to 228)

• It is open for very simple games like 0 • 6!

16/30

Which octal games are in P ?

http://wwwhomes.uni-bielefeld.de/achim/octal.html

17/30

Second Part

Rewriting games

18/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa → aabbbaaaa → aabbbba → abbba → bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa

→ aabbbaaaa → aabbbba → abbba → bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa → aabbbaaaa

→ aabbbba → abbba → bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa → aabbbaaaa → aabbbba

→ abbba → bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa → aabbbaaaa → aabbbba → abbba

→ bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa → aabbbaaaa → aabbbba → abbba → bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Rewriting games

Rewriting games (Waldmann, 2002):

• Rewriting system (terminal)

• Starting from a word t, players alternate applying rules to the word.

• The player who can no longer apply a rule loses.

Example : R1 : ab → ε, R2 : aaa → b and t = aabbbaabaaa

aabbbaabaaa → aabbbaaaa → aabbbba → abbba → bba

The first player can no longer play and loses.

Allows to model many games, including octal games.

19/30

Octal games as rewrite games

Alphabet on two letters: a (for tokens), b (to separate the heaps)

Example: Game CRAM can be modeled with rules aa → ε and aa → b.

→
aaaaaa aabaa

The three rules of octal games can be translated with rewrite rules:

• Emptying a heap of k tokens: bakb → b

• Removing k without emptying: ak+1 → a

• Removing k and splitting in 2: ak+2 → aba

20/30

Octal games as rewrite games

Alphabet on two letters: a (for tokens), b (to separate the heaps)

Example: Game CRAM can be modeled with rules aa → ε and aa → b.

→
aaaaaa aabaa

The three rules of octal games can be translated with rewrite rules:

• Emptying a heap of k tokens: bakb → b

• Removing k without emptying: ak+1 → a

• Removing k and splitting in 2: ak+2 → aba

20/30

Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lk : words with value k .

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

Theorem Waldmann, 2002

21/30

Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lk : words with value k .

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

Theorem Waldmann, 2002

⇒ Find a DFA that determines if a given word bax1bax2 · · · baxnb satisfies
G(x1)⊕ . . .⊕ G(xn) = k .

• There exists a DFA that computes G(xi) ∀i
• Before each new xi , we keep in memory the previous sum

G(x1)⊕ . . .⊕ G(xi−1): possible because the number of Grundy
classes is bounded (by M).

• The new sum can be computed by a DFA.

21/30

Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lk : words with value k .

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

Theorem Waldmann, 2002

⇐ The Lk are rational.

• Lk ∩ ba∗b is rational.

• Rational language with one letter ⇔
⋃
bakp+ℓb : k ∈ N

• Partition of N ⇒ periods are multiple.

21/30

Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lk : words with value k .

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

Theorem Waldmann, 2002

For any octal rewriting game, there is a finite number of non-empty
Grundy classes, and each class is a rational language.

Conjecture Guy, 1956

With different rules? Rational classes?

21/30

Interpretation of Periodicity

For each word t, there is a corresponding Grundy value G(t).
Grundy class Lk : words with value k .

The Grundy sequence of an octal game is ultimately periodic iff, in
the associated rewriting game, there is a finite number of non-empty
Grundy classes, and each class is rational.

Theorem Waldmann, 2002

For any octal rewriting game, there is a finite number of non-empty
Grundy classes, and each class is a rational language.

Conjecture Guy, 1956

With different rules? Rational classes?

21/30

What about other types of rules?

• What happens if we can delete b’s? → Taking-and-merging games

A rewriting game is said to be “taking-and-merging” if all the rules are
of the form ak → ε or bℓ → ε

Définition

Notation: ak1 , ak2 , . . . , akn , bℓ1 , bℓ2 , . . . bℓm

Question: Are the Grundy classes rational?

22/30

What about other types of rules?

• What happens if we can delete b’s? → Taking-and-merging games

A rewriting game is said to be “taking-and-merging” if all the rules are
of the form ak → ε or bℓ → ε

Définition

Notation: ak1 , ak2 , . . . , akn , bℓ1 , bℓ2 , . . . bℓm

Question: Are the Grundy classes rational?

22/30

What about other types of rules?

• What happens if we can delete b’s? → Taking-and-merging games

A rewriting game is said to be “taking-and-merging” if all the rules are
of the form ak → ε or bℓ → ε

Définition

Notation: ak1 , ak2 , . . . , akn , bℓ1 , bℓ2 , . . . bℓm

Question: Are the Grundy classes rational?

22/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0

b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1

aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.

→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

A first example: the game a2, b

Rules: aa → ε and b → ε
We construct the DAG starting with small words:

ε

a

0

0 b

1

aa

1

ab

1

ba

1

bb

0

aaa

1
aab 0

aba

0

The quantity |u|a + 2|u|b decreases by 2 after each move.
→ G(u) = 0 iff |u|a + 2|u|b mod 4 ∈ {0, 1}

23/30

The game a2, b is rational

The game {a2, b} has two classes of Grundy values L0 and L1, each
forming a rational language.

Theorem D., Marsault, P., Rigo, 2020

DFA computing S(u) = (|u|a + 2|u|b) mod 4:

0.0 1.3 0.1

1.2

a

a

b

b

b

b

a

a

State g .s stands for Grundy value g and S(u) = s

24/30

Rationality of rewriting games?

Let G be the rewriting game {ak1 , ak2 , · · · , bℓ1 , bℓ2 , · · · }, where
1 <k1 ≤ k2 ≤ . . . and 1 <ℓ1 ≤ ℓ2 ≤
The language L0 formed by the P -positions of G is not rational.

Theorem D., Marsault, P., Rigo, 2020

Proof idea:

• Intersection of L0 with

L = bℓ1−1(abℓ1−1)∗(bak1−1)∗.

• By induction: bℓ1−1(abℓ1−1)i(bak1−1)j from L is P iff i ≥ j .

• The intersection of L and L0 is not rational, and thus L0 is not
rational.

25/30

Rationality of rewriting games?

Let G be the rewriting game {ak1 , ak2 , · · · , bℓ1 , bℓ2 , · · · }, where
1 <k1 ≤ k2 ≤ . . . and 1 <ℓ1 ≤ ℓ2 ≤
The language L0 formed by the P -positions of G is not rational.

Theorem D., Marsault, P., Rigo, 2020

Proof idea:

• Intersection of L0 with

L = bℓ1−1(abℓ1−1)∗(bak1−1)∗.

• By induction: bℓ1−1(abℓ1−1)i(bak1−1)j from L is P iff i ≥ j .

• The intersection of L and L0 is not rational, and thus L0 is not
rational.

25/30

Rationality of rewriting games?

Let G be the rewriting game {ak1 , ak2 , · · · , bℓ1 , bℓ2 , · · · }, where
1 <k1 ≤ k2 ≤ . . . and 1 <ℓ1 ≤ ℓ2 ≤
The language L0 formed by the P -positions of G is not rational.

Theorem D., Marsault, P., Rigo, 2020

Proof idea:

• Intersection of L0 with

L = bℓ1−1(abℓ1−1)∗(bak1−1)∗.

• By induction: bℓ1−1(abℓ1−1)i(bak1−1)j from L is P iff i ≥ j .

• The intersection of L and L0 is not rational, and thus L0 is not
rational.

25/30

Games with two rules

The game {ak , bℓ} has only two Grundy classes and the associated
languages L0 and L1 are context-free.

Theorem D.,Marsault, P.,Rigo, 2020

Proof:

• From a word u, there is a unique terminal word f (u).

• All reductions u −→∗ f (u) have the same length.

• G(u) = 0 if and only if the previous sequence has an even length.

• Construction of a pushdown automaton that computes the parity of
the number of reductions.

Remark: If ℓ = 1 (or k = 1), the stack is not longer needed and L0, L1

are rational. The number of moves is: |u|b + ⌊ |u|a
k ⌋.

26/30

Games with two rules

The game {ak , bℓ} has only two Grundy classes and the associated
languages L0 and L1 are context-free.

Theorem D.,Marsault, P.,Rigo, 2020

Proof:

• From a word u, there is a unique terminal word f (u).

• All reductions u −→∗ f (u) have the same length.

• G(u) = 0 if and only if the previous sequence has an even length.

• Construction of a pushdown automaton that computes the parity of
the number of reductions.

Remark: If ℓ = 1 (or k = 1), the stack is not longer needed and L0, L1

are rational. The number of moves is: |u|b + ⌊ |u|a
k ⌋.

26/30

Games with two rules

The game {ak , bℓ} has only two Grundy classes and the associated
languages L0 and L1 are context-free.

Theorem D.,Marsault, P.,Rigo, 2020

Proof:

• From a word u, there is a unique terminal word f (u).

• All reductions u −→∗ f (u) have the same length.

• G(u) = 0 if and only if the previous sequence has an even length.

• Construction of a pushdown automaton that computes the parity of
the number of reductions.

Remark: If ℓ = 1 (or k = 1), the stack is not longer needed and L0, L1

are rational. The number of moves is: |u|b + ⌊ |u|a
k ⌋.

26/30

Games with two rules

The game {ak , bℓ} has only two Grundy classes and the associated
languages L0 and L1 are context-free.

Theorem D.,Marsault, P.,Rigo, 2020

Proof:

• From a word u, there is a unique terminal word f (u).

• All reductions u −→∗ f (u) have the same length.

• G(u) = 0 if and only if the previous sequence has an even length.

• Construction of a pushdown automaton that computes the parity of
the number of reductions.

Remark: If ℓ = 1 (or k = 1), the stack is not longer needed and L0, L1

are rational. The number of moves is: |u|b + ⌊ |u|a
k ⌋.

26/30

Games with a → ε and b → ε

• {a, a2k+1, b}: G has 2 values, L0 and L1 are rational.

• {a, a2, b}: G has 4 values, computed by a DFA with 12 states.

• {a, a4, b}:

open (no DFA found, G ≤ 3?)

• {a, a2, a3, b}:

G has 4 values, computed by a DFA with 8 states.

• {a, a2, a3, a4, b}: open

(maxG(u))|u|=0,1,2,... =

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

27/30

Games with a → ε and b → ε

• {a, a2k+1, b}: G has 2 values, L0 and L1 are rational.

• {a, a2, b}: G has 4 values, computed by a DFA with 12 states.

0

1

2

1

0

3

0

2

3

1

3

2

a
b

a
a

a
b

a
a

b

b

a
a

b
a

a
a

b
a

b

b

b

b

b b

• {a, a4, b}:

open (no DFA found, G ≤ 3?)

• {a, a2, a3, b}:

G has 4 values, computed by a DFA with 8 states.

• {a, a2, a3, a4, b}: open

(maxG(u))|u|=0,1,2,... =

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

27/30

Games with a → ε and b → ε

• {a, a2k+1, b}: G has 2 values, L0 and L1 are rational.

• {a, a2, b}: G has 4 values, computed by a DFA with 12 states.

• {a, a4, b}:

open (no DFA found, G ≤ 3?)

• {a, a2, a3, b}:

G has 4 values, computed by a DFA with 8 states.

• {a, a2, a3, a4, b}: open

(maxG(u))|u|=0,1,2,... =

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

27/30

Games with a → ε and b → ε

• {a, a2k+1, b}: G has 2 values, L0 and L1 are rational.

• {a, a2, b}: G has 4 values, computed by a DFA with 12 states.

• {a, a4, b}: open (no DFA found, G ≤ 3?)

• {a, a2, a3, b}:

G has 4 values, computed by a DFA with 8 states.

• {a, a2, a3, a4, b}: open

(maxG(u))|u|=0,1,2,... =

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

27/30

Games with a → ε and b → ε

• {a, a2k+1, b}: G has 2 values, L0 and L1 are rational.

• {a, a2, b}: G has 4 values, computed by a DFA with 12 states.

• {a, a4, b}: open (no DFA found, G ≤ 3?)

• {a, a2, a3, b}: G has 4 values, computed by a DFA with 8 states.

1.0

0.12.1

3.0 2.0

1.1 3.1

0.0

a

b

a

a

b

a

a

b

a

a

b

a
b

b

b

b

• {a, a2, a3, a4, b}: open

(maxG(u))|u|=0,1,2,... =

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

27/30

Games with a → ε and b → ε

• {a, a2k+1, b}: G has 2 values, L0 and L1 are rational.

• {a, a2, b}: G has 4 values, computed by a DFA with 12 states.

• {a, a4, b}: open (no DFA found, G ≤ 3?)

• {a, a2, a3, b}: G has 4 values, computed by a DFA with 8 states.

• {a, a2, a3, a4, b}: open

(maxG(u))|u|=0,1,2,... =

0, 1, 2, 3, 4, 5, 5, 6, 7, 7, 7, 7, 7, 8, 9, 9, 10, 11, 11, 12, 13, 13, 13, 14

Question: Are the values for this game bounded?

27/30

Computing the rationality more easily

Need to examine all the Li ’s ?

For an octal rewriting game:
L0 rational ⇒ Grundy is bounded + all Li are rational.

Theorem Waldmann, 2002

• Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game ⇒
periodicity of the whole sequence

• Does not seem to hold for taking-and-merging games:

▶ The game {a, a2, b, b2} has its language L0 rational.
▶ But

(maxG(u))|u| = 0, 1, 2, . . . =

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

▶ Question : For the game a, a2, b, b2, is G bounded? Is there an i
such that Li is not rational?

28/30

Computing the rationality more easily

Need to examine all the Li ’s ?

For an octal rewriting game:
L0 rational ⇒ Grundy is bounded + all Li are rational.

Theorem Waldmann, 2002

• Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game ⇒
periodicity of the whole sequence

• Does not seem to hold for taking-and-merging games:

▶ The game {a, a2, b, b2} has its language L0 rational.
▶ But

(maxG(u))|u| = 0, 1, 2, . . . =

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

▶ Question : For the game a, a2, b, b2, is G bounded? Is there an i
such that Li is not rational?

28/30

Computing the rationality more easily

Need to examine all the Li ’s ?

For an octal rewriting game:
L0 rational ⇒ Grundy is bounded + all Li are rational.

Theorem Waldmann, 2002

• Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game ⇒
periodicity of the whole sequence

• Does not seem to hold for taking-and-merging games:

▶ The game {a, a2, b, b2} has its language L0 rational.
▶ But

(maxG(u))|u| = 0, 1, 2, . . . =

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

▶ Question : For the game a, a2, b, b2, is G bounded? Is there an i
such that Li is not rational?

28/30

Computing the rationality more easily

Need to examine all the Li ’s ?

For an octal rewriting game:
L0 rational ⇒ Grundy is bounded + all Li are rational.

Theorem Waldmann, 2002

• Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game ⇒
periodicity of the whole sequence

• Does not seem to hold for taking-and-merging games:
▶ The game {a, a2, b, b2} has its language L0 rational.

▶ But
(maxG(u))|u| = 0, 1, 2, . . . =

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

▶ Question : For the game a, a2, b, b2, is G bounded? Is there an i
such that Li is not rational?

28/30

Computing the rationality more easily

Need to examine all the Li ’s ?

For an octal rewriting game:
L0 rational ⇒ Grundy is bounded + all Li are rational.

Theorem Waldmann, 2002

• Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game ⇒
periodicity of the whole sequence

• Does not seem to hold for taking-and-merging games:
▶ The game {a, a2, b, b2} has its language L0 rational.
▶ But

(maxG(u))|u| = 0, 1, 2, . . . =

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

▶ Question : For the game a, a2, b, b2, is G bounded? Is there an i
such that Li is not rational?

28/30

Computing the rationality more easily

Need to examine all the Li ’s ?

For an octal rewriting game:
L0 rational ⇒ Grundy is bounded + all Li are rational.

Theorem Waldmann, 2002

• Remark: does not mean that
Periodicity of P -positions in Grundy sequence of octal game ⇒
periodicity of the whole sequence

• Does not seem to hold for taking-and-merging games:
▶ The game {a, a2, b, b2} has its language L0 rational.
▶ But

(maxG(u))|u| = 0, 1, 2, . . . =

0, 1, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8

▶ Question : For the game a, a2, b, b2, is G bounded? Is there an i
such that Li is not rational?

28/30

Deciding P -position of a rewriting game is not decidable

Given a rewriting game and a rational language LR of starting positions,
it is undecidable to determine if there exists a P -position in LR .

Theorem DMPR,2020

Given a rewriting game, it is undecidable to determine if the P -
positions are rational.

Conjecture

29/30

Deciding P -position of a rewriting game is not decidable

Given a rewriting game and a rational language LR of starting positions,
it is undecidable to determine if there exists a P -position in LR .

Theorem DMPR,2020

Given a rewriting game, it is undecidable to determine if the P -
positions are rational.

Conjecture

29/30

Conclusion

• Rewriting games generalize a large set of combinatorial games with
a nice equivalence between periodicity and regularity.

• Some very simple games are not solved yet like {a, a4, b}.
• What happens if we add the rule a → b ?

• Is there some relation between the DAG, the rules and the DFA ?

• Which games are (not) rewriting games?

Thank you !

30/30

Conclusion

• Rewriting games generalize a large set of combinatorial games with
a nice equivalence between periodicity and regularity.

• Some very simple games are not solved yet like {a, a4, b}.
• What happens if we add the rule a → b ?

• Is there some relation between the DAG, the rules and the DFA ?

• Which games are (not) rewriting games?

Thank you !

30/30

