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Abstract

We present here an approximate Riemann solver to compute Euler equations using real gas state
laws. The scheme is based on an earlier proposition, called VFRoe, introduced by one of the authors. It
makes use of non conservative variables in order to preserve numerically Riemann invariants through
the contact discontinuity. Detailed investigation of actual rate of convergence of the scheme is reported.
The study also includes a comparison with original VFRoe and Roe schemes. 7 2000 Elsevier Science
Ltd. All rights reserved.

1. Introduction

We are interested in numerical solutions of initial-value hyperbolic systems of conservation
laws:
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where W�x, t� 2 R p and the ¯ux F�W� is such that the Jacobian matrix given by A�W�� @F
@W

is
diagonalizable with real eigenvalues.
Finite volume schemes in conservation form have proven their e�ciency to solve such

problems. The most popular ones are based on the resolution of local Riemann problems at
each interface. The ®rst one, proposed by Godunov [1], is based on the exact solution of the
one-dimensional Riemann problem associated with Eq. (1). It enjoys very good properties in
the one-dimensional case (in particular, it ful®lls the positivity of density and pressure for the
Euler system) but its main drawbacks are its cost and its lack of robustness when the
integration of Riemann invariants cannot be done analytically. Schemes based on Approximate
Riemann solvers were introduced to avoid these di�culties. The commonly used Roe scheme
[2] requires the knowledge of analytical eigenvalues and eigenvectors of the Jacobian matrix
and, above all, the de®nition of a matrix of linearization A�WL, WR� 2Mp�R� such that:

A�WL,WR� is diagonalizable with real eigenvalues �3�

F�WR� ÿ F�WL� � A�WL, WR��WR ÿWL�: �4�

A�W, W� � @F�W�
@W

: �5�

Remark that condition (5) may be replaced by: A is a continuous mapping of R p � R p in Mp�R�:
The main losses in comparison with Godunov's scheme are the violation of the entropy law (a
sonic entropy correction must be added), and, for instance, when dealing with the Euler system,
the occurence of nonpositive density or pressure values. Moreover, ®nding a matrix satisfying
Roe's condition (4) may sometimes be di�cult or even impossible for some systems: Euler with
real gas, some two-phase ¯ow models and some complex turbulence models for example. This
fact has motivated the development of an alternative to the Roe scheme. This simple Finite
Volume scheme, called VFRoe, was introduced in Refs. [3±5] to approximate solutions of a two-
phase ¯ow model. Following the conservative approach of the Godunov scheme, the VFRoe ¯ux
function identi®es with the physical one. As with the Roe scheme, the Riemann problems at each
interface are linearized. Roe's condition is not necessary here, since one does not need to ful®ll a
consistency relation with the integral form of the conservation laws. Let us note two drawbacks
of the VFRoe scheme, already ®nded with the Roe scheme: it admits entropy-violating
stationary discontinuities, and it can produce nonpositive density or pressure values when it is
applicated to the Euler system for example. Nonetheless, its behavior in many con®gurations is
quite good and its application ®eld is wider than Roe's one. Let us mention another approach
recently considered in Ref. [6] for the resolution of a two phase ¯ow in a pipe.
We propose here an extension of the VFRoe scheme: VFRoe using non conservative

variables, noted here VFRoencv. Although it di�ers from VFRoe by the resolution of a
linearized system written in non conservative variables, it may be used for smooth and non
smooth ¯ow. In this paper, the VFRoencv scheme is presented and tested on the Euler set of
equations for equilibrium real gas with various equations of state (EOS). Many classical
numerical schemes have been extended to include real-gas e�ects. Extensions of exact Riemann
solver have been obtained by Collela and Glaz [7] (with a model based on an approximation of
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g across the waves), by Saurel et al. [8] and by Letellier and Forestier [9]. For equilibrium real
gases, di�erent approaches have been considered for generalized Roe average. Grossman and
Walters [10] have introduced an equivalent g to relate c2 and h as in perfect gases. The more
classical approach is to ®nd �w and �k satisfying Dp � �wDr� �kDE (or an equivalent form) so that
relation (4) holds. Here, the greatest di�culty comes from the approximation of (generally
pressure-) derivatives. Di�erent formulas have been obtained by Glaister [11], Liou et al. [12],
Vinokur and MontagneÂ [13], Abgrall [14] in the case of chemically equilibrium ¯ow, Toumi
[15], Bu�at and Page [16] who choose the temperature, instead of the pressure, as the relevant
thermodynamic parameter. The `simplest' extensions of the Roe scheme cannot be applied in
practice if the EOS is a non-convex function for example, whereas others need the evaluation
of integrals. A new technique using relaxation of energy allows the extension of classical
approximate Riemann solvers used in perfect gas to treat real gases; it has been introduced by
Coquel and Perthame [17], and tested by In [18]. The approach using a kinetic scheme has also
been extended (see El Amine [19]) to non-isentropic real ¯uids. The VFRoencv scheme seems
to be an interesting alternative according to numerical test cases presented here (see also Refs.
[20,21]). It is a simple scheme, sometimes cheaper than previous ones.
In the next section, we brie¯y recall the Roe and Godunov schemes ([22]). Section 3

introduces the VFRoencv-type scheme on a general hyperbolic system (1). In Section 4, we
propose a VFRoencv scheme when focusing on Euler equations. We also prove some relevant
properties, especially in the case of ideal gas. We will discuss in Section 5 the results of several
test cases, together with comparisons with other schemes when possible, for several equations
of state. Extensions to second order, with the M.U.S.C.L. method and to multidimensional in
space, are also presented in Section 6. An appendix is devoted to boundary conditions. In
particular, a study in the case of rigid wall boundary condition with `mirror state' technique is
given (comparison between Godunov, Roe and VFRoencv approaches).

2. Finite volumes and Riemann solvers

First, we introduce some notations.
Let e denote the set of W states such that system (1) is hyperbolic.
For the sake of simplicity, only regular meshes with constant spacing Dx � x

j�12
ÿ x

jÿ1
2
will

be considered. We note tn � nDt where Dt stands for the time step value. In the following, we
shall describe Finite Volumes approximations Wn

j to weak solutions W of Eqs. (1) and (2) i.e.

Wn
j is an approximation to 1

Dx

�x
j�12

x
jÿ12

W�x, tn� dx de®ned by:

W0
j �

1

Dx

�x
j�12

x
jÿ12

W0�x� dx, j 2 Z

Wn�1
j �Wn

j ÿ Dt
Dx

�
FFFn

j�12
ÿ FFFn

jÿ1
2

�
, j 2 Z, n 2 N �6�
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where FFFn

j�1
2

is the numerical ¯ux at the interface x
j�1

2
: Consider a three-point scheme:

FFFn

j�12
� FFF

ÿ
Wn

j , Wn
j�1
�

We require that the numerical ¯ux is consistent with the physical ¯ux in the sense (see [23,24]):

8U 2 e, FFF�U, U� � F�U�: �7�
Recall that a Riemann problem in x0 is a Cauchy problem (1) and (2) with initial condition:

W0�x� �
�

WL if x < x0

WR if x > x0
�8�

For given states WL and WR, the entropy solution W�x, t� of Eqs. (1), (2) and (8), is a function
of x � xÿx 0

t , noted here Wexa�x;WL,WR�:
For Riemann solvers, the numerical ¯ux FFF�U, V� is obtained from the resolution of a

Riemann problem with initial values WL � U and WR � V:

2.1. Godunov's scheme

To compute the numerical approximation Wn�1
j (for j 2 Z� at time level tn�1, starting from

the approximation Wn
j ( for j 2 Z), the basic idea of the Godunov scheme is the following:

Riemann problems (1), (2) and (8) at each interface x
j�12

with WL �Wn
j and WR �Wn

j�1
are solved exactly; assuming there is no interaction between two neighboring Riemann
problems (CFL condition), Wn�1

j is obtained by averaging the latter solution at the time level
tn�1 on �x

jÿ1
2
, x

j�12
�:

Wn�1
j � 1

Dx

�Dx=2
0

Wexa

�
x

Dt
;Wn

jÿ1, Wn
j

�
dx� 1

Dx

�0
ÿDx=2

Wexa

�
x

Dt
;Wn

j , Wn
j�1

�
dx: �9�

Since we consider here the exact solution of Riemann problems associated with Eq. (1), we can
evaluate the integral de®ning Wn�1

j and we get the Godunov scheme in conservation form (6)
with:

FFF�U, V� � F�Wexa�x � 0;U, V�� �10�
We recall that, thanks to the Rankine±Hugoniot relation, the Godunov ¯ux function de®ned
by Eq. (10) is continuous (moreover, it is piecewise di�erentiable).

2.2. Roe's scheme

In 1983, Harten et al. [23] introduced a class of numerical schemes which includes the
Godunov scheme. In Godunov-type schemes, the exact solution Wexa�x � x

t ;WL, WR� of the
Riemann problem is replaced by an approximation Wapp�x � x

t ;WL,WR� which ful®lls:

(i) Consistency with the integral form of the conservation law
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�Dx=2
ÿDx=2

Wapp

�
x

Dt
;WL,WR

�
dx � Dx

2
�WL �WR� � Dt�F�WL� ÿ F�WR�� �11�

(ii) Consistency with the integral form of the entropy condition�Dx=2
ÿDx=2

Z
�

Wapp

�
x

Dt
;WL,WR

��
dxRDx

2

ÿ
Z�WL� � Z�WR�

�� Dt�G�WL� ÿ G�WR�� �12�

where �Z, G� is an entropy±entropy ¯ux pair for Eq. (1). The process to compute Wn�1
j remains

unchanged �Wapp replaces Wexa in Eq. (9)). However, except the Godunov numerical ¯ux,
Godunov-type ¯uxes cannot be written under the form:

FFF�U, V� � F
ÿ
Wapp�x � 0;U, V��

Roe's proposal [2], does not belong to this class of schemes, owing to the fact that it does not
satisfy Eq. (12). The approximation Wapp�xt ;WL,WR� is obtained by the resolution of a
linearized Riemann problem:8>>><>>>:

@W

@t
� A�WL, WR�@W

@x
� 0

W�x, 0� �
�

WL if x < 0
WR if x > 0

where the matrix A�WL, WR� satis®es conditions (3), (4) and (5). The second relation, called
Roe's relation, is equivalent to the consistency relation with integral form of conservation law
(11). Conservation form (6) of Roe's scheme ®nally leads to the following expression for the
numerical ¯ux:

FFF�U, V� � 1

2

ÿ
F�U� � F�V� ÿ ��A�U, V����Vÿ U��

In practice, matrix A�WL, WR� is often determined using the assumption that there exists an
average state ÄW�WL, WR� such that:

A�WL, WR� � @F

@W

ÿ
ÄW�WL, WR�

�
The average state of Roe ÄW�WL, WR� must be in agreement with Eq. (4). Roe's average does
not necessarily exist, or may not be unique (see, for example, [12]). Nethertheless, when system
(1) has an entropy function, Harten [25] has established the existence of such a matrix.

3. VFRoencv scheme

3.1. General presentation

We present here the VFRoencv scheme for a general hyperbolic system in conservation form
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(1). VFRoencv is a Finite Volume scheme, based on the resolution of linearized Riemann
problems.
Considering the change of variables W 7ÿ4Y�W� (Y is a smooth invertible function), system

(1) reads in non conservative form:

@Y

@t
� B�Y�@Y

@x
� 0 �13�

where B�Y���W,Y�Y��ÿ1A�W�Y��W,Y�Y�:
Systems (1) and (13) are equivalent for smooth solutions.
At each interface, we solve the following linearized Riemann problem:

@Y

@t
� B

ÿ
ÃY
�@Y

@x
� 0 �14�

Y�x, 0� �
�

YL � Y�WL� if x < 0
YR � Y�WR� if x > 0

�15�

where ÃY is an average state depending on YL and YR, such that: W� ÃY� 2 e, and ÃY�YL, YR��Y
if YL � YR � Y: Let us note that eigenvalues ~li ( for i 2 f1, . . . ,pg� of the matrix B� ÃY� are all
real, and that B� ÃY� is diagonalizable.
We brie¯y recall the resolution of the Riemann problem for a linear hyperbolic system. We

consider the representation of YR ÿ YL in terms of the right eigenvectors Äri of B� ÃY�:

YR ÿ YL �
Xp
i�1

~ai Äri

If Äli, i � 1, . . . ,p, stand for the left eigenvectors of B�Ŷ�, satisfying tÄli � Ärk�dik, we have:

~ai � tÄli � �YR ÿ YL�

Suppose that the eigenvalues ~li are arranged in a nondecreasing order. The solution of the
Riemann problem (14) and (15) is composed of constant states separated by a fan of p
characteristic lines (see Fig. 1):

Yapp

�
x

t
;YL, YR

�
�

8>>>>>><>>>>>>:

Y0 � YL if x < ~l1 t

Yk � YL �
Xk
i�1

~ai Äri if ~lkt < x < ~lk�1t
ÿ
k 2 �1, . . . ,pÿ 1

	�
Yp � YR if x > ~lp t

Then, if we suppose that no eigenvalue ~li vanishes, the approximate state, noted here Y�LR, at
the interface i.e. for x

t � 0, is given by:
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Yapp

�
x

t
� 0;YL, YR

�
� YL �

X
~li<0

~ai Äri � YR ÿ
X
~li>0

~ai Äri �16�

Finally, we de®ne the conservative numerical ¯ux by:

FFF�WL, WR� � F
ÿ
W
ÿ
Y�LR

�� �17�
The approach, consisting in ®nding an approximate state to evaluate the physical ¯ux, has also
been considered in [26] for the Euler system.

3.2. Some remarks

The VFRoencv scheme needs to specify, the change of variable W 7ÿ4Y�W� on the one
hand, and the average ÃY on the other hand. The choices depend of course on the considered
problem and may be guided by some desirable purposes. It may also be constrained to satisfy
some desirable properties of the Riemann problem solution. The simplest average, which will
be the one considered for the Euler system, is the arithmetic mean. In the case of Y�W� �W
(i.e. no change of variables), the corresponding scheme is the VFRoe scheme introduced in
Ref. [3,4]. As regards numerical ¯ux de®nition, VFRoencv schemes are inspired by the
conservative form of the Godunov scheme. There is no L2 projection step and no consistency
with the integral form of the conservation law imposed for VFRoencv schemes. Of course, the
matrix of linearization must satisfy Eq. (3) (in order to solve the Riemann problem) and Eq.
(5) for some stability reason (upwinding of the scheme), but Roe's relation (4) is not necessary
here.
The VFRoencv scheme is clearly conservative with consistent ¯ux in the sense of Eq. (7).
If there exists k 2 f1, . . . ,pg such that ~lk vanishes, ¯uxes on both sides of the interface are, a

priori, di�erent. The de®nition of a numerical ¯ux, in this particular case, will be investigated
for the Euler system.
As for Roe's scheme, the VFRoencv scheme admits a non physical weak solution, if the

solution, for a genuinely non linear ®eld, contains a rarefaction wave which crosses the

Fig. 1. Solution of the linearized Riemann problem.
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interface. The sonic entropy correction considered here was described in an appendix to [27] by
Harten and Hyman. The corresponding modi®cation of the VFRoencv scheme is then the
following. For a l-genuinely non linear ®eld, suppose that:

ll�Ylÿ1�R0Rll�Yl� and ~ll 2
�
ll�Ylÿ1�, ll�Yl�

�
:

We introduce an intermediate state Ym between Ylÿ1 and Yl so that the initial discontinuity
with speed ~ll is replaced by two discontinuities with speed ll�Ylÿ1� and ll�Yl�:
�ll�Yl� ÿ ll�Ylÿ1��Ym �

ÿ
ll�Yl� ÿ ~ll

�
Yl ÿ

ÿ
~ll ÿ ll�Ylÿ1�

�
Ylÿ1

Finally, as the new solution contains Ym at the interface, we de®ne the numerical ¯ux by Eq.
(17), with Y�LR � Ym:

4. Application to real gas Euler system

The conservation laws for the one-dimensional Euler equations for equilibrium real gases
can be written in the form (1) with:

W �
24 r
ru
E

35, F�W� �
24 ru
ru2 � p
u�E� p�

35 �18�

where r�x,t�, u�x,t�, p�x,t�, E�x,t� respectively refer to the density, the velocity, the pressure and
the total energy of the particular gas under consideration, at position x and time t. The total
energy is de®ned by: E � r�E� u2=2�, where E is the internal energy per mass unit. We consider
here E as a function of the entropy S and of the speci®c volume t�x, t� � rÿ1:
We de®ne the pressure p and the temperature T by:

p � ÿ@E
@t

, T � @E
@S

The adiabatic exponent, given by:

g � t
p

@ 2E
@t2

is a constant for ideal polytropic gases.
Finally, we introduce the sound speed, de®ned by:

c2 � t2
@ 2E
@t2

We make appropriate assumptions on EOS so that system (1) and (18) is hyperbolic.
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4.1. VFRoencv scheme in variable (t, u, p )

For numerically solving the Euler set of equations, we suggest the VFRoencv scheme with:

tY � �t, u, p�:
We can rewrite system (1) and (18), for smooth solutions, using these variables, in the
following form:8>>>>>>><>>>>>>>:

@t
@t
� u

@t
@x
ÿ t

@u

@x
� 0

@u

@t
� u

@u

@x
� t

@p

@x
� 0

@p

@t
� u

@p

@x
� gp

@u

@x
� 0

�19�

Hence, the VFRoencv scheme (in variable �t, u, p)) is based on the linearized system (14) with:

Y �
0@ t
u
p

1A B
ÿ

ÃY
�
�
0@ û ÿt̂ 0
0 û t̂
0 ĝp̂ û

1A �20�

We propose to take, for this linearization, the arithmetic mean: ÃY�YL, YR�� ÅY�YL, YR� and ĝ �
�g where we use the following notation:

�j�YL, YR��defj�YL� � j�YR�
2

:

We introduce ~c by ~c2 � �g�t �p: Eigenvalues of B� �Y� are given by:

~l1 � �uÿ ~c, ~l2 � �u, ~l3 � �u� ~c,

and the associated right eigenvectors by:

Är1 �
24 �t

~c
ÿ�g �p

35, Är2 �
24 1
0
0

35, Är3 �
24 �t
ÿ ~c
ÿ�g �p

35
After some algebraic calculations we obtain the following expression for coe�cients ~a1 and ~a3:

~a1 � 1

2 ~c2
ÿ
~cD�u� ÿ �tD�p�

�
~a3 � ÿ 1

2 ~c2
ÿ
~cD�u� � �tD�p�

�
where D��� � ���R ÿ ���L:
The intermediate states are then given by:
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Y1 �
24 t1
u1
p1

35 �
24 tL � ~a1 �t
uL � ~a1 ~c
pL ÿ ~a1 �g �p

35, Y2 �
24 t2
u2
p2

35 �
24 tR ÿ ~a3 �t
uR � ~a3 ~c
pR � ~a3 �g �p

35 �21�

We deduce the approximate state Y�LR at the interface used to determine the numerical ¯ux by
(17).

4.2. Some properties of the scheme

Property 1 deals with Riemann invariants associated with a linearly degenerate ®eld. Recall
that, for the Euler system (1) and (18), the only linearly degenerate ®eld is the one associated
with l2: The pair of 2-Riemann invariants can be taken as fu, pg:
Property 1.

(i) The solution of the linearized Riemann problem in variable �t, u, p ) satis®es: the 2-
Riemann invariants u and p are constant across the 2-wave.
(ii) We assume that the EOS is such that rE�t, S� is a (one-to-one) function of p. If the initial
state W0 is such that the 2-Riemann invariants u and p are constant, then their values are
not modi®ed by the VFRoencv �t, u, p ) scheme (which identi®es with the Godunov scheme).

Proof.

(i) Because of the last two null components of Är2, we have u1 � u2 and p1 � p2 in formulas
(21).
(ii) At each interface, under condition D�u� � D�p� � 0, we have: ~a1 � ~a3 � 0, hence Y1 � YL

and Y2 � YR:

If u � uL � uR � 0, although Y� is not de®ned, we have tF�W�YL��� tF�WL�� tF�WR���0, p,
0�: So, if we take FFF�WL, WR��F�WL��F�WR� (this is in accordance with the de®nition of the
numerical ¯ux following Property 2 in the case of vanishing eigenvalue), the initial state W0 is
a steady solution for the scheme.
Assuming now that u � uL � uR > 0 provides Y� � YL and the numerical ¯ux reads:

F�W�Y��� � F�W�YL�� � F�WL�
i.e. it identi®es with Godunov's.
So, in a cell Oi, as we have ui�1 � ui � uiÿ1 � u and pi�1 � pi � piÿ1 � p, the ®rst iteration in

time for a general EOS yields:8>>>>>>>><>>>>>>>>:

r1i � r0i ÿ u
Dt
Dx

Diÿ1=2�r�

�riui�1� r0i uÿ u2 Dt
Dx

Diÿ1=2�r��
riE�t, S�i�

1

2
riu

2
i

�1

� r0i E�t, S�0i�
1

2
r0i u

2 ÿ u
Dt
Dx

�
Diÿ1=2

ÿ
rE�t, S��� 1

2
u2Diÿ1=2�r�

�
where Diÿ1=2�j� � j0

i ÿ j0
iÿ1:

T. Bu�ard et al. / Computers & Fluids 29 (2000) 813±847822



We obtain, independently of the EOS: u1i � u:
Finally, with the hypothesis on the EOS, the three previous equalities given by the scheme

lead to: p1i � p: So, u and p remain constant.

The hypothesis on the EOS is satis®ed, in particular, for an ideal polytropic gas for which g
is constant and:

E�t, S� � p

�gÿ 1�r : �22�

This is no longer true, for example, with the EOS of Van der Waals. However, the VFRoencv
¯ux identi®es with Godunov's one regardless of this hypothesis. Notice that property 1 is true
regardless of the particular choice for the average. A scheme satisfying (ii) for a Sti�ened gas
EOS is also presented in [28].
With the previous choices of Y and of the average, we have the following property

concerning the behavior of the linearized system across one single wave of discontinuity.
We note �j� the jump of j across one curve of discontinuity, and s the speed of the

discontinuity.

Property 2. For an ideal polytropic gas, exact jump relations (i.e. Rankine Hugoniot relations)
of system (1) and (18):

ÿs�W� �
�
F�W�

�
� 0 �23�

and jump relations of system (14) and (20):

ÿs�Y� � B� ÅY��Y� � 0 �24�
are equivalent.
We will use this property to de®ne the VFRoencv ¯ux for a steady discontinuity.

Remark 1. We point out that this property does not imply the consistency relation with the
integral form of the conservation law (11) for system (1) and (18).

Proof. A convenient form of Rankine Hugoniot relations (23) for the system (1) and (18) is, by
introducing the variable v � uÿ s:

�rv� � 0 �25a�
�
rv2 � p

�
� 0 �25b�

�
v

�
rE�t, S� � 1

2
rv2 � p

��
� 0: �25c�

Under the hypothesis that the gas is ideal polytropic, E�t, S� satis®es Eq. (22).
Approximate jump relations (24) read:

8>>>>>><>>>>>>:
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�v�t� ÿ �t�v� � 0 �26a�

�v�v� � �t�p� � 0 �26b�

�v�p� � g �p�v� � 0 �26c�
We begin by recalling the following identity for all scalar variables j and c:�

jc
� � �j

�
c
�� �c�j�

We obtain equivalence between the two jump relations (25a) and (26a) corresponding to mass
equation, thanks to the following equalities: �r� � ÿrLrR�t� and : �r � rLrR �t:
Eq. (26b) is equivalent to:

1

2�t

�
v2
�
� �p� � 0

Using Eq. (25a) leads to:

1

2�t

�
v2
�
�
�
rv2

�
,

and consequently Eqs. (25a)±(25b), and Eqs. (26a)±(26b) are equivalent.
Finally, using Eq. (25b), the Eq. (26c) becomes:

g
gÿ 1

�pv� � �v
�
rv2

�
� 0

where, thanks to Eq. (25a):

�v
�
rv2

�
� 1

2

�
rv3

�
Substituting and considering g constant, we obtain Eq. (25c).

Remark 2. This result can be related with the works of De Vuyst [29] in the sense that we have
equivalence between Rankine Hugoniot relations of (1) and (18), and jump relations of the non
conservative system (13), represented by a linear path with respect to �t, u, p ).

Remark 3. In the case of a general EOS, Property 2 is still true if we take:,

ĝ � 1� �pt��
E�t, S�� :

Note that, for an ideal polytropic gas, this expression reduces to ĝ � g: However, this expression
not only may be unde®ned but its value may also lie outside its admissible range. For these
reasons, we do not hold this de®nition of ĝ for the linearization.

A consequence of Property 2 (when g is constant) determines the behavior of the VFRoencv

8>>><>>>:
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scheme in variable �t, u, p ) with the choice of average ÃY � ÅY in the case of a single stationary
discontinuity:

W0�x� �
�

WL if x < x0

WR if x > x0
, with F�WL� � F�WR� �27�

The initial condition W0 de®ned by Eq. (27) is indeed a steady entropy solution of (1), (2) and
(18) if and only if the entropy condition: G�WR�RG�WL� is ful®lled.
Thanks to Property 2, �Y� is an eigenvector of the matrix B� �Y� associated with a null

eigenvalue. The solution of the linearized Riemann problem (14) and (20) with the initial
condition (15) and (27) consists of two states YL and YR separated by the characteristic lines
x
t � 0: We de®ne, in this case, the VFRoencv ¯ux by taking Y�LR � YL or Y�LR � YR, so as to
have an exact resolution of a single stationary discontinuity with the scheme for an ideal
polytropic gas.
Note that the numerical ¯ux de®ned above is continuous in this case. We also remark that

the function de®ned by Eq. (27) is a steady solution of the basic VFRoencv scheme (i.e.
without entropy correction) whether or not the entropy condition is satis®ed.
We will use this property and Property 1 to suggest a de®nition of the numerical ¯ux when a

numerical eigenvalue ~lk vanishes.

1. Suppose k � 2 (the associated ®eld is linearly degenerate). The interface x
t � 0 separates the

intermediate states Y1 and Y2: If u1 � u2 � 0, we have F�W�Y1�� � F�W�Y2�� (see Property
1), and we take FFF�WL, WR� � F�W�Y1��: Otherwise, we de®ne Y�LR � Y1 or Y�LR � Y2

according to the sign of u1 � u2:
2. Suppose k � 1 (the associated ®eld is genuinely nonlinear). The interface x

t � 0 separates the
intermediate states YL and Y1: If g is constant and if we have Y1 � Y2 � YR, then the states
YL and YR correspond to a single stationary discontinuity. So we take FFF�WL,WR� �
F�W�YL���F�W�YR��: Otherwise, we de®ne the numerical ¯ux as the physical ¯ux function
calculated from the arithmetic mean state between the two neighboring intermediate states
YL and Y1: The case k � 3 is similar.

We consider the numerical resolution of a Riemann problem whose solution is composed of
a stationary 1-shock followed by a 2-contact discontinuity and a 3-rarefaction wave. The gas is
an ideal polytropic one with g � 1:4: The constant states of the solution are:24 rL

uL
pL

35 �
24 1
2
1

35,
24 r1
u1
p1

35 �
24 24=11
11=12
19=6

35,
24 r2
u2
p2

35 �
24 22=7

11=12
19=6

35,
24 rR
uR
pR

35 �
24 2
uR
19=3

35
with: uR � u1 ÿ 2

gÿ1�c2 ÿ cR�: The results by the VFRoencv scheme are displayed in Fig. 3,
where one circle corresponds to one cell. The mesh is composed of 500 cells. The stationary 1-
shock is, in this case, represented exactly. Roe's scheme, which solves exactly single stationary
discontinuities, leads to similar results.
The question addressed in the following is whether the VFRoencv scheme keeps the

variables within their physical (or mathematical) range. About this property, let us cite the
study on positivity of the density in [30] in the case of ideal polytropic gas.
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Fig. 2. Rigid wall pressure values.

Fig. 3. Stationary l-shock.
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We ®rst recall that the Riemann problem, associated to the Euler system (1) and (18), has a
unique entropy-consistent solution (we consider here c as a function of r and S ) if and only if:

uR ÿ uL <

�rR
0

c�r,SR�
r

dr�
�rL
0

c�r, SL�
r

dr

Otherwise, vacuum appears in the solution.
For an ideal polytropic gas (see Ref. [31]), we have:�n

0

c�t, S�
t

dt � 2

gÿ 1
c�r, S�

The VFRoencv scheme in variable �t, u, p ) with ÃY � ÅY and ĝ � �g leads to the following
expression for the intermediate pressure:

p1 � p2 � �pÿ ~c��g, �p,�t�
2�t

D�u�

(recall ~c2 � �g �p�t� or equivalently, in a more convenient form:

p1 � p2 � ~c

�g�t

�
~cÿ �g

2
D�u�

�
Thus, intermediate pressure is positive if and only if:

D�u� < 2

�g
~c��g, �p, �t� �28�

This condition applied to an ideal polytropic gas with pL � pR and tL � tR reads:

D�u� < 2

g
c

which is more restrictive than the `continuous' condition:

D�u� < 4

gÿ 1
c

Concerning the speci®c volume, we have the following expressions:

t1 � tL ÿ �t
2�g �p

D�p� � �t
2 ~c

D�u�

or equivalently:

t1 � tL � �t
2 ~c

�
D�u� ÿ �t

~c
D�p�

�
and with a similar calculation:
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t2 � tR � �t
2 ~c

�
D�u� � �t

~c
D�p�

�
It is not easy to give explicit conditions on the speci®c volume positivity.

Remark 4. Another property of the VFRoencv scheme, which is of interest to engineers, is the
preservation of the total enthalpy H in stationary ¯ows. It is satis®ed here for `interface' values of
H.

Indeed, the total enthalpy is given by: H � �E� p�=r and let us denote by Q the momentum
i.e. Q � ru: For stationary ¯ows, the following relations hold for any j in Z:8><>:

Q�
jÿ1

2

� Q�
j�1

2

Q�
jÿ1

2

H �
jÿ1

2

� Q�
j�12

H �
j�1

2

:

hence,

H �
jÿ1

2

� H �
j�12

We insist that this is valid for `interface' values only (and not for averaged values Hj �H�rj,
Qj, Ej �)(see [30] for a scheme satisfying this property).

5. Numerical experiments (one-dimensional shock tubes)

We present numerical tests on shock tubes, for the three basic con®gurations: rarefaction±
rarefaction, rarefaction±shock (shock±rarefaction is a similar con®guration), and shock±shock.
The computation domain consists of a one-dimensional tube with a membrane in the middle,
which separates two di�erent ¯uid states. All meshes used to solve these Riemann problems are
regular.
We have considered three di�erent EOS and carried out comparisons with other schemes.

5.1. Ideal polytropic gas

The EOS may be given by:

p � �gÿ 1�
�
Eÿ ru2

2

�
where the constant g is equal to 1.4 (diatomic gas).
The CFL number here is equal to 0.7. For qualitative study, we present pro®les for density,

velocity and pressure. From a quantitative point of view, numerical convergence curves, at a
given time, are represented by the logarithm of the relative L1-error as a function of the
logarithm of the mesh size. The grids used contain 250, 500, 1000, 2000, 4000, 8000 (and
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16000, 32000 for Sod shock tube) cells. A similar study with the VFRoe scheme can be found
in [5]. The Riemann problems associated with the last two tests occur in the treatment of rigid
wall boundary conditions with the `mirror state' technique. In Appendix A, we will compare
the interface pressures obtained with the Godunov, VFRoe and VFRoencv schemes.

5.1.1. Test 1: Sod shock tube
Initial conditions are given by:

�rL, uL, pL� �
ÿ
1, 0, 105

�
�rR, uR, pR� �

ÿ
0:125, 0, 104

�
The exact solution is composed of a 1-rarefaction wave followed by a 2-contact discontinuity
and by a 3-shock. Pro®les are given in Fig. 4 for a mesh of 500 cells, and convergence curves
in Fig. 5. We note a small loss of monotonicity at the end of the rarefaction wave on density
and pressure variables. The numerical rates of convergence are about 0.65 for density and

Fig. 4. Sod's shock tube.
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slightly greater than 0.8 for velocity and pressure. The results are similar to the ones obtained
with Roe or VFRoe schemes.

5.1.2. Test 2: supersonic shock tube
We increase the initial pressure ratio of pL to pR:

�rL, uL, pL� �
ÿ
5, 0, 5� 105

�
�rR, uR, pR� �

ÿ
0:125, 0, 104

�
The exact solution is composed of a 1-rarefaction wave presenting a sonic point followed by a
2-contact discontinuity and a 3-shock. As for Roe and VFRoe schemes, sonic entropy
correction must be added to eliminate the stationary shock which appears at the sonic point.
The small kink at the sonic point (see Fig. 6 for 500 cells) still exists, as with the Roe and
VFRoe schemes, but vanishes on ®ner grids. The rates of convergence plotted on Fig. 7(a) are
sligtly lower than in the previous test and less regular for the velocity (as with the Roe and
VFRoe schemes). A slight di�erence between these schemes can be seen in this test case on the
curve of convergence (see Fig. 7(b) for the pressure variable).

5.1.3. Test 3: symmetric double rarefaction
We now present two test cases whose solution, composed of two symmetric rarefaction

waves, involves a state near vacuum. Given u > 0, we consider the initial conditions:

�rL, uL, pL� �
ÿ
1, ÿ u, 105

�

Fig. 5. L1 convergence curve for shock tube of Sod.
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Fig. 6. Supersonic shock tube.

Fig. 7. L1 convergence curve for supersonic shock tube: (a) with VFRoencv scheme. (b) for pressure variable.
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�rR, uR, pR� �
ÿ
1, u, 105

�
First, we take: u � 300 so that the initial Mach number is less than one. We remark the
classical drawback of Godunov-type schemes on the density variable near the position of initial
discontinuity. The approximation of the rarefaction waves is correct (see Fig. 8 for a mesh of
1000 cells). The rate of convergence is the same for the three variables (about 0.78, see Fig. 9).
The length of the `stalactite' is a bit di�erent depending on the scheme. Concerning the curves
of convergence, comparison between the three schemes leads to similar remarks as for the
previous test.
We consider the same test case with u � 1200: The initial Mach number is about 3.2 (for

g � 1:4, we recall that the limit of the initial Mach number for the solution of such a problem
without vacuum is 5.). Let us note that in this case, the standard Roe and VFRoe schemes lead
to negative values for pressure. For the VFRoencv scheme, we notice in Fig. 10 (500 cells) that
the `stalactite' is now less important and that the numerical minimum of the density becomes
greater than the exact value.

Fig. 8. Subsonic symmetric double rarefaction wave.
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Fig. 9. L1 convergence curve for subsonic symmetric double rarefaction wave.

Fig. 10. Supersonic symmetric double rarefaction wave.
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5.1.4. Test 4: symmetric double shock
Initial conditions are given by:

�rL, uL, pL� �
ÿ
1, 300, 105

�
�rR, uR, pR� �

ÿ
1, ÿ 300, 105

�
The exact solution is composed of two symmetric shock waves. We remark in Fig. 11 (500
cells) the same drawback as for Godunov-type schemes on the density variable but no
particular problem for the approximation of the shock. The numerical error is the same for the
Roe, VFRoe and VFRoencv schemes. The rate of convergence (see Fig. 12) is about 0.95 for
density, velocity and pressure.

5.2. EOS of Van der Waals

The EOS is given by:

Fig. 11. Symmetric double shock.
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�
p� a

t2

�
�tÿ b� � RT

and internal energy is:

E�t, S� ÿ E0 � cvTÿ a

t

We deduce the expression for the sound speed:

c2 � ÿ2a
t
�
ÿ
pt2 � a

��tÿ b�ÿ1
�
1� R

cv

�
The values of the constants are:

a � 1684:54, b � 0:001692, R � 461:5, cv � 1401:88

We consider here some test cases proposed and described in [9], where the numerical solver is
Godunov's. The conditions for these tests are above the critical point. A description of the
other test cases proposed in [9] can be found in [20]. The solutions of these tests contain a 1-
rarefaction wave and a 3-shock. The CFL number is equal to 0.75.

5.2.1. Test 5
Initial conditions are given by:

�rL, uL, pL� � �250, 0, 35966778�

Fig. 12. L1 convergence curve for symmetric double shock.
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�rR, uR, pR� � �166:6, 0, 27114795�
The ¯uid stands everywhere in the gas-phase. Pro®les of density, velocity, and pressure are
plotted in Fig. 13 in the case of a mesh with 500 cells. We note, one more time, a loss of
monotonicity at the end of the rarefaction wave. Moreover, velocity values are slightly di�erent
on both sides of the contact discontinuity. This drawback dies down with a mesh re®nement
and/or during the time evolution. We emphasize that the Godunov scheme also su�ers from
this drawback (see Refs. [9] and [32] for Godunov-type schemes).

5.2.2. Test 6
Initial conditions are given by:

�rL, uL, pL� � �333, 0, 37311358�

�rR, uR, pR� � �111, 0, 21770768�

Fig. 13. Van der Waals EOS Ð test 5.
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The right state and the ®rst intermediate state are now in the liquid-phase. For this di�cult
test, the previous drawbacks become more pronounced. We need a ®nest grid near the liquid-
phase to obtain a relatively correct solution (see the pro®les in Fig. 14 for 500 cells and in
Fig. 15 for 2000 cells). In [9], we notice the same drawbacks with the Godunov scheme.
Surprisingly, some oscillations, which decrease in time, are present near the contact
discontinuity when using the Godunov scheme.
Finally, let us note that the CPU time ratio between the Godunov scheme and the

VFRoencv scheme is greater with this EOS than in the case of ideal polytropic gas.

5.3. EOS using Chemkin data bases

Bu�at and Page [16] have used an extension of the Roe scheme to solve the Euler system
with this EOS. Speci®c enthalpy is given as interpolation polynomials of ®fth degree of
temperature:

Fig. 14. Van der Waals EOS Ð test 6 with 500 cells.
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h�T� �

8>>>>>><>>>>>>:

R

m

 
a0 �

X5
i�1

ai
i
T i

!
if Tinf � 200RTRTmed � 1000

R

m

 
b0 �

X5
i�1

bi
i
T i

!
if Tmed � 1000RTRTsup � 5000

�29�

We recall that the speci®c enthalpy for a thermally perfect gas is given by:

h�T� � E�T� � p

r
� E�T� � R

m
T, �30�

where R and m are respectively the universal gas constant and the molecular weight of the gas.
Coe�cients for this interpolation are given by Chemkin data bases ([33]). We obtain the
temperature (and consequently the pressure) from conservative variables by solving the
polynomial relations (29) and (30).
The initial conditions of the test case presented here are the following:

Fig. 15. Van der Waals EOS Ð test 6 with 2000 cells.
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�rL, uL, TL� � �1, 0, 3000�
�rR, uR, TR� � �0:3, 0, 400�

The solution is such that the gas EOS departs from the perfect gas law. Pro®les can be seen in
Fig. 16 for a mesh with 500 cells. They are similar to the ones obtained in [16] with a Roe
scheme. Other test cases have been carried out without ®nding the drawbacks remarked in the
Van der Waals EOS case.

6. Extension to second order and to multidimensional system

6.1. Extension to second order

Extension to second order (in space) by the M.U.S.C.L. technique, is of course possible with
the VFRoencv scheme. We recall that this method consists in de®ning slopes on p independant
variables �t, u and p here) at each cell such that the approximate solution is now piecewise

Fig. 16. EOS using Chemkin data bases.
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linear. We apply the VFRoencv numerical ¯ux replacing at each interface x
j�12

the arguments

Wn
j and Wn�1

j by the extrapolated left and right states. The slope limiter, introduced to
preserve a TVD property in the scalar case, is here the minmod limiter. To this so-called
`second-order' spatial accurate scheme, we associate a two-step Runge±Kutta method for
integration in time.
We only present here the numerical pro®les (Fig. 17 for 500 cells) corresponding to test case

2. The results are those expected: better representation of the waves, and here, no irregularity
at the sonic point while entropy correction is not active. The comparison of curves of
convergence at time level ®xed are displayed in Fig. 18(a) for test 1 and Fig. 18(b) for test 2.
For the shock tube of Sod, the rate of convergence is about 0.78 for density, 0.93 for velocity
and 0.98 for pressure. For the supersonic shock tube, it is slightly lower except for the pressure
variable.

6.2. Extension to multidimensional system

The usual approach consisting in applying the one-dimensional scheme for each direction in

Fig. 17. Supersonic shock tube for VFRoencv/RK2-MUSCL.
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a multidimensional problem is adopted here. We consider any stuctured or unstructured Finite
Volume mesh. For an invariant under frame rotation system (1), we obtain, under assumption
of one-dimensional variables, the one-dimensional Riemann problem corresponding to (1) in
the normal direction to the interface between two ®nite volumes. At each interface, the
numerical ¯ux is used to approximate the resolution of this problem. So, in the two-
dimensional case, the scheme reads:

jOi j
ÿ
Wn�1

i ÿWn
i

�� Dt
X
j2V�i�

GijF
ÿ
W
ÿ
Y�ij
�
,nij

� � 0:

Fig. 18. Comparison of L1 convergence curves between ®rst order scheme (solid line) and second order scheme
(dotted line): (a) for shock tube of Sod. (b) for supersonic shock tube.

Fig. 19. Mirror technique.
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V�i� refers to the neighboring cells of Oi, nij stands for the outward (from Oi to Oj� unit
normal vector of the interface (whose length is Gij� between cells Oi and Oj, and jOij is the area
of Oi:
For the two-dimensional Euler system, if tU � �u, v� denotes the velocity, the corresponding

numerical ¯ux is given by:

F
ÿ
W�Y��,n

�
�

2664
r�u�

r�u��U � n���p�nx

r�v��U � n���p�ny

�U � n���E � � p��

3775
The starred state, for the new variable tY� �t, u, v, p�, is obtained (as in the one-dimensional
case) by the resolution of the Riemann problem, in the n-direction, associated with the
following linearized system:

Fig. 20. Distributions of pressure and Mach number obtained after 60000 time steps.
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@t
@t
� Un

@t
@n
ÿ �t

@Un

@n
� 0

@Un

@t
� Un

@Un

@n
� �t

@p

@n
� 0

@Ut

@t
� Un

@Ut

@n
� 0

@p

@t
� Un

@p

@n
� �g �p

@Un

@n
� 0

where Un � U � n is the normal velocity and Ut � U � T is the tangential velocity.
We present here a computation, with the (explicit) VFRoencv scheme and Chemkin

thermodynamics, of a ¯ow between two blades. The computational domain corresponds to the
inter-blade space. The mesh, obtained by reconstruction of barycentric cells around nodes from
an initial triangular mesh, is composed of 14180 cells. The initial state is �u, v, T, p� � �0, 0,
312, 100000�: At the inlet, the pressure is equal to 4 bar, the temperature T is equal to 390 K,
and the pressure is equal to 1 bar at the outlet. The ¯ow becomes supersonic. Fig. 20 shows
the distributions of pressure and Mach number obtained after 60000 time steps.

7. Conclusion

The VFRoe scheme has been introduced in [3,4] to approximate solutions of complex
hyperbolic systems where Godunov or Roe schemes are hardly applicable, at least in practice.
We have presented here an extension of the VFRoe scheme where the hyperbolic system is
(possibly) expressed in non conservative variables in the linearization part of the scheme.
For the Euler system, the suggested change of variables gives to the scheme some properties:

we have proved the preservation of Riemann invariants for linearly degenerate ®elds, the
equivalence between exact and approximate jump relations when g is constant and
consequently the perfect resolution of any single stationary discontinuity.
Numerical tests presented herein are essentially shock tube problems for various EOS. The

VFRoencv scheme has also been used (see [21]) in the case of a tabulated EOS (Thetis
program, [34]). In the case of a polytropic ideal gas, we have examined its behavior near
vacuum, and we have shown the numerical rate of convergence for the possible con®gurations.
These numerical tests indicate a good behavior of this scheme in comparison with other. It is
very easy to implement, even for an unstructured mesh in the multi-dimensional case, and even
less expensive in CPU time than the Roe scheme (see [21]).
This scheme has a large application ®eld. Other applications have actually been addressed to

compute approximate solutions of conservative hyperbolic convective subsets (Shallow water
equations in [35] where the change of variables enables computations with dry areas, two-phase
¯ow in [36,37,5]), or non conservative ones (turbulent compressible ¯ows with Reynold's
stresses transport in [38] or with a one-equation closure for K in Ref. [39]).
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Appendix A. Boundary conditions

A.1. Rigid wall boundary condition: the `mirror state' technique

For Euler systems, the physical boundary condition for rigid wall is u � 0 or normal velocity
null in the multidimensional case. Hence, the continuous boundary ¯ux reduces to:

F�W� �
24 0
p
0

35 �A1�

A very popular technique to treat numerically rigid wall boundary conditions is the `mirror
state' technique. It consists in de®ning a virtual state Wem, outside the calculation domain,
from the state Wint in the near wall cell with the same density, pressure and opposite velocity.
In terms of the Riemann problem, the form of ¯ux (A1) still holds.
Hence we consider the Riemann problem (1) and (18) where WL and WR are such that:8<: rL � rR � r

uL � ÿuR � ÿu
pL � pR � p

The numerical resolution of this Riemann problem by Godunov, Roe and VFRoencv schemes
gives di�erent values for the pressure. We know that the Roe scheme leads to negative pressure
(or density), in the cell located along the boundary, in the case of strong depressurization (with
the practical consequence that the calculation stops). Even with the Godunov scheme, vacuum
can appear whereas initial data satisfy the condition with no vacuum presence. Actually, we
notice numerically that the numerical solution converges to the exact one by lower values for
density and pressure (at least in a neighborhood of the initial discontinuity).
Let us compare the di�erent values of pressure at the boundary, for an ideal polytropic gas,

in the two possible cases: for u > 0, in the double symmetric rarefaction con®guration, and for
u < 0, in the double symmetric shock con®guration.
In both cases, pressures obtained by Roe and by the VFRoencv scheme have the following

expression:

pRoe � p
ÿ
1ÿ gM� gM2

�
pVFRoencv � p�1ÿ gM�

where M � u
c is the Mach number.

. For u > 0

T. Bu�ard et al. / Computers & Fluids 29 (2000) 813±847844



In this case, pressure between the two rarefaction waves is given by:

pGod � p

�
1ÿ gÿ 1

2
M

�2g=�gÿ1�

After some calculations, we can show that:

pVFRoencvRpGodRpRoe

Fig. 2 compares pressure values, normalized by p and considered as functions of the Mach
number, for g � 7=5: For the Roe scheme, pressure at the rigid wall increases for M > 1=2:
Physically, this tends to `evacuate' the ¯uid particles out of the boundary all the more rapidly
since the velocity is important. In practice, pVFRoencv is set to 0 for M > 1=g:

. For u < 0

Here, pressure between the two shocks is:

pGod � p

 
1ÿ gM

�
1� �g� 1�2

16
M2

�1=2

�g�g� 1�
4

M2

!

Again, we have: pVFRoencvRpGod and pVFRoencv < pRoe: On the other hand, the comparison
between pGod and pRoe depends on the Mach number:

pGodRpRoe , gÿ 3

gÿ 1
RM� < 0�

In both cases, we remark that pVFRoencv

p is the limited development of pGod

p at ®rst order with
respect to the Mach number.
We present Fig. 19, the numerical solution, obtained with VFRoencv, with the rigid wall on

the right-hand side of the domain. The initial state, constant in the domain, is given by: �r, u,
p� � �1, ÿ300, 105�: It actually corresponds to half the solution obtained in test case 3.

A.2. Inlet and outlet boundary conditions

Numerical treatment of inlet and outlet boundary conditions presented by Dubois in Ref.
[40] associated with the Osher scheme, can be used with the VFRoencv scheme (see Ref. [37]).
Suppose that the computational domain is on the right, and let us note V the state computed
at time level tn in the cell located along the boundary. The principle is to determine an external
state We so as to obtain a Riemann problem at the boundary. Then, we can use the numerical
¯ux FFF�We, V�:
The de®nition of the external state proposed in [40] is based on the use of rarefaction waves

(possibly multivalued). The study, brie¯y described here, depends on the con®guration of the
¯ow at the boundary.

1. Supersonic in¯ow: The state We is given.
2. Supersonic out¯ow: The computed state V is such that all the waves go ouside the domain.

No external state is needed.
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3. Subsonic out¯ow: One boundary condition is given (usually the pressure). The state We is
determined by this condition and by the assumption that We and V are related by a 1-
rarefaction wave only.

4. Subsonic in¯ow: Two boundary conditions are given (for example enthalpy and mass ¯ux
(or entropy)). These conditions and the assumption that We and V are related by a 2-
contact discontinuity and a 3-rarefaction wave lead to an external state We:
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