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Abstract

We study here the computation of shallow-water equations with topography by Finite Volume methods,

in a one-dimensional framework (though all methods introduced may be naturally extended in two di-

mensions). All methods are based on a discretisation of the topography by a piecewise function constant on

each cell of the mesh, from an original idea of Le Roux et al. Whereas the Well-Balanced scheme of Le

Roux is based on the exact resolution of each Riemann problem, we consider here approximate Riemann

solvers. Several single step methods are derived from this formalism, and numerical results are compared to

a fractional step method. Some test cases are presented: convergence towards steady states in subcritical
and supercritical configurations, occurrence of dry area by a drain over a bump and occurrence of vacuum

by a double rarefaction wave over a step. Numerical schemes, combined with an appropriate high-order

extension, provide accurate and convergent approximations.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

We study in this paper some approximate Godunov schemes to compute shallow-water
equations with a source term of topography, in a one-dimensional framework. All methods
presented may be extended naturally to the two-dimensional model.
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Shallow-water equations are based on conservation laws and provide a hyperbolic system.
However, topography introduces some source term related to the unknown. Hence, analytic
properties of the model of isentropic Euler equations are deeply modified, in comparison with the
homogeneous case. For instance, a well-known problem is the occurrence of other equilibrium
states (or steady states), due to the presence of the source term.
Several ways to compute conservation laws with source term have already been investigated.

The main problem is the approximation of the source term and the numerical preservation of
properties fulfiled by the continuous system. Some Finite Volume methods have been proposed, in
particular the Well-Balanced schemes, which can maintain all steady states. These schemes have
been initially introduced by Greenberg and co-workers [17,18] in the scalar case (see also [2,15]).
Well-Balanced schemes have been recently extended to shallow-water equations with topography
in [1,19] and friction in [6]. Since the Well-Balanced scheme is based on an exact Riemann solver
as the Godunov scheme (see [14]), its main drawbacks are its calculation cost and the need to
compute the ‘‘exact’’ solution of the Riemann problem. Other Finite Volume methods to deal
with source terms exist too, for instance based on the Roe scheme (see [12,24]), or based on
another approximation of the source term, like in [21].
Some properties of the continuous model (Riemann invariants, jump relations, etc.) are first

exposed, and a study of the Riemann problem is briefly recalled. Thereafter, some approximate
Gudunov methods are introduced to compute shallow-water equations, derived from the VFRoe-
ncv formalism. VFRoe-ncv stands for the scheme VFRoe using a non-conservative variable.
Finite Volume scheme VFRoe should not be confused with Roe scheme. VFRoe-ncv schemes are
Finite Volume schemes, based on a linearised Riemann problem written with respect to a non-
conservative variable. Some applications of VFRoe-ncv schemes are provided for the Euler
equations (in [5,10,23]), for shallow-water equations with a flat bottom in [4] and for turbulent
compressible flows [3]. The VFRoe-ncv schemes are based on an arbitrary change of variable, and
on a linearisation of each interface Riemann problem. In the homogeneous case, the numerical
flux is defined using the exact solution of the linearised Riemann problem and the conservative
flux. However, the source term ‘‘breaks’’ the conservativity of the model. Thus, using a piecewise
constant function to approximate the bottom, some approximate Riemann solvers are presented.
The main advantages of this approach are the natural integration of the source term in the nu-
merical methods and the use of a linearised Riemann problem, which minimizes the CPU time.
Note that a scheme which exactly preserves a large class of steady states is obtained. In addition, a
fractional step method (FSM) is performed, based on the VFRoe-ncv scheme introduced in [4].
This method enables to deal with vacuum and provides good results, too. To complete this
presentation, a higher-order extension is provided, to increase the accuracy of the schemes when
computing unsteady configurations or flows at rest.
Several numerical experiments are presented. All the test cases are one-dimensional, and are

based on a non-trivial topography. Indeed, applications of shallow-water equations are one- or
two-dimensional configurations. Hence, computational limitations are rather different from the
gas dynamics frame where the main applications are two- and three-dimensional. Therefore,
numerical experiments in an industrial context may be here performed on mesh containing
several hundreds nodes. The tests include subcritical and transcritical flows over a bump [16]
and a drain with a non-flat bottom. The convergence towards steady states is measured. A
vacuum occurrence by a double rarefaction wave over a step is tested too. All the numerical
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tests confirm the good behaviour of the numerical methods, including the fractional step
method.
Eventually, some complementary tests with the Godunov and the VFRoe method are provided

in Appendix A.

2. The shallow-water equations with topography

2.1. Governing equations

The shallow-water equations represent a free surface flow of incompressible water. The two-
dimensional system may be written as follows:

h;t þ ðhuÞ;x þ ðhvÞ;y ¼ 0; ð1aÞ

ðhuÞ;t þ ðhu2Þ;x þ ðhuvÞ;y þ g
h2

2

� �
;x

¼ �ghðZf Þ;x; ð1bÞ

ðhvÞ;t þ ðhuvÞ;x þ ðhv2Þ;y þ g
h2

2

� �
;y

¼ �ghðZf Þ;y; ð1cÞ

where h denotes the water height, u ¼ tðu; vÞ the velocity, g the gravity constant and rZf the bed
slope (g and Zf ðx; yÞ are given, and Zf must be at least C

0ðR2ÞÞ (see Fig. 1).
This study is restricted to the computation by Finite Volume schemes (see [9]). Since the hy-

perbolic system (1a)–(1c) remains unchanged under frame rotation, this two-dimensional problem
may be solved considering on each interface of the mesh the following system:

h;t þ ðhunÞ;n ¼ 0; ð2aÞ

ðhunÞ;t þ hu2n

�
þ g

h2

2

�
;n

¼ �ghðZf Þ;n; ð2bÞ

ðhusÞ;t þ ðhunusÞ;n ¼ 0; ð2cÞ

where un ¼ u � n, us ¼ u � s, n and s the normal and the tangential vector to the interface
(knk ¼ ksk ¼ 1), and ð Þ;n the derivate along the normal vector n.

Fig. 1. Mean variables.
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The pure one-dimensional shallow-water equations may be written as follows:

h;t þ ðhuÞ;x ¼ 0; ð3aÞ

ðhuÞ;t þ hu2
�

þ g
h2

2

�
;x

þ ghZ 0
f ðxÞ ¼ 0: ð3bÞ

We focus in this paper on the numerical resolution of the one-dimensional systems (3a) and (3b).
Let us note that h and hu (also denoted Q in the following) are the conservative variables. So,

vacuum (or dry bed) may be represented by h ¼ hu ¼ 0, which implies that u is not defined.

Remark 1. The change of variable from ðh;QÞ to ðh; uÞ leads to the following equations for
smooth solutions:

h;t þ Q;x ¼ 0;
u;t þ w;x ¼ 0;

where w ¼ ðu2=2þ gðhþ Zf ÞÞ.
These equations enable to define some stationary smooth solutions as follows:

Q;x ¼ 0 and w;x ¼ 0: ð4Þ

One may add to these equations Rankine Hugoniot relations (on smooth topography) for
stationary shocks to complete the definition of stationary states.

2.2. The Riemann problem on a flat bottom

Assuming that the river bed is flat (i.e. Z 0
f ðxÞ ¼ 0), the system (3a) and (3b) becomes homo-

geneous. Hence, we obtain a conservative system, which leads to the following Riemann problem:

h;t þ Q;x ¼ 0;

Q;t þ
Q2

h
þ g

h2

2

� �
;x

¼ 0;

ðh;QÞðx; 0Þ ¼ ðhL;QLÞ if x < 0;
ðhR;QRÞ if x > 0:

�
8>>>><>>>>: ð5Þ

This problem, which is also the Riemann problem for isentropic Euler equations (for a particular
state law) may be classically solved. Its solution is a similarity solution (i.e. a function of x/t)
composed by three constant states, ðhL;QLÞ, ðh1;Q1Þ and ðhR;QRÞ separated by two genuinely non-
linear (GNL) fields associated with eigenvalues u� c and uþ c (where c ¼

ffiffiffiffiffi
gh

p
). The intermediate

state ðh1;Q1Þ may be computed using through the 1-wave:

u1 ¼
uL � 2ð

ffiffiffiffiffiffiffi
gh1

p
�

ffiffiffiffiffiffiffi
ghL

p
Þ if h1 < hL;

uL � ðh1 � hLÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
h1 þ hL
2h1hL

r
if h1 > hL;

8<: ð6Þ

and through the 2-wave:
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u1 ¼
uR þ 2ð

ffiffiffiffiffiffiffi
gh1

p
�

ffiffiffiffiffiffiffi
ghR

p
Þ if h1 < hR;

uR þ ðh1 � hRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
h1 þ hR
2h1hR

r
if h1 > hR:

8<: ð7Þ

The latter two curves are derived from the Riemann invariants (when h1 < hL and h1 < hR) for
rarefaction waves and from the Rankine Hugoniot relations (when h1 > hL and h1 > hR) for shock
waves. Note that the intermediate velocity u1 is defined only if

uR � uL < 2ð
ffiffiffiffiffiffiffi
ghR

p
þ

ffiffiffiffiffiffiffi
ghL

p
Þ: ð8Þ

Otherwise, h1 and Q1 become null, and u1 is undefined.

2.3. The Riemann problem with a piecewise constant topography

Following the idea developed by Le Roux [19], the topography is described by a piecewise
constant function. Therefore, adding the ‘‘partial’’ differential equation concerning Zf , the fol-
lowing Riemann problem may be obtained:

Zf ;t ¼ 0;
h;t þ ðhuÞ;x ¼ 0;

Q;t þ
Q2

h
þ g

h2

2

� �
;x

þ ghðZf Þ;x ¼ 0;

ðh;Q;Zf Þðx; 0Þ ¼
ðhL;QL;ZfLÞ if x < 0;
ðhR;QR;ZfRÞ if x > 0:

�

8>>>>>>><>>>>>>>:
ð9Þ

Note that this Riemann problem does not correspond to the Riemann problem associated with
the system (3a) and (3b), since the topography is not smooth. The jump of topography along the
curve x=t ¼ 0 introduces a problem for the definition of the product of distributions, focusing on
non-smooth solutions (see [7,8] for more details). So, the jump relations across the discontinuity
x=t ¼ 0 are not defined. Assuming that h > 0 and restricting to smooth solutions, the system (9)
may be written:

Zf ;t ¼ 0; ð10aÞ
h;t þ Q;x ¼ 0; ð10bÞ

u;t þ
u2

2

�
þ gðhþ Zf Þ

�
;x

¼ 0: ð10cÞ

We note w ¼ ðu2=2þ gðhþ Zf ÞÞ in the following. One may deduce the conservation law on en-
tropy for non-viscous smooth solutions:

g;t þ ðQwÞ;x ¼ 0; ð11Þ

g ¼ h
u2

2
þ g

h2

2
þ ghZf : ð12Þ

Moreover, system (10a)–(10c) provides the Riemann invariants through the stationary wave.
Since the wave located at x=t ¼ 0 is a contact discontinuity, we assume that the Rankine Hugoniot
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relations identify with the Riemann invariants. Thus, the Riemann problem (9) admits a Linearly
Degenerated field of speed 0 such that

sQt ¼ 0; ð13aÞ
swt ¼ 0; ð13bÞ

where sat represents the jump of a across the wave.
Two GNL fields also compose the solution of the Riemann problem (9), which are the same as

in the flat bottom case. Hence, to connect a stateW to a state Wa through the wave u� c, one may
use the following relations (a rarefaction wave occurs when h < ha, and a shock wave occurs when
h > ha):

Zf ¼ Zfa ; ð14aÞ

u ¼
ua � 2ð

ffiffiffiffiffi
gh

p
�

ffiffiffiffiffiffiffi
gha

p
Þ if h < ha;

ua � ðh� haÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
hþ ha
2hha

r
if h > ha:

8><>: ð14bÞ

In the same way, to connect a state W to a state Wb through the wave uþ c, one may use the
following relations (a rarefaction wave occurs when h < hb, and a shock wave occurs when
h > hb):

Zf ¼ Zfb ; ð15aÞ

u ¼
ub þ 2ð

ffiffiffiffiffi
gh

p
�

ffiffiffiffiffiffiffi
ghb

p
Þ if h < hb;

ub þ ðh� hbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g
hþ hb
2hhb

r
if h > hb:

8><>: ð15bÞ

Moreover, to connect a stateW to a state Wc through the stationary wave, one uses the Riemann
invariants:

Q ¼ Qc; ð16aÞ
w ¼ wc: ð16bÞ

Remark 2. Several remarks about the resolution of the Riemann problem (9) follow.

1. Since Eq. (3b) is not conservative when the bottom Zf is discontinuous, the associated jump
relation (13b) is just the sense we give to the third equation of (9) at the discontinuity of Zf .
Since this discontinuity is a contact discontinuity for (9), this choice is quite natural because
it corresponds to the Riemann invariants in the associated field.

2. Even assuming (13b), the resolution of the Riemann problem (9) remains undetermined. In-
deed, combining Eqs. (16a) and (16b), the connection through the stationary wave results in
looking for solution ðh;QÞ of the couple of equations Q ¼ Qc and Q2c=ð2h2Þ þ gðhþ Zf Þ ¼ wc,
where Zf , Qc and wc are given. This equation may admit zero, one or two solutions. Therefore,
without additionnal informations, the solution remains unknown.
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3. Let us emphasize that the Riemann problem (9) may be resonant, that is, a GNL wave may be
superposed with the stationary wave. Moreover, waves are not ordered which renders the res-
olution of the Riemann problem much more complex than in the flat bottom case.
At this stage, it clearly appears that the classical method to solve the Riemann problem (de-
scribed in [13] for instance) is not sufficient to construct the solution of (9), owing to items 1–3.

4. Le Roux and co-workers [6,19,25] have proposed an original method to solve the Riemann
problem. It is based on a linear connection between ZfL and ZfR and the study of stationary so-
lutions of (3a), (3b) inside the connection. Some relations naturally appear and allow the com-
plete resolution of the Riemann problem (9). In particular, except when a stationary shock
wave occurs, states on each side of the discontinuity x=t ¼ 0 must be either both subcritical
or both supercritical. Therefore, no ambiguity remains when the parametrisation (16a) and
(16b) admits two solutions because one of the two solutions is subcritical while the other is su-
percritical.

5. Note that, in a simpler framework (see [26]), a similar method may provide existence and
uniqueness of the entropy solution.

We will discuss below two families of schemes which are intended to provide a convergent
approximation of the above-mentioned system. The first series is based on straightforward ap-
proximate Godunov schemes which account for topography. The second series is based on the
fractional step method.

3. Single step methods

We present in this section several ways to solve the shallow-water equations with source term
by Finite Volume schemes (see [9,27] for instance). The description of the methods computed
herein is split in two steps: the Finite Volume scheme provided by integration of (3a) and (3b) and
the solver at each interface.

3.1. An approximate Godunov-type scheme

We introduce herein a Finite Volume scheme following the idea proposed by Greenberg and co-
workers [17,18].
Focusing on system (3a) and (3b), it consists in using a piecewise bottom, flat on each cell, in

the ‘‘continuous’’ framework (see [6,19]). Thus, the source term �ghZ 0
f ðxÞ is reduced to a sum of

Dirac masses occuring on each interface [7]. Hence, since the Finite Volume formalism is based on
the integration of the system (3a) and (3b) on a cell �xi�1=2; xiþ1=2½½tn; tnþ1½, the source term does
not appear explicitly (contrary to the scheme investigated in [12] for instance). As mentioned
above, such an approximation of the topography introduces a stationary wave at the interface of
each local Riemann problem. Though the Well-Balanced scheme of Greenberg and Le Roux is
based on the exact solution of (9), we focus here on approximate Riemann solvers. These Rie-
mann solvers are based on an approximate solution of the problem (9), and the numerical flux is
computed from the conservative flux and the approximate solution at each interface.
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Let us note W ¼ tðZf ; h;QÞ the conservative variable, F ðW Þ ¼ tð0;Q; hu2 þ gh2=2Þ the associ-
ated conservative flux and Dxi and Dt the space and time-steps. We denote W n

i the approximation
of

1

Dxi

Z xiþ1=2

xi�1=2

W ðx; tnÞdx:

So, the Finite Volume scheme may be written as follows:

W nþ1
i ¼ W n

i � Dt
Dxi

F ðW �
iþ1=2ð0�;Wi ;Wiþ1ÞÞ

�
� F ðW �

i�1=2ð0þ;Wi�1;WiÞÞ

; ð17Þ

where W �
iþ1=2ðx=t;Wi ;WiþiÞ is the (exact or approximate) solution of the Riemann problem (9) with

L ¼ i and R ¼ iþ 1. As mentioned above, the source term only contributes to the computation of
the (exact or approximate) solutions W �

iþ1=2ðx=t;Wi ;WiþiÞ but it does not appear explicitly in the
expression of the scheme (17). However, the approximation of the topography by a piecewise
constant function implies that the numerical flux is not continuous through each interface of the
mesh, contrary to the homogeneous and conservative case. Whereas the numerical flux associated
with Eq. (3a) has to be continuous (since this equation is homogeneous and conservative), the
numerical flux associated with Eq. (3b) becomes discontinuous in the non-flat bottom case, ac-
cording to relations (13a) and (13b). In order to obtain a constant numerical flux for Eq. (3a), we
will have, in some cases, to modify the scheme (17) (see (21) for instance).
Note that the Finite Volume scheme (17) associated with the exact interface Riemann solver

(i.e. the Well-Balanced scheme presented in [19]) is able to maintain all steady states. Moreover,
let us emphasize that the scheme (17) may be easily extended to a multi-dimensional framework
(indeed, the formalism presented is very similar to Finite Volume schemes).

3.2. The VFRoe-ncv formalism

Since the Well-Balanced scheme [19] is based on an exact Riemann solver as the Godunov
scheme [14], its main drawbacks are its calculation cost and the need to compute the exact so-
lution of the Riemann problem (9). Thus, we suggest to compute the state W �

iþ1=2ðx=t;Wi ;Wiþ1Þ by
approximate Riemann solvers.
All the Riemann solvers presented here may be derived from the VFRoe-ncv formalism [5,10].

The VFRoe-ncv schemes are based on the exact solution of a linearised Riemann problem. Their
construction may be split in three steps. The first step consists in writing the initial system under a
non-conservative form, by an arbitrary change of variable Y ðW Þ (we denote by W ðY Þ the inverse
change of variable). Afterwards, the Riemann problem (9) is linearised averaging the convection
matrix:

Y;t þ BðbYY ÞY;x ¼ 0;
Y ðx; 0Þ ¼ YL ¼ Y ðWLÞ if x < 0;

YR ¼ Y ðWRÞ if x > 0;

�8<: ð18Þ

where BðY Þ ¼ ðW;Y ðY ÞÞ�1F;W ðW ðY ÞÞW;Y ðY Þ and bYY ¼ ððYL þ YRÞ=2Þ.
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As a result, the Riemann problem (9) becomes a linear Riemann problem, which is solved
exactly. Denoting ð~llkÞk¼1;2;3 and ð~rrkÞk¼1;2;3, respectively, left and right eigenvectors of BðbYY Þ,
ð~kkkÞk¼1;2;3 eigenvalues of BðbYY Þ, the exact solution Y �ðx=t; YL; YRÞ of (18) is defined by:

Y �ððx=tÞ�; YL; YRÞ ¼ YL þ
X
x=t>~kkk

t~llk � sY tRL
� 

~rrk;

Y �ððx=tÞþ; YL; YRÞ ¼ YR �
X
x=t<~kkk

t~llk � sY tRL
� 

~rrk;
ð19Þ

where satRL ¼ aR � aL. Both are equal when x=t 6¼ ~kkk and x=t ¼ ~kkk corresponds to a discontinuity
of Y �, k ¼ 1; 2; 3. Thus, the solution written in terms of the conservative variable is

W �ðx=t;WL;WRÞ ¼ W ðY �ðx=t; YL; YRÞÞ: ð20Þ
Therefore numerical fluxes in (17) are computed using (20). In a conservative and homogeneous
framework, the numerical flux is defined by the conservative flux computed with the approximate
solution at the interface x=t ¼ 0. However, the Riemann problem (9) provides a stationary wave at
the interface, which introduces a jump of the numerical flux across it (which appears even when
the exact solution of (9) is computed).
We emphasize that the source term of topography �gZ 0

f ðxÞ appears naturally and explicitly in
the expression of intermediate states computed by the following schemes.

3.3. The VFRoe (Zf ; h;Q) scheme

We consider first the conservative variable W ¼ tðZf ; h;QÞ. Note that this solver corresponds to
the initial VFRoe scheme [23]. The main interest of this interface Riemann solver is the discrete
continuity of Q through the stationary wave, in agreement with the Riemann invariant (13a).
If we develop the system (3a), (3b), we can write the convection matrix (which identifies with the

jacobian matrix of the numerical flux F;W ðW Þ):

BðY Þ ¼
0 0 0

0 0 1

c2 c2 � u2 2u

0@ 1A:

Eigenvalues of the matrix BðY Þ are
k1 ¼ 0; k2 ¼ u� c; k3 ¼ uþ c:

The associated matrix of right eigenvectors is

X ¼
c2 � u2 0 0

�c2 1 1
0 u� c uþ c

0@ 1A:

If we refer to the exact solution (19) of the linearised Riemann problem (18), we can write

W �ð0þ;WL;WRÞ ¼ W �ð0�;WL;WRÞ þ
sZf t

R
L

~cc2 � ~uu2

~cc2 � ~uu2

�~cc2

0

0@ 1A;
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where ~uu ¼ uðbYY Þ and ~cc ¼ cðbYY Þ. This implies that the discharge Q is continuous through the sta-
tionary wave, according to relation (13a). So, the scheme associated to h is conservative. By
the same way, one may write the relations to connect a state W to a state Wa through the u� c
wave:

W ¼ Wa þ
1

2

~ccsZf t
R
L

~cc� ~uu

 
þ ð~ccþ ~uuÞshtRL

~cc
� sQtRL

~cc

!
0

1
~uu� ~cc

0@ 1A;

and the relations to connect a state W to a state Wb through the uþ c wave:

W ¼ Wb þ
1

2

~ccsZf t
R
L

~ccþ ~uu

 
þ ð~cc� ~uuÞshtRL

~cc
þ sQtRL

~cc

!
0

1
~uuþ ~cc

0@ 1A:

3.4. The VFRoe-ncv (Zf ; 2c; u) scheme

We consider herein the change of variable Y ðW Þ ¼ tðZf ; 2c; uÞ. The choice of variable Y was
motivated by the form of Riemann invariants associated with waves of speed u� c and uþ c
which are, respectively, uþ 2c and u� 2c (see (6) and (7)). Moreover, in the flat bottom case (5),
variable tð2c; uÞ provides a symmetrical convection matrix and the condition to maintain a pos-
itive intermediate sound speed is formally the same as the condition of vacuum occurrence (8) (see
for more details [4,11]).
The system (3a), (3b) may be written related to Y as follows:

Zf ;t ¼ 0;
ð2cÞ;t þ uð2cÞ;x þ cu;x ¼ 0;

u;t þ cð2cÞ;x þ uu;x þ gZf ;x ¼ 0:

Note that this system is defined only if h > 0 and focusing on smooth solutions. The convection
matrix BðY Þ is

BðY Þ ¼
0 0 0

0 u c
g c u

0@ 1A:

Eigenvalues of matrix BðY Þ read

k1 ¼ 0; k2 ¼ u� c; k3 ¼ uþ c:

If we denote by X the matrix of right eigenvectors, we may write

X ¼
u2 � c2 0 0

gc 1 1

�gu �1 1

0@ 1A:
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The solution provided by the linearised Riemann problem verify through the stationary wave

Y �ð0þ; YL; YRÞ ¼ Y �ð0�; YL; YRÞ þ
sZf t

R
L

~uu2 � ~cc2

~cc2 � ~uu2

g~cc
�g~uu

0@ 1A:

The relation between a state Y and a state Ya through the u� c wave may be written:

Y ¼ Ya þ
�g

2ð~uu� ~ccÞ sZf t
R
L

 
þ sctRL �

sutRL
2

!
0

1

�1

0@ 1A;

and the relation to connect a state Y to a state Yb through the uþ c wave is:

Y ¼ Yb þ
g

2ð~uuþ ~ccÞ sZf t
R
L

 
þ sctRL þ

sutRL
2

!
0

1

1

0@ 1A:

One may easily note that the discharge Q computed by the VFRoe-ncv ðZf ; 2c; uÞ solver is dif-
ferent on both sides of the interface. Hence, the scheme (17) is not conservative according to
Eq. (3a). To avoid this problem, a new Finite Volume approximation of (3a) may be introduced:

hnþ1i ¼ hni �
Dt
2Dxi

ðQ�
iþ1=2

�
þ Qþ

iþ1=2Þ � ðQ�
i�1=2 þ Qþ

i�1=2Þ

; ð21Þ

where Q�
iþ1=2 and Qþ

iþi=2 refer, respectively, to values at the left and the right side of the interface
xiþ1=2. The scheme obtained from this approximate Riemann solver is able to deal with vacuum in
the flat bottom case, according to tests provided in [4]. Moreover, some numerical results are
provided in the last section with occurrence of dry area on a non-trivial topography.

3.5. The VFRoe-ncv (Zf ;Q;w) scheme

This approximate Riemann solver follows the same formalism as above. We consider herein the
variable Y ðW Þ ¼ tðZf ;Q;wÞ (with Q ¼ hu and w ¼ u2=2þ gðhþ Zf Þ). However, we may remark
that this change of variable is not inversible, which may cause some problems to define the nu-
merical flux. The choice of Y is related to the form of the Riemann invariants associated with the
null velocity wave (13a) and (13b).
The system (3a) and (3b) written related to Y is

Zf ;t ¼ 0;
Q;t þ uQ;x þ hw;x ¼ 0;
w;t þ gQ;x þ uw;x ¼ 0:

As a result, the convection matrix BðY Þ is

BðY Þ ¼
0 0 0

0 u h
0 g u

0@ 1A:
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As above, eigenvalues of matrix BðY Þ are
k1 ¼ 0; k2 ¼ u� c; k3 ¼ uþ c:

If X is the matrix of right eigenvectors, we may write

X ¼
1 0 0

0 �c c
0 g g

0@ 1A:

The approximate Riemann problem to solve is the same as (18), whose solution Y �ðx=t; YL; YRÞ is
defined in (19). We have the following relation through the stationary wave:

Y �ð0þ; YL; YRÞ ¼ Y �ð0�; YL; YRÞ þ
sZF t

R
L

0

0

0@ 1A:

Thus, the solution computed by this Riemann solver is in agreement with the Riemann invariants
(13a) and (13b). Hence, this approximate Riemann solver associated with the scheme (17) is able
to maintain a large class of steady states, i.e. those based on the Riemann invariants (13a) and
(13b) (see Remark 5). A state Y may be connected to a state Ya through the u� c wave by

Y ¼ Ya þ
�1
2~cc

sQtRL

�
þ ~ccswtRL

� 0

�~cc
g

0@ 1A;

and a state Y is connected to a state Yb through the uþ c wave by

Y ¼ Yb þ
1

2~cc
sQtRL

�
þ ~ccswtRL

� 0
~cc
g

0@ 1A:

Remark 3. The convection matrix BðY Þ may be written in a symmetrical form, as follows:

BðY Þ ¼
0 0 0

0 u h
0 g u

0@ 1A ¼
1 0 0

0 1 0

0 0 h=g

0@ 1A�1
0 0 0

0 u h
0 h hu=g

0@ 1A
Remark 4. Note that the system (10a)–(10c) provides a pseudo-conservative form for smooth
solutions. Thus, one could use this form to define a Finite Volume scheme from it (with the
VFRoe-ncv ðZf ;Q;wÞ solver for instance). However, one can easily verify that, even in the flat
bottom case, the Rankine Hugoniot relations are not equivalent. Indeed, noting v ¼ u� r (r the
shock speed) and r the arithmetic average, the jump relations provided by the (real) system in the
flat bottom case (5) are:

shvt ¼ 0; ð22Þ

hvsvtþ g�hhsht ¼ 0; ð23Þ
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whereas the jump relations provided by the pseudo-conservative system (10a)–(10c) in the flat
bottom case write

shvt ¼ 0; ð24Þ

�vvsvtþ gsht ¼ 0; ð25Þ
which are not equivalent to the previous relations.

Remark 5. According to Remark 1 and relations (13a) and (13b) (assuming that the Riemann
invariants and the Rankine Hugoniot relations identify through the LD field), one can define the
following discrete steady states:

sQtiþ1i ¼ 0; ð26aÞ

swtiþ1i ¼ 0: ð26bÞ
Moreover, these states strictly include steady states with u � 0

ui ¼ 0; ð27aÞ

shþ Zf t
iþ1
i ¼ 0: ð27bÞ

Remark 6. Steady states (26a) and (26b) are exactly preserved by the VFRoe-ncv ðZf ;Q;wÞ.
Moreover, all VFRoe-ncv schemes presented here preserve exactly steady states (27a) and (27b).

Remark 7. All VFRoe-ncv schemes presented above are conservative schemes when the bottom is
flat, except when dealing with a stationary shock wave superposed with an interface of the mesh.
To avoid this loss of conservativity, the numerical flux in xiþ1=2 becomes F ððWiþ1=2ð0�Þ þ
Wiþ1=2ð0þÞÞ=2Þ to compute W nþ1

i and W nþ1
iþ1 . Hence, this correction provides a conservative scheme

which guarantees the correct shock speeds for all shock waves.

We turn now to the second class of methods based on the splitting method.

4. Fractional step method

We present now a new scheme, based on a fractional step method (see [22,27,29]). The system
(3a) and (3b) is split into two parts. The first one is the conservative and homogeneous system of
P.D.E.:

h;t þ ðhuÞ;x ¼ 0; ð28aÞ

ðhuÞ;t þ hu2
�

þ g
h2

2

�
;x

¼ 0: ð28bÞ

The second one is the system of O.D.E.:

h;t ¼ 0; ð29aÞ
ðhuÞ;t ¼ �ghZ 0

f ðxÞ: ð29bÞ
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The effects of the source term are decoupled from the conservative system. So, a robust method
may be applied to compute the system (28a) and (28b) (ensuring positivity of h), and a classical
method is used to solve the O.D.E. (29a) and (29b).

4.1. The VFRoe-ncv (2c; u) scheme

To compute the (strictly) hyperbolic, conservative and homogeneous system (28a) and (28b),
we propose the VFRoe-ncv ð2c; uÞ scheme (see [4,11]). This system may be written in terms of non-
conservative variable Y ðW Þ ¼ tð2c; uÞ. Hence comes:

oY
ot

þ BðY Þ oY
ox

¼ 0

with

BðY Þ ¼ u c
c u

� �
:

Matrix BðY Þ is symmetric. The intermediate state is given by (we set here bYY ¼ Y ):

us ¼ u� sctRL ; ð30aÞ

cs ¼ c� sutRL
4

; ð30bÞ

where satRL represents aR � aL, for each interface Riemann problem. Note that the linearisation
has been made around the state ð2c; uÞ.
Vacuum arises in the intermediate state of linearised Godunov solver if and only if initial data

makes vacuum occur in the exact solution of the Riemann problem associated with the non-linear
set of equations (see condition (8)). Actually, when focusing on the solution of the Riemann
problem, vacuum may only occur when initial data are such that two rarefaction waves develop.
Riemann invariants are preserved in that case, hence uþ 2c (respectively, u� 2c) is constant in the
1-rarefaction wave (respectively, the 2-rarefaction wave). Due to the specific form of the linearised
system written in terms of non-conservative variable Y, one gets from a discrete point of view:

uR � 2cR ¼ us � 2cs; ð31aÞ
uL þ 2cL ¼ us þ 2cs: ð31bÞ

Thus, the linearised solver is well suited to handle double rarefaction waves in the solution of the
exact Riemann problem. Hence, the discrete condition to ensure the positivity of cs is

uR � uL < 2ð
ffiffiffiffiffiffiffi
ghR

p
þ

ffiffiffiffiffiffiffi
ghL

p
Þ;

which exactly identifies with the continuous condition (8).

4.2. The fractional step method

The Finite Volume scheme which computes the homogeneous system (28a) and (28b) may be
written as follows:
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W nþ1=2
i ¼ W n

i � Dt
Dxi

F ðW �
iþ1=2ð0;Wi ;Wiþ1ÞÞ

�
� F ðW �

i�1=2ð0;Wi�1;WiÞÞ

; ð32Þ

where W �
iþ1=2ðx=t;Wi ;Wiþ1Þ is the solution of the Riemann problem at the interface xiþ1=2, ap-

proximated by the VFRoe-ncv ð2c; uÞ solver.
The system of O.D.E. (29a) and (29b) is approximated by an explicit Euler method for the time

part, and by a centered discretisation for the space part:

hnþ1i ¼ hnþ1=2i ;

Qnþ1
i ¼ Qnþ1=2

i � Dt
Dxi

ghnþ1=2i
Zf iþ1 � Zf i�1

2

� �
:

ð33Þ

Note that the property of the VFRoe-ncv ð2c; uÞ scheme concerning the occurrence of vacuum is
not modified by step (33). Some numerical results with dry area provided in the following confirm
the good behaviour of the fractional step method over vacuum.
Note that neither steady states (26a) and (26b) nor steady states (27a) and (27b) are maintained

by the whole algorithm. This phenomenon is well known and will be discussed in the following,
based on some numerical experiments, to emphasize that the algorithm is able to converge
towards steady states.

Remark 8. In the flat bottom case, the fractional step method (32) and (33) and the VFRoe-ncv
ðZf ; 2c; uÞ scheme presented before provide the same algorithm.

Remark 9. The two steps may be recast in one single step form, as follows:

hnþ1i ¼ hni �
Dt
Dxi

Q�
iþ1=2

�
� Q�

i�1=2


;

Qnþ1
i ¼ Qn

i �
Dt
Dxi

hu2
��

� gh2=2
��
iþ1=2 � hu2

�
� gh2=2

��
i�1=2


� Dt

Dxi
ghnþ1i

Zf iþ1 � Zf i�1

2

� �
;

where ð Þ�iþ1=2 denotes the variable computed by the VFRoe-ncv ð2c; uÞ scheme at the interface
xiþ1=2.

5. A higher-order extension

All schemes previously presented are derived from ‘‘first-order’’ methods. We introduce in this
section an extension to obtain more accurate results and to increase rate of convergence (related
to the mesh size). This method is based on a linear reconstruction on each cell by the method
introduced by Van Leer [28], namely MUSCL (monotonic upwind schemes for conservation
laws). This formalism is usually applied in a conservative and homogeneous framework (see [10]
for numerical measures with some VFRoe-ncv schemes on Euler system, with non-smooth so-
lutions). However, the source term of topography deeply modifies the structure of the solutions.
When applied to the shallow-water equations on a flat bottom, the MUSCL method would

limit the slope of variables h and u for instance. However, the source term of topography must be
taken into account. Indeed, refering to a steady state such that hþ Zf � Cste and u � 0, a classical
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MUSCL reconstruction breaks the balance of the state. Since a general class of steady states are
defined by Q and w constant (see Remark 5), one may require that the reconstruction does not
modify these states. Moreover, the method must be able to deal with vacuum. We present here a
slope limiter which verifies these requirements.
For sake of simplicity, all variables used in this section are supposed to be time-independent.

Indeed, the MUSCL method is applied at each time-step, i.e. t is locally fixed to tn at the nth time-
step. Moreover, though this MUSCL method may be computed on irregular meshes, we restrict
this presentation to constant space step Dx.
Some notations are first introduced. Let faigi2Z a variable, constant on each cell, where a cell is

Ii ¼ ½xi�1=2; xiþ1=2�. Let xi ¼ ðxiþ1=2 þ xi�1=2Þ=2 and diðaÞ the (constant) slope associated to ai, on the
cell Ii. Let alini ðxÞ; x 2 Ii, the function defined on Ii by

alini ðxÞ ¼ ai � diðx� xiÞ; x 2 Ii:

Thus, to compute numerical flux at an interface xiþ1=2, the initial data become alini ðxiþ1=2Þ and
aliniþ1ðxiþ1=2Þ of the local Riemann problem instead of ai and aiþ1. This step is the same as in the
classical framework.
The modification of the algorithm to take into account the topography is thus restricted to the

choice of variables for which the MUSCL reconstruction is applied to and to the computation of
the slope di. The first variable is the momentum Q. A classical minmod slope limiter is used (see
for instance [20]):

diðQÞ ¼
siþ1=2ðQÞmin Qiþ1 � Qij j; Qi � Qi�1j jð Þ=Dx if si�1=2ðQÞ ¼ siþ1=2ðQÞ;
0 else;

�
ð34Þ

where

siþ1=2ðaÞ ¼ signðaiþ1 � aiÞ:
Such a slope limiter is TVD (total variation diminishing) in the following sense:

Property 1. Let X an open subset R (here X ¼ R). Let us define the total variation of a function
v 2 L1locðXÞ:

kvk ¼ sup
Z

X
vdiv/dx; / 2 C10ðXÞ; k/kL1ðXÞ

�
6 1

�
:

If vcst and vlin are the functions which, respectively, represent the constant and linear piecewise ap-
proximations of v:

vcstðxÞ ¼ vi i 2 Z such that x 2 Ii;
vlinðxÞ ¼ vlini i 2 Z such that x 2 Ii;

then vlin defined by the minmod slope limiter verifies:

kvlink6 kvcstk: ð35Þ

The linear reconstruction on Q based on (34) verifies Property 1.
As mentioned above, stationary states must be preserved by the method, in order to permit

convergence in time to steady states. To satisfy this requirement, one may choose to apply the
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reconstruction on w and to verify the Property 1 for w. However, the change of variable from
ðh;QÞ to ðQ;wÞ is not inversible. Thus, the slope limitation is made on the water height, but the
computation of the slope diðhÞ is modified to take into account w. Let us first define:

diðhÞ ¼
siþ1=2ðhþ Zf Þminðhi; jðhþ Zf Þiþ1 � ðhþ Zf Þij; jðhþ Zf Þi � ðhþ Zf Þi�1jÞ=Dx
if si�1=2ðhþ Zf Þ ¼ siþ1=2ðhþ Zf Þ;

0 else:

8><>: ð36Þ

The term hi in the minimum enables the method to deal with vacuum. The profile of w does not
appear in the computation of diðhÞ (though w and gðhþ Zf Þ identify when u � 0). Hence, when
the source term is locally non-null (i.e. Zfi�1 6¼ Zfi or Zfi 6¼ Zfiþ1), diðhÞmust be modified, according
to values of wi�1, wi and wiþ1. Since the slope limiters are based on a TVD requirement for the
linear reconstruction, we impose a TVD-like condition on w, for the computation of diðhÞ. Let W
be the function

WðZf ; h;QÞ ¼
Q2

2h2
þ gðhþ Zf Þ:

All methods presented in this paper use the following values, 8i 2 Z:

W�
i ¼ W Zf i; hi � diðhÞ

Dx
2
;Qi � diðQÞ

Dx
2

� �
;

Wi ¼ W Zf i; hi;Qi

� �
ð¼ wiÞ;

Wþ
i ¼ W Zf i; hi þ diðhÞ

Dx
2
;Qi þ diðQÞ

Dx
2

� �
:

Following these notations, Wi is the value of W at the center of each cell Ii, W
�
i is the value of W at

the right of each interface xi�1=2 and Wþ
i is the value of W at the left of each interface xiþ1=2, i 2 Z.

The computation of numerical flux at an interface xiþ1=2 needs Wþ
i and W�

iþ1. Following notations
previously introduced, let Zcstf , h

cst and Qcst be the piecewise constant approximations and let
Z linf , hlin and Qlin be the piecewise linear approximations. Thus, one can easily verify that
kWðZ linf ; hlin;QlinÞk is less than or equal to kWðZcstf ; hcst;QcstÞk. Hence, the reconstructions (34) and
(36) do not imply thatW Property 1. An idea to solve this problem should be limiting ‘‘strongly’’ h
(i.e. computing diðhÞ ¼ 0) if WðZ linf ; hlin;QlinÞ does not verify the TVD requirement. However, this
condition may be considered too restrictive. Thus, we introduce the following condition:

06 Wi

�� � W�
i

��6 Wi

�� � W�
i�1
��=2;

06 Wþ
i

�� � Wi

��6 Wiþ1j � Wij=2;
ð37Þ

illustrated by Fig. 2.
Condition (37) imposes a TVD-like condition onW. Indeed, assuming thatW�

i ,Wi andWþ
i fulfil

conditions (37) 8i 2 Z, if U denotes the linear interpolation computed fromW�
i ,Wi andWþ

i 8i 2 Z,
then U verifies the following TVD property:

kUk6 kW Zcstf ; hcst;Qcst
� 

k;

which may be seen as the counterpart of (35).
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We recall now all the steps of the algorithm used to compute slopes diðhÞ and diðQÞ 8i 2 Z:

1. Computation of diðQÞ:

diðQÞ ¼
siþ1=2ðQÞmin Qiþ1 � Qij j; Qi � Qi�1j jð Þ=Dx if si�1=2ðQÞ ¼ siþ1=2ðQÞ;
0 else:

�
2. Computation of diðhÞ:

• if Zf i�1 ¼ Zf i ¼ Zf iþ1, then the minmod slope limiter is applied to compute diðhÞ,

diðhÞ ¼
siþ1=2ðhÞmin hiþ1 � hij j; hi � hi�1j jð Þ=Dx if si�1=2ðhÞ ¼ siþ1=2ðhÞ;
0 else;

�
• else, diðhÞ is first computed by a classical minmod limiter on hþ Zf :

diðhÞ ¼
siþ1=2ðhþ Zf Þminðhi; jðhþ Zf Þiþ1 � ðhþ Zf Þij; jðhþ Zf Þi � ðhþ Zf Þi�1jÞ=Dx
if si�1=2ðhþ Zf Þ ¼ siþ1=2ðhþ Zf Þ

0 else;

8<:
• but if condition (37) is not fulfiled, then we reset diðhÞ to

diðhÞ ¼ 0:

Let us emphasize that, when diðhÞ is set to 0, conditions (37) may not be verified (because of the
limitation on Q).
This slope limiter is combined with a second-order Runge–Kutta integration w.r.t. time

(namely the Heun scheme). Some numerical results are described in the following and point out
the good behaviour of the slope limiter obtained. A comparison with a classical reconstruction is
presented in Section 6.3 (Fig. 13) which shows that the method may fail to converge towards a
steady state when t tends to þ1, if the modification described above is not computed.

Fig. 2. A TVD-like reconstruction for W.
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6. Numerical results

Though several VFRoe-ncv schemes have been previously discussed, only numerical results
performed by the VFRoe-ncv ðZf ; 2c; uÞ scheme with the higher-order extension and by the
fractional step method are presented here (some complementary tests are provided in Appendix
A). Some experiments tested herein come from a workshop on dam-break wave simulation [16].
Most of them deal with steady states on non-trivial bottom. The ability of the methods to
compute dry area is tested too. Let us emphasize that all the numerical results have been obtained
without any ‘‘clipping’’ treatment (i.e. non-physical values such as negative cell water height are
not artificially set to 0).
The first four tests are performed with the same topography. The channel length is l ¼ 25 m.

The bottom Zf is defined as follows:

Zf ðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 m < x < 12 m;
0 else:

�
Only initial and boundary conditions are modified.
All tests cases are computed with a CFL number set to 0, 4. Results of the flow at rest, the

subcritical flow over a bump and the transcritical flow over a bump are plotted at TMAX ¼ 200 s.

6.1. Flow at rest

The initial condition of this test case is a flow at rest. Thus, numerically, it fulfils conditions
(27a) and (27b), where h > 0. Since we compute a flow at rest, we impose hþ Zf ¼ maxðZf ; 0:15Þ
m and Q ¼ 0 m2=s all along the mesh, which contains 300 nodes. As expected, the VFRoe-ncv
scheme exactly preserves the steady state (Figs. 3 and 4). Moreover, though it is not plotted here,
we may emphasize that the behaviour of this scheme remains good in this case when the initial
conditions are hþ Zf ¼ 0:5 m (no dry cells) or h ¼ 0 m (no water). The fractional step method
does not maintain hþ Zf and Q constant on the wet cells. The slope of topography introduces a

Fig. 3. Flow at rest: water height.
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convection of water. The fractional step method nonetheless converges towards the right solution
when the mesh is refined.
The interest of the next three tests (extracted from [16]) is to study the convergence of this

scheme towards a steady state. All these tests are performed on 300 cells. The boundary condi-
tions are a positive imposed discharge Qin on the left boundary, and a imposed height hout on the
right boundary (except in the case of a supercritical flow). The initial condition is set to h ¼ hout
and Q ¼ 0. To discuss results, several profiles are plotted, namely h, Q and w vs space (in meters).
Moreover, to illustrate the quantitative convergence of the methods, the normalised time varia-
tion in L2-norm is plotted too (see Fig. 6 for instance): time t in seconds for x-axis and

ln
khnþ1 � hnkL2
kh3 � h2kL2

for y-axis.

6.2. Subcritical flow over a bump

Here, the boundary conditions are hout ¼ 2 m and Qin ¼ 4:42 m2/s. The two solutions provided
by the VFRoe-ncv scheme and the fractional step method seem very close to each other, according
to Fig. 5 (they are in agreement with the analytic solution). However, Figs. 7 and 8 focus on some
differences between the two methods: whereas Q and w seem to be constant in the case of the
VFRoe-ncv scheme, the fractional step method makes occur oscillations near variations of to-
pography. The two profiles in Fig. 6 are superposed, and show that the two methods converge to
steady state.

6.3. Transcritical flow over a bump

The boundary conditions are Qin ¼ 1:53 m2/s and hout ¼ 0:66 m. The analytic solution of this
test is smooth, with a decreasing part, beginning at the top of the bump and a critical (sonic) point

Fig. 4. Flow at rest: discharge.
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Fig. 7. Subcritical flow: discharge.

Fig. 6. Subcritical flow: normalised time variation in L2-norm.

Fig. 5. Subcritical flow: water height.
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on the decreasing part of h. The solution at the right of the decreasing part is supercritical (the
boundary condition hout is only used when the flow is subcritical, during the transient part of the
simulation). Fig. 9 shows that results provided by the VFRoe-ncv scheme and the fractional step
method are similar and the critical point induces no problem (though methods are based on
approximate Godunov schemes). According to Fig. 10, the time variation of the VFRoe-ncv
scheme decreases slowler than the one of the FSM. In Figs. 11 and 12, one may notice that results
performed by the VFRoe-ncv scheme are more accurate, since Q and w seem almost constant.
We present now the counterpart of Fig. 10, using the VFRoe-ncv scheme (with the non-con-

servative variable ðZf ; 2c; uÞ) associated to several reconstructions: the original three-points
scheme without any reconstruction, the second-order scheme presented in Section 5 and the
classical second-order scheme (i.e. the minmod limiter without modification). Results are plotted
in Fig. 13. Whereas the first two schemes provide a similar profile, the second-order scheme with
no modification does not converge very well on the coarse mesh. Nonetheless, oscillations remain
bounded.

Fig. 8. Subcritical flow: w.

Fig. 9. Transcritical flow: water height.
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Fig. 10. Transcritical flow: normalised time variation in L2-norm.

Fig. 11. Transcritical flow: discharge.

Fig. 12. Transcritical flow: w.
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Note that this surprising behaviour can appear since the problem is not in conservative form. In
a conservative framework, the second-order scheme with the classical reconstruction converges
but the speed of convergence slows down compared with both other schemes (see [26]).

6.4. Drain on a non-flat bottom

The topography of this test case is the same as all cases previously presented. The left boundary
condition is a ‘‘mirror state’’-type condition, and the right boundary condition is an outlet
condition on a dry bed [5]. The initial condition is set to hþ Zf ¼ 0:5 m and Q ¼ 0 m2/s. The
solution of this test case at t ¼ þ1 is a state at rest on the left part of top of the bump with
hþ Zf ¼ 0:2 m and Q ¼ 0 m2/s and a dry state (i.e. h ¼ 0 m and Q ¼ 0 m2/s) on the right side of
the bump. Results are presented at several times: t ¼ 0, 10, 20, 100 and 1000 s in Figs. 14–17. Note
that, since a dry zone is expected at the downstream side of the bump, variable w is not defined in

Fig. 13. Transcritical flow: normalised time variation in L2-norm.

Fig. 14. Drain on a non-flat bottom: water height.
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Fig. 15. Drain on a non-flat bottom: normalised time variation in L2-norm.

Fig. 16. Drain on a non-flat bottom: discharge.

Fig. 17. Drain on a non-flat bottom: w.
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this zone (thus, results plotted in Fig. 17 in this zone must not be taken into account). Fig. 14
represents the water height computed by the VFRoe-ncv scheme (‘‘plus’’ symbols) and the
fractional step method (‘‘circle’’ symbols). Results at intermediate times are slightly different, but
denote the same behaviour. However, if the final time TMAX is increased, the fractional step
method computes a level of water slightly lower than the level expected at the left of the bump,
namely hþ Zf ¼ 0:2 m. This numerical phenomenon has already been pointed out by Le Roux
[19]. It is due to the non-preservation of discrete steady states (27a) and (27b) by the fractional
step method. Note however that, when the mesh is refined, the level computed tends to
hþ Zf ¼ 0:2 m. Results performed by the VFRoe-ncv scheme are rather good, the expected
steady state is well approximated, as shown in Figs. 14, 16 and 17. Furthermore, the time vari-
ation is decreasing for both methods.

6.5. Vacuum occurrence by a double rarefaction wave over a step

This numerical test is different from previous tests. Indeed, we do not study here the conver-
gence towards a steady state but the ability of the numerical scheme to compute vacuum (i.e. dry
bed). Moreover, the topography is not smooth (which indeed is not in agreement with initial
assumptions). This test is based on a test proposed by Toro [16], but we introduce here a non-
trivial topography: Zf ¼ 1 m if 25=3 m < x < 12:5 m, and Zf ¼ 0 m otherwise (the total length is
still 25 m). The initial water height is initialised to 10 m and the initial discharge is set to �350 m2/
s if x < 50=3 m and to 350 m2/s otherwise. Results at several times are presented: 0, 0.05, 0.25,
0.45 and 0.65 s. In the case of a flat bottom, the solution would be composed of two rarefaction
waves, with a dry zone occuring between the two waves. Here, since the topography is not flat, the
two algorithms introduce waves, located on the jumps of topography (see Figs. 18 and 19, where
sign ‘‘plus’’ represents the VFRoe-ncv scheme and the sign ‘‘circle’’ represents the fractional step
method). Moreover, one may note that results computed by the two methods are close to each
other, but more diffusive for the FSM method (since no MUSCL reconstruction has been per-
formed for this algorithm).

Fig. 18. Vacuum occurrence over a step: water height.
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7. Conclusion

Some Finite Volume schemes have been studied in this paper to compute shallow-water
equations with topography. Some relations of the system have been recalled, in the case of a
piecewise constant function to approximate the topography. So, according to this approximation,
several Finite Volume schemes have been introduced, based on the VFRoe-ncv formalism [5,10],
namely the VFRoe-ncv schemes, in variable ðZf ; h;QÞ, ðZf ; 2c; uÞ and ðZf ;Q;wÞ. All the previous
schemes are able to maintain steady states with u � 0 and the latter can preserve a larger class of
steady states. Moreover, a fractional step method based on the VFRoe-ncv ð2c; uÞ scheme (ini-
tially proposed in [4]) is presented. A higher-order extension is also presented, based on the
minmod slope limiter, which takes into account steady states.
Refering to numerical results included in [16], one may conclude that the VFRoe-ncv ðZf ; 2c; uÞ

scheme (with the higher-order extension in space and a second-order Runge–Kutta time inte-
gration) provides accurate and convergent results. Moreover, the robustness of the method has
been emphasised too, dealing with two tests with occurrence of dry area on non-trivial topo-
graphy, though no clipping treatment has been introduced (i.e. no non-conservative treatment of
negative water heights has been computed). The ‘‘first-order’’ fractional step method behaves well
(in particular over vacuum), but does not approximate steady states as accurately as the VFRoe-
ncv scheme.
Considering results performed by the Well-Balanced scheme, the expected accuracy is shown on

some tests. This scheme has been compared with the VFRoe-ncv ðZf ; 2c; uÞ scheme and numerical
results confirm the good behaviour of the latter scheme. However, the Well-Balanced scheme is
(several times) more expensive than a usual Godunov method, since the resolution of the Riemann
problem is not obvious and many configurations must be considered (this essential difficulty is due
to the stationary wave). Indeed, the CPU time required by the ‘‘higher’’-order VFRoe-ncv
ðZf ; 2c; uÞ scheme is between 10 and 100 times lower than the CPU time required by the ‘‘first’’-
order Well-Balanced scheme.

Fig. 19. Vacuum occurrence over a step: discharge.
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We have also presented the basic VFRoe scheme (in variable ðZf ; h;QÞ), with some results
provided in Appendix A. The behaviour of this scheme is as good as the VFRoe-ncv ðZf ; 2c; uÞ
scheme. However, unlike the VFRoe-ncv ðZf ; 2c; uÞ scheme, this method fails to deal with oc-
currence of a critical point, provided by an upstream boundary condition. Such a drawback has
been emphasised too with the LeVeque scheme [21].
An interesting potential extension of the method presented here is to take into account a

variable section Sðx; hÞ in the one-dimensional framework. In this case, the same technique may be
used to approximate the corresponding source term.
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Appendix A. Comparison with the Well-Balanced scheme

This section is devoted to the numerical comparison of the VFRoe-ncv scheme ðZf ; 2c; u) with
the Well-Balanced scheme presented in [19]. Note that the VFRoe-ncv scheme is computed with
the higher-order extension and a second-order Runge–Kutta method whereas the Well-Balanced
scheme tested is the original ‘‘first’’-order scheme. Two tests are presented: a subcritical flow over
a bump and a transcritical flow over a bump. The same topography is used for both tests:

Zf ðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 m < x < 12 m;
0 else:

�
Moreover, all results are plotted at TMAX ¼ 200 s. The CFL number is set to 0.4. Computations
are performed on a mesh with 300 nodes. Only initial and boundary conditions differ between the
two following tests.

A.1. Subcritical flow over a bump

This test computes a transient flow, which tends to become a steady subcritical flow (see test
6.2). The imposed boundary conditions are Qin ¼ 4:42 m2/s and hout ¼ 2 m. The initial conditions
are Qðt ¼ 0; xÞ ¼ 0 m2/s and hðt ¼ 0; xÞ ¼ hout m. Fig. 20 represents the water height. Results
performed by the two schemes are very close to each other. The normalised variation is plotted in
Fig. 21. The x-axis is the time and the y-axis is

ln
khnþ1 � hnkL2
kh3 � h2kL2

:

One may remark that the two profiles are similar and both methods provide a stationary result.
This confirms the good behaviour of the VFRoe-ncv scheme. Figs. 22 and 23 present Q and w.
Whereas Fig. 22 shows that the two methods provide almost the same results, one can note
that the two profiles are slightly different. The analytic solution is w ¼ 22:04205. The slightly
different values provided by the Well-Balanced scheme is due to iterative methods (Newton,
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Fig. 21. Subcritical flow: normalised time variation in L2-norm.

Fig. 22. Subcritical flow: discharge.

Fig. 20. Subcritical flow: water height.
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dichotomy, etc.) used to compute the exact solution of each interface Riemann problem. Indeed,
these methods stop when the relative error is 10�5 or when the number of iterations is larger than
500.

A.2. Transcritical flow over a bump

The solution of this test case is a regular profile for the water height, with a subcritical flow
upstream of the bump and a supercritical flow downstream of the bump (see test 6.3). The
boundary conditions are Qin ¼ 1:53 m2/s and hout ¼ 0:66 m. The initial conditions are Qðt ¼ 0;
xÞ ¼ 0 m2/s and hðt ¼ 0; xÞ ¼ hout m. Both profiles plotted in Fig. 24 provide a good approxi-
mation of the expected steady solution. Moreover, Fig. 25 shows that the two schemes compute
almost stationary solutions at t ¼ TMAX. Fig. 26 shows that variable Q is accurately computed by
both methods. Moreover, Fig. 27, which represents variable w, denotes a slight difference between
the two methods, as it has already been noticed in the previous test case.

Fig. 24. Transcritical flow: water height.

Fig. 23. Subcritical flow: w.
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Fig. 26. Transcritical flow: discharge.

Fig. 25. Transcritical flow: normalised time variation in L2-norm.

Fig. 27. Transcritical flow: w.
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This section confirms the good behaviour of the VFRoe-ncv ðZf ; 2c; uÞ scheme. Indeed, results
provided by this method with the higher-order extension are very close to those provided by the
Well-Balanced scheme for the two presented test cases. Moreover, the CPU time required by the
VFRoe-ncv scheme (with a second-order Runge–Kutta time integration and the higher-order
extension) is between 10 and 100 times lower than the CPU time required by the ‘‘first’’-order
Well-Balanced scheme (no accurate CPU measurement might be done, because different com-
puters and different languages have been used to program the methods; no optimisation has been
searched for the Well-Balanced scheme; the accuracy and the CPU time of the Well-Balanced
scheme deeply depend on the convergence of iterative methods in the exact interface Riemann
solver).

Appendix B. Comparison with the VFRoe ðZf ; h;QÞ scheme

We present here a numerical test performed with the VFRoe ðZf ; h;QÞ scheme, with the higher-
order extension previously presented and a second-order Runge–Kutta time approximation. The
test case performed is the subcritical flow over a bump (see test 6.2). Let us recall the configuration
of this test. The topography is

Zf ðxÞ ¼ 0:2� 0:05ðx� 10Þ2 if 8 m < x < 12 m;
0 else:

�
The boundary conditions are Qin ¼ 4:42 m2/s and hout ¼ 2 m. The initial conditions are
Qðt ¼ 0; xÞ ¼ 0 m2/s and hðt ¼ 0; xÞ ¼ 2 m. The mesh contains 300 cells and the CFL number is
0.4. Both methods provide profiles of water height which are very close to each other in Fig. 28.
Moreover, the time variation decreases with the same slope in Fig. 29. Figs. 30 and 31 show that
the VFRoe scheme and the VFRoe-ncv scheme both compute almost constant values of Q and w,
in agreement with the analytic solution (the relative error in L1-norm is around 10�5). Thus, the
VFRoe scheme also provides accurate results on this test case. As the high-resolution Godunov

Fig. 28. Subcritical flow: water height.
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Fig. 29. Subcritical flow: normalised time variation in L2-norm.

Fig. 30. Subcritical flow: discharge.

Fig. 31. Subcritical flow: w.
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method proposed by LeVeque [21], the VFRoe scheme (but not the VFRoe-ncv scheme) fails to
deal with occurrence of transcritical flow by an inlet condition (see test 6.3), even with the higher-
order extension.
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