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Abstract

This paper deals with the resolution by Finite Volume methods of Eu-
ler equations in one space dimension, with real gas state laws (namely
perfect gas EOS, Tammann EOS and Van Der Waals EOS). All tests are
of shock tube type, in order to examine a wide class of solutions, involv-
ing Sod shock tube, stationary shock wave, unsteady contact discontinu-
ity, occurence of vacuum by double rarefaction wave, propagation of a
1-rarefaction wave over “vacuum”, ... Most of methods computed herein
are approximate Godunov solvers : VFRoe, VFFC, VFRoe ncv (7, u, p)
and PVRS. The energy relaxation method with VFRoe ncv (7, u,p) and
Rusanov scheme have been investigated too. Qualitative results are pre-
sented or commented for all test cases and numerical rates of convergence
on some test cases have been measured for first and second order (Runge-
Kutta 2 with MUSCL reconstruction) approximations.



We discuss in this paper the suitability of some Finite Volume schemes to
compute Euler equations when dealing with real gas state laws, restricting to
the one dimensional framework. Some measured rates of convergence will be
presented when focusing on some Riemann problem test cases. This work is
based on [40].

Almost all schemes investigated here are approximate Riemann solvers (more
exactly approximate Godunov solvers). One may note that comparison with
some well known schemes like Godunov scheme or Roe scheme are not pro-
vided in this paper ; however, one may refer to [7], [25], [31], [32], [45] for that
purpose. Approximate Riemann solvers presented herein may be derived using
the general formalism of VFRoe ncv scheme. This only requires defining some
suitable variable which is not necessarily the conservative variable, but may be
defined on the basis of the solution of the Riemann problem for instance. The
first one is obviously VFRoe scheme introduced in [17],[31] and [32], where the
candidate is the conservative variable. In the second one, which is known as
VFFC scheme, and was introduced in [19], [2] and [29], the privileged variable
is the flux variable. The third one, which was introduced some years ago in [6]
and with more details in [9], suggests to consider the (7, u,p) variable in the
Euler framework. Extensions of the latter scheme to the frame of shallow water
equations, or to some non conservative hyperbolic systems arising in the ”tur-
bulent” literature are described in [5], [7] and [8]. The fourth one, which applies
for the (p, u,p) variable when computing the Euler equations , was introduced
by E. F. Toro in [41], [42] and [27], and is known as PVRS (Primitive Variable
Riemann Solver). Note that the latter two rely on (u,p) components, which
completely determine the solution of the associated Riemann problem, in the
sense that assuming no jump on these in the initial conditions results in ” ghost”
1-wave and 3-wave. Thus the latter two schemes, which are based on the use
of u and p variables, are indeed quite different from the other two, since the
former require no knowledge of the one dimensional Riemann problem solution.

Two slightly different schemes are also used for broader comparison. The
first one is the Rusanov scheme ([36]), which is known to be rather ”diffusive”
but anyway enjoys rather pleasant properties, especially when one aims at com-
puting multi dimensional flows on any kind of unstructured mesh. Recall that
for Euler type systems, this scheme ensures the positivity of mass and species,
provided that the ”cell” CFL number is smaller than 1 ([18]). Even more, it
requires no entropy correction at sonic points in rarefaction waves, when re-
stricting to ”first” order formulation. The last scheme examined is the energy
relaxation method proposed by F. Coquel and B. Perthame in [13] (see also [26]
and [25] for applications) applied to the frame of VFRoe scheme with (7, u, p)
variable. This one again seems appealing both for its simplicity and for its
ability to get rid of entropy correction at sonic points in regular fields.

Both ”first order” schemes and ”second order” schemes (using RK2 time
integration and MUSCL reconstruction with minmod limiter on primitive vari-
ables) are examined. This includes three distinct EOS, namely :

- perfect gas EOS
- Van der Waals EOS



- Tammann EOS
Though complex tabulated EOS are not discussed herein, all above mentionned
schemes enable computation of EOS such as those detailed in [34] or [28]. Nu-
merical experiments involve a wide variety of initial conditions, so that the
solution may be either a l-rarefaction wave with a 3- shock wave, a double
shock wave or a double rarefaction wave. We give emphasis on symetric double
rarefaction (or shock) waves, since these allow investigation of wall boundary
conditions when the standard mirror technique is applied for. The particu-
lar experiment of a single isolated contact discontinuity is also described, since
the behaviour highly depends on the nature of the state law (see also [39] on
that specific topic). Note also that for almost incompressible fluids, the eigen-
value associated with the LD field is such that the local CFL number varies as
M/(1+ M), where M stands for the local Mach number, as soon as the over-
all CFL number is set to 1. As a result, the accuracy of the prediction of the
contact discontinuity is rather poor, which is rather annoying since the vapour
quality only varies through this field. Eventually, we note that these test cases
include the occurence of vacuum, and the propagation of a shock wave over a
(almost) vacuum of gas. The standard stationnary shock is also reported. For
completness, we also refer to [30] where Godunov scheme [21] is used to compute
Van Der Waals EOS.

Qualitative behaviour of schemes is discussed, and L! error norm is plotted
in some cases to provide quantitative comparison.

1 Governing equations

1.1 Euler equations under conservative form

Governing Euler equations are written in terms of the mean density p, the mean
pressure P, the mean velocity u and the total energy FE as follows:

oW OF(W)

- =0 1
ot Oz (1)
setting :
p pu 1
W=1 pu , F(W)= pu?+p and F = p(;u2 +¢)
L u(E + p)

If ¢ denotes the internal energy, then some law is required to close the whole
system:

p=p(p,e) (2)
such that the Jacobian matrix may be diagonalized in R for W € Q, Q the set
of admissible states, so that J(p, p)p > 0, p > 0, where :

-1
. Oe p Oe
C2 y = s = JR— - g
pc’(p, p) = (p, p)p (3P|p) (p paplp)



Herein, ¢ stands for the speed of acoustic waves.

F
The Jacobian matrix A(W) = % may be written :
0 1 0
AW) = K—u? u2-k) k
(K —H)u H—ku?> u(l+k)
setting:
E
s
1 5]0
k= —=
pOep
K = Z+k(u?-H)

Eigenvalues of the Jacobian matrix A(W) read :
AM=u—c¢, dy=u, As=u+c

Associated right eigenvectors are :

1
r (W) = uic , (W) = v rs(W) = u—1|—c
H — uc H - % H + uc
Left eigenvectors of A(W) are :
1 K+ uc k H — u? 1 K —uc
L(W) = 207 —ku—c |, L(W)= = u , s(W) = 2 —ku+c

k k

Recall that the 1-wave and the 3-wave are Genuinely Non Linear fields and
that the 2-wave is Linearly Degenerated. In an alternative way, Euler equations
may be written in a non conservative form, when restricting to smooth solutions.

We only provide herein some useful computations of right and left eigenvec-
tors based on non conservative forms of Euler equations.

1.2 Non conservative form wrt (7, u,p)

Let us set 7 = 1/p. Thus, Euler equations may written in terms of (7, u, p) as :

Y, aY;

21y By )L =
ot +Bi(1) Oz 0
with
T u —17 0
Yi=1| u and Bi(Y1) = 0 u 7
P 0 9p wu

Obviously, eigenvalues of B (Y1) are still

AM=u—c, dy=u, Ag=u+c



Right eigenvectors of matrix By (Y1) are :

T 1 T
r(Y1) = ¢ ,ra(Y1) =1 0 |, (V1) = —c
—p 0 =P

Left eigenvectors of By (Y1) are :

0 1 0
[ﬂYﬁ:%( c ),12(Y1):Cl_2( 02),13(371):%(—0)

1.3 Non conservative form wrt (p, u,p)

In a similar way, we may rewrite Euler equations in terms of (p, u,p) :

Y-
92 By (va) 22 =
ot + Ba(¥2) Oz 0
with:
p u p 0
Yo=1| u et By(Yo)=| 0 w %
p 0 4 wu
Right eigenvectors of By (Y3) are now :
1 1 1
r(Yo)=1| —5 |, re(Ya)=| 0 |, ms(Y2)=| %
c? 0 c?
Meanwhile, left eigenvectors of matrix Ba(Y2) read :
1 0 1 1 0
L(Ys) = — — 15(Ys) = 0 5(Ys) = —
1(Y2) 902 1pc , 12(Y2) A 3(Y2) 502 plc

1.4 Non conservative form wrt F(W)

We may rewrite the above mentionned equations in terms of variable Y = F/(W).
We multiply on the left by A(W) system (1) :

ow arwy
A(W)W + A(W) = 0
Since A(W) is the Jacobian matrix of flux F/(WW), we get :
ow _ OF (W)
A5 =
Hence: OF (W) AR (W)
ot +AW) dr 0

The associated matrix still is A(W). Eigenstructure is detailed in 1.1. We now
describe the three equations of state used in our computations.



1.5 Considering various EOS
1.5.1 Perfect gas EOS

The closure law 1s :

with:

1.5.2 Tammann EOS

This law is sometimes used to describe the thermodynamics of the liquid phase
(see [41]). Tt may be simply written as :

P = (v — 1)pe — Yepe

where:
Ye=17,15 p.=3.108

Actually, using some suitable change of variables enables to retrieve Euler equa-
tions with perfect gas state law, assuming v = 7.. This is an interesting point,
since some schemes benefit from nice properties when restricting to perfect gas
EOS (see for instance VFRoe with non conservative variable).

1.5.3 Van Der Waals EOS
Van Der Waals EOS is recalled below: :

a
b+ 75)(r=b) = RT
€—egg =cCyd — —

¢ = =22 4 (pr? + a)(1+ Z)/(r — b)

where:
= 0,001692 R = 461,5
a = 1684,54 ¢, = 1401,88
o = 0

This identifies with perfect gas EOS while setting a = b = 0. This law enables
to exhibit some deficiencies of schemes around the contact discontinuity in some
cases. We refer to [30] which provides some approximation based on Godunov
scheme, when focusing on this particular EOS. Initial conditions in shock-tube
experiments are taken in this reference. Comparison with some other test cases

can be found in [18], [6] and [9].



2 Numerical schemes

2.1 Framework
2.1.1 Finite Volume schemes

We thus focus herein on some Finite Volume schemes (see for example [20] and
[15]). Regular meshes are considered, whose size Az is such that: Az = Tiyp1—

Ti_1, i € Z. Let us denote as usual At the time step, where At = t?+1 — 7,
n € N.
We denote W € R” the exact solution of the non degenerate hyperbolic system :
ow  OF (W)
{ o o =

with F'(W) in R"™.
1%

Let W be the approximate value of A_/ ’ W(x,t")de.
z J,

Integrating over [z;_1;@;,1] x [t"; t"*+1] provides:

n+l __ n
Wit = wp - =

ae (

ey =9

where ¢?+% is the numerical flux through the interface {; 1} x [t"; t"+1]. The
time step should comply with some CFL condition in order to guarantee non
interaction of numerical waves inside one particular cell, or some other stability
requirement. We restrict our presentation to the frame of three point schemes.
Thus ¢?+§ only depends on W/ et W/ |, namely ¢?+§ = oW, Wl ,). What-

ever the scheme is, the following consistancy relation should hold :
o(V,V) =F(V)

Hence, we present now approximate numerical fluxes ¢(Wr, Wg) associated
with the 1D Riemann problem :

ow  OF (W)
A -0
ot Oz ) (3)
W(z,0) = W ifz<0
VT We x>0

2.1.2 VFRoe schemes

These are approximate Godunov schemes where the approximate value at the
interface between two cells is computed as follows. Let us consider some change
of variable Y = Y (W) in such a way that Wy (Y) is inversible. The counterpart
of above system for regular solutions is :
Yy gy

+ _

B B(Y)% =0



where B(Y) = (Wy(Y))_lA(W(Y)) Wy (Y) (A(W) stands for the jacobian
matrix of flux F/(1W)).

Now, the numerical flux ¢(Wg, Wg) is obtained solving the linearized hyperbolic
system :

3_Y + B(f/)a_y -0
ot Oz (4)
Yo =Y(Wr) ife<0

(2,0 :{ Yr=Y(Wg) ifz>0

where Y agrees with condition: Y(YL, Yi) =Y.
Once the exact solution Y™*(¥;Yz, Yr) of this approximate problem is ob-
tained, the numerical flux is :

¢(Wr, Wr) = F(W(Y™(0;Yz, YRr)))

Notation In the following we note ~ variables which are computed on the basis
of Y (obviously, if o is one component of Y, the relation below holds: @ = @).

Let us set I, Ag and 7, k = 1,...,n, left eigenvectors and eigenvalues of

matrix B(Y') respectively. The solution Y*(%; Y%, Yr) of linear problem is :

x« (T, _ t7 ~
Y (?,YL,YR) = Y.+ z;(lk(YR—YL))T’k
<Ak
= Ya— Y (h.(Yr— Y1)
5 h

2.1.3 Entropy correction

When one numerical eigenvalue associated with the 1-wave or the 3-wave van-
ishes, an entropy correction is needed for above mentionned schemes, when re-
stricting to three point schemes (eg without any MUSCL type reconstruction).
If a l-rarefaction wave overlapping the interface is detected, the approximate
value at the interface is modified as:

Yo +1
2

Y*(0; Y, Yr) =
In a first approach ([6]), we may assume that overlapping occurs if :
Al(WL) <0
and if in addition :\T is close to 0.
An alternative way consists in the proposal of A. Harten and J.M. Hyman
n [22], thus checking whether :
Al(WL) <0< Al(WR)

This second approach has been applied herein.



2.2 Basic VFRoe scheme

This scheme was first proposed in [17], [31] and [32]. Tt is based on the following
choice Y (W) = W and thus B(Y) = A(W). Recall that A(W) is the Jacobian

matrix of F'(W) in the linearized Riemann problem.

2.3 VFRoe with non conservative variable (7, u,p)

We set now Y (W) = (7, u,p), where 7 = 1/p. This scheme was introduced in
[6] (see also [9] and [7], [18], [8] for various applications).

With help of left eigenvectors of B(Y') detailed in 1.2 , and defining &; and
a3 as :

¢Au+ TAp)

=gz

where A(.) = (\)r — (.)1, intermediate states Y7 and Y3 read :

7L+ 1T TR — Q3T
Yi= uy, + a1 and Y, = ug + asc
pL — @YD PR + Q3P

Now: _
Yo =Yy + (*.(Yr — Y1)

and last composants of 73 are null, hence u; = us and p; = ps. The approximate
solution is thus in agreement with the exact solution of the Riemann problem.
Even more, if we assume that initial conditions agree with Au = 0 and Ap = 0,
the following holds Y1 = Yz and Yy = Yg (see [9]). This results in the fact
that for some particular EOS such as perfect gas EOS and Tammann EOS; cell
averages of velocity and pressure are perfectly preserved through the 2-wave,
when focusing on single moving contact discontinuity and scheme VFRoe ncv
(7, u,p) (see [8] and appendix A for a general expression of the EOS).

Another property of this scheme is that single 1-shocks (respectively 3-
shocks) are preserved in the sense that exact jump conditions and approximate
jump conditions arising from linearised system are equivalent, when restricting
to perfect gas EOS. In other words, if we set ¢ the speed of the shock wave and
[@] the jump of a through this shock wave, then :

—o[W]+[F(W)] =0

and :
—o[Y]+ B(Y)[Y]=0
are the same (see [9] for more details). However, note that this scheme does not
fulfill the Roe condition (see [35]).
Eventually, we note that strictly speaking, the value 2; is completely deter-
mined for given choice of Y. Details concerning the discrete preservation of the
positivity of density and pressure intermediate states can be found in [9].



2.4 VFRoe with non conservative variable (p,u,p) -PVRS-

We now set Y(W) = (p,u,p). This scheme actually identifies with PVRS
(Primitive Variable Riemann Solver) scheme proposed by E.F. Toro, in [42] or
[27]. Coefficients @&; and &3 are now :

- .
a; = ﬁ(—pcAu + Ap)

- .
a3 = ﬁ(pcAu + Ap)

Hence :
pL+an PR — Q3
Y = Uy — Q= and Y, = uR — az=
pL +asc PR — Q3¢

o
o

oS
TS

Once again, we check that :
Yo =i+ (. (Yr — Y1)

so that approximate intermediate states mimic the behaviour of the exact Go-
dunov scheme. Moreover, for perfect gas EOS and Tamman EQOS, cell averages
of Riemann invariants of the 2-wave are perfectly preserved. Above mentionned
remark concerning jump conditions no longer holds, even when restricting to
perfect gas EOS.

If we turn now to intermediate states of pressure, we note that PVRS scheme
computes:
_impA

2¢

Thus the pressure intermediate states are strictly positive as soon as:

p1=p2 =p(1

Au 2

< =
¢ (D, p)

This should be compared with continuous condition for vacuum occurence :

Au< Xy + Xg (5)
where : ,
N [ ey,
0 P

where s; denotes the specific entropy. Thus if we restrict to some symetrical

double rarefaction wave with perfect gas EOS, we note that the upper bound of
% to avoid occurence of vacuum is il in the ”continuous case” and 2 in the

- ¥
”discrete case” for PVRS scheme. Using the standard value v = 1.4 provides
10 and % respectively.
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2.5 VFRoe scheme with flux variable -VFFC-

This corresponds to the choice : Y (W) = F(W). This scheme VFFC was first
introduced in [19] (see also [2] and [29] for further details). The associated 1D
Riemann problem is now :

OF (W)

OF (W) .

ot z
| [ Fo=FW.) ifz<0
F(W(2,0)) = { Fr=F(Wg) ifz>0

The interface numerical flux F'* is computed with help of eigenstructure of the

+ A(W)

Jacobian matrix A(W), as occurs when focusing on basic VFRoe scheme.

2.6 Rusanov scheme

Unlike schemes presented above, Rusanov scheme do not solve an approximate
Riemann problem at each interface (see [36]). Numerical flux of Rusanov scheme
is :

F(Wr) + F(W, 1
with
%_%‘X = max(|ur| + cr, |ur| + cr)

The mean density remains positive as soon as the C.F.L. condition below holds
(see [18] for more details) :

r?eai((|u?| +c})At < Az
Note that a similar condition is exhibited in [40] for the Rusanov scheme with
a MUSCL reconstruction with minmod slope limiter ([44]).

2.7 Energy relaxation method applied to VFRoe with non
conservative variable (7, u, p)

The energy relaxation method was introduced in [13], and used in [25] and
[26]. We refer to these references for further details, and only provide herein an
algorithmic version to compute the flux ¢, resolving the Riemann problem (3)
for the Euler equations.

This requires introducing two additional variables y; and €2 to the conserva-
tive ones. Coefficent 47 must fulfill the following conditions to reach convergence
of the energy relaxation method :

11 >supl'(p,e) where T'(p,e)=1+ Pe (6)
p,€ P
_P D
11 > supy(p,e) where ~(p,e) = ];pvf’ + 7 (7)
p.E

11



1 (pu)?®
2 p?
Internal energy e is defined as follows :

where ¢ = I/ — and p is computed using the real EOS (2).

£ 1(pu)? P
€9 = — — = —
p2p  (m—1Dp
We may introduce :
p
Wl(pa U,p) = 1 puU
ipUZ + 'ylp—l
and:
pu
P (Wi(p,u,p)) = pu® +p

u(5pu” + 71 5E7)

The four governing equations are :

oW, O (W)

ot Ox (8)
(pe2),t + (pucs) z =0

with given initial condition :

t .
tHp, 1 , — (pr,ur,pr,e2r) fax<0
(pJ U/)paEQ)(I;O) - { t(pR;uR;pR,EQR) lfl‘ > 0 (9)

Thanks to these, one may compute the VFRoe-ncv numerical flux pertaining
to the latter system which is an hyperbolic system with three distinct eigenvalues
which are those of the Euler system. The numerical flux with three components
relative to the mass, momentum and energy equations will eventually be defined
as follows :

Fry
¢(WL, WR) = Fl*,z
FY g+ (pue2)”

noting Iy = t(Fl*,la F1*,2: Ff,3)~
Since we use the VFRoe nev (7, u, p) scheme to solve the four equations system,
we get :
(pue2)* = p*uTeyy ifurpr >0
= p*u*EQR furr <0

Since g5 is defined for each Riemann problem resolution, this variable is not
continous in time (a jump occurs at each time step).

12



3 Numerical results

All test cases have been computed for all schemes, but we do not present here
all results (see [40], pp.53-451). However, they are all discussed in the follow-
ing, with some figures to focus on problems in critical configurations. Let us
note that VFRoe ncv (7,,u,p) scheme without entropy correction have been
investigated too, in order to emphasize the influence of the energy relaxation
method.

Following tests are performed using constant CFL number ; however, CFL
number slightly increases at the beginning of the computation, from 0,1 to 0,4
in t € [0; Tarax/4]. Initial conditions refer to different 1D Riemann problems.
The regular mesh contains one hundred nodes.

We present results pertaining to perfect gas, focusing first on qualitative
behaviour and then on measurement of L' error norm of four distinct solutions.
After, some qualitative results are discussed, related to the Tammann EOS. The
configurations of these test cases are similar to perfect gas EOS. At the end,
two cases are presented with the Van Der Waals EQOS, in order to emphasize
some numerical problems through the LD field.

Remark 1 Unless otherwise specified, the average of 4 which is used in all test
cases is the following: 0.5((%)z + (§)r). The main advantage of this proposal
issuing from [6] is that the mean Jacobian matriz has real eigenvalues, provided
that initial states have. This is not necessarily true for some non conver EOS
when applying for expected value, i.e. : ¥ = 4(Y). However, potential drawbacks
of the former approach will be discussed when necessary. This remark obviously
holds for Tammann EOS and Van der Waals EOS, but not for perfect gas state
law.

3.1 Perfect gas EOS - Qualitative behavior
Case 1.1 Perfect gas EOS - Sod shock tube

A l-rarefaction wave travels to the left and a 3-shock moves to the right end.
The contact discontinuity is right going. This case is usually examined but
does not provide much information on schemes since discrepancies can hardly
be exhibited between all schemes involved herein. However, one can note that
“first-order” Rusanov scheme is a little bit more diffusive than others schemes.

Left State | Right state
pPL = 1 PR = 0, 125
up = 0 Uup = 0

pL = 105 PR = 104

TMAX = 6 ms

13



Case 1.2 Perfect gas EOS - Supersonic 1-rarefaction wave

The 1-rarefaction wave contains a sonic point. As a result, for VFRoe ncv
schemes, a wrong shock wave may develop at the origin. This is corrected by
introducing an entropy correction at sonic point, when focusing on so called
first order scheme. This is no longer compulsory when handling MUSCL type
reconstruction, which is usually combined with RK2 time integration in order to
avoid loss of stability. Note that VFFC scheme without entropy correction also
provides a non entropic shock at sonic point, but this appears to be very small
when compared with those arising with VFRoe ncv approach with ” physical”
variables. Moreover, since the energy relaxation method is applied with VFRoe
nev (7,u,p) without entropy correction, a small jump can be detected at the
sonic point (which vanishes when the mesh is refined). Since first order Rusanov
scheme is not based on a linearised Riemann solver, no problem appears at the
sonic point. All second order schemes behave in the same way.

Left State | Right state
PL = 1 PR — 0, 01
up = 0 Uup = 0
pPL = 105 PR = 103

TMAX =5ms

Case 1.3 Perfect gas EOS - Double supersonic rarefaction wave

This case enables to predict the behaviour of the scheme close to wall boundary
conditions when applying the mirror technique. Two rarefaction waves are
present in the solution when ug is positive. Due to symetrical initial conditions,
the contact discontinuity is a ghost wave. We note that in this particular case
VFFC scheme no longer provides a convergent solution since it blows up after
a few time steps. Though intermediate states of VFRoe ncv scheme are no
longer admissible (see [9]) it however provides a convergent solution. As usual,
Rusanov scheme is more diffusive than other schemes, but it provides rather
good results.

Left State Right state
pr=1 pr=1

up = —1200 Uup = 1200
pr = 10° pr = 10°

TMAX =2 ms

Case 1.4 Perfect gas EOS - Double subsonic shock wave

This case is very similar to the previous one, but two shocks are now travelling
to the left and to the right since ug is negative. It corresponds to an inviscid

14



impinging jet on a wall boundary. For supersonic double shock waves with very
high initial kinetic energy, small oscillations may occur close to shocks, even
when the CFL number is such that waves do not interact. A similar behaviour
is observed when computing the case with help of Godunov scheme. Second
order schemes create some oscillations, even in a subsonic configuration, except
for Rusanov scheme.

Left State | Right state
pr=1 pr =1

uz, = 300 ur = —300
pr = 10° pr = 10°

TMAX =5ms

Case 1.5 Perfect gas EOS - Stationary 1-shock wave

This case is usually considered to evaluate the stability of the (expected) sta-
tionary 1-shock wave, especially when the scheme does not comply with Roe’s
condition. In all cases, no instability arises, and all schemes (except for the
energy relaxation method which inserts two points in the stationary shock wave
profile and Rusanov scheme which smears the wave) actually perfectly preserve
the steadyness, whatever the order is.

Left State | Right state
pL=3/4 |pr=1
up = 4/3 Uup = 1
pr=2/3 |pr=1

TMAX =100 s

Case 1.6 Perfect gas EOS - Unsteady contact discontinuity

This case is interesting since it enables to check whether the Riemann invari-
ants of the 2-wave are preserved from a discrete point of view. This essentially
depends on the scheme and the EOS (see appendix A). All (first and second or-
der) computed schemes preserve velocity and pressure exactly constant, whereas
density jump at the contact dicontinuity is smeared. Note that Rusanov scheme
is once again more diffusive than schemes based on a linearised Riemann solver
and the energy relaxation method.

Left State | Right state
pr =1 pr=10,1
ur, = 100 ur = 100
pr, = 109 pr = 103

TMAX = 20 ms
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Case 1.7 Perfect gas EOS - Supersonic 1-rarefaction wave propagat-
ing over ”vacuum”

This is one difficult test case for all schemes based on approximate Riemann
solvers. Moreover, problems may appear due to the fact that computers have to
handle round off errors. The analytical solution is close to a pure 1-rarefaction
wave over vacuum, since the variations through the LD field and the 3-shock are
not significant. Note that some variables are not defined in vacuum, namely ve-
locity u or specific volume 7. Indeed, for the first order framework, the energy
relaxation method applied to VFRoe nev (7, u, p) without entropy correction
blows up after few time steps. However, VFRoe ncv (7, u, p) scheme with en-
tropy correction provides good results, except in the vacuum area, where velocity
profile becomes less accurate on coarse mesh. Other first order schemes (PVRS,
VFFC and Rusanov) provide slightly better profiles, even near vacuum. The
second order energy relaxation method and second order VFRoe ncv (7, u,p)
scheme provide good results, though the problem on the velocity profile in the
vacuum area remains unchanged. Other second order schemes perform well.

Left State | Right state
pr =1 PR = 10~7
up = 0 Uup = 0

pL = 10° pr = 1072

TMAX =1ms

Case 1.8 Perfect gas EOS - Double rarefaction wave with vacuum

This one too is interesting, since the violation of condition (y — 1)(ug — ur) <
2(ep+cr ) results in a vacuum occurence on each side of the origin. Since this test
case provides a double supersonic rarefaction wave, VFFC scheme cannot handle
these initial conditions, whatever the order. The energy relaxation method
applied to VFRoe ncv (7,u,p) scheme without entropy correction blows up
too, restricting to the first order approximation. However, these two schemes
perform well when handling MUSCL reconstruction with RK2 time integration.
Moreover, first or second order PVRS, VFRoe and Rusanov schemes preserve
density and pressure positivity in this test case and provide good results too
(recall that Rusanov scheme maintains positivity of the density under a standard
CFL-like condition).

Left State Right state
pr=1 pr=1

ur, = —3000 | ur = 3000
pr = 10° pr = 10°

TMAX =1ms
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3.2 Perfect gas EOS - Quantitative behavior

We compute here four test cases (Sod shock tube, supersonic 1-rarefaction wave,
double subsonic rarefaction wave and double subsonic shock wave) with several
meshes : 100, 300, 1000, 3000 and 10000 nodes. Numerical rates of convergence
of the L! error are measured and presented. Continous lines represent first order
schemes, whereas dotted lines represent second order schemes.

Case 2.1 Perfect gas EOS - Sod shock tube

Initial conditions of this test case are the same as the Case 1.1. Though Rusanov
scheme is less accurate than other schemes, its rate of convergence is the same.
We can note that the rate of convergence of velocity and pressure are the same
and higher than the rate of convergence pertaining to density, owing to the
contact discontinuity. As expected, the second order schemes converge faster
(the slope is close to 1 for velocity and pressure).

Case 2.2 Perfect gas EOS - Supersonic 1-rarefaction wave

This refers to the Case 1.2. Though the solution of this test case is composed by
the same set of waves, we can measure here the influence of entropy correction
for the first order schemes. The rates of convergence are the same as above for
all schemes, except for the energy relaxation method. Indeed, the first order
approximation provides higher rates of convergence than in the Sod shock tube
case. We may suggest that this important slope is due to the non-entropic shock
which is vanishing. Thus the L' error would be mainly located close to the sonic
point.

We may assume that this convergence is mainly led by the vanishing of
the non-entropic shock computed by the VFRoe nev (7, u,p), and following
the refinment could provide a rate of convergence similar to others VFRoe ncv
schemes.

Case 2.3 Perfect gas EOS - Double subsonic rarefaction wave

This concerns Case 1.3, except for the fact that the initial velocity is set to :
ur, = —300. As a result, the double rarefaction wave is subsonic (hence, the
VFFC scheme provides meaningful results). Though the solution of this test
case 1s continous, conections between waves and intermediate states are not
regular. Thus, rates of convergence equals to 1 for the “first” order schemes and
equals to 2 for the “second” order schemes cannot be expected. On the other
hand, the contact discontinuity is a “ghost wave” (no variable jumps through
this wave). This explains why the rate of convergence of the first order schemes
is slightly higher for density than in previous cases. The rates of convergence of
second order schemes are very close to 1. Note that the error associated with
the Rusanov scheme is close to the error of other schemes.
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Case 2.4 Perfect gas EOS - Double subsonic shock wave

The initial conditions of this test case come from the Case 1.4. Above men-
tionned remark concerning the contact discontinuity holds. For all schemes, the
rates of convergence are slightly higher with the first order approximation than
with the second order approximation (though the error of the first order schemes
is more important). It can be explained by the occurence of oscillations on the
intermediate state caused by the second order schemes.

3.3 Tammann EOS

As mentionned in section 1.5.2, one may retrieve by a suitable change of variables
the Euler equations with perfect gas EOS from the Euler equations with Tam-
mann EOS. Hence, the vacuum with the Tamman EOS is p = 0 and p+ p. = 0
and the condition for vacuum occurence (5) becomes :

Au <

2
- 1(CL +cr)

where ¢ = M

However, this e(/;uivalence is only meaningful in the “continous” framework.
Indeed, it no longer holds from a discrete point of view (except for PVRS and
VFRoe nev (7, u,p)), and numerical results computed with the Tammann EOS
are slightly different of previous results, namely with the perfect gas state law.

Case 3.1 Tammann EOS - Subsonic shock tube

This case is somewhat different from its counterpart with perfect gas EQOS,
and is based on initial conditions provided in [41]. However, the numerical
approximation behaves as its counterpart with perfect gas EOS : all schemes
provide good results, and Rusanov scheme is more diffusive than the others.

Left State | Right state
pr = 1100 | pr = 1000
up = 500 Uup = 0

pr =5.10° | pg = 10°

TMAX = 0.6 ms

Case 3.2 Tammann EOS - Sonic rarefaction wave

Once again, initial conditions are those provided in reference above. Note that
the energy relaxation method (with the first order approximation) completely
smears the non-entropic shock caused by VFRoe ncv (7, u,p). All VFRoe ncv
schemes have the same behaviour, and the Rusanov scheme is still more diffu-
sive (first order or second order). Figures provided by first order schemes are
presented (figures 1-6).
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Left State | Right state
pPL = 103 PR — 103
ur = 2000 | ug = 2000
pL =5.108 | pg = 10°

TMAX = 8 ms

Case 3.3 Tammann EOS - Double subsonic rarefaction wave

This test case is the counterpart of the Case 1.3. Note that vacuum (ie p = 0,
p + pe = 0) can occur within subsonic range, though it does not appear in this
test case. Except for first order Rusanov scheme, all schemes compute a glitch
(or a spike) at the interface (where the contact discontinuity is located) on the
density.

Left State | Right state
pPL = 103 PR = 103
ur, = —300 | ugp = 300
pr=10° | pp=10°

TMAX = 0,5 ms

Case 3.4 Tammann EOS - Double subsonic shock wave

The only difference between this test case and the case presented above is due
to the sign of initial velocities. As a result, in spite of rarefaction waves, the
solution is composed by two shock waves and a ghost contact discontinuity. The
same behaviour on the density can be noted, namely a glitch at the interface
(even with the first order Rusanov scheme).

Left State | Right state
pPL = 103 PR — 103
ur, = 300 ur = —300
pL = 10° pr = 10°

TMAX = 0,5 ms

Case 3.5 Tammann EOS - Stationary 1-shock wave

A very slight difference may be seen when the average value of 4 is chosen as
0.5((%)z + (¥)r) instead of ¥ = 4(Y') when focusing on VFRoe ncv with variable
(r,u,p). The shock remains steady only if the the latter choice is considered
from a theoretical point of view, which is confirmed by computation. However,
other VFRoe ncv schemes provide as accurate results. First or second order
Rusanov scheme is very diffusive, and the energy relaxation method introduces
three or two points in the shock profile, according to the order of approximation.
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Left State Right state
pr =2.10710 | pp = uEl

F — 9 F — 4. Ye—1 9
Uy, =5.10 up = ’Yc+1p6+m5.10

PL = Pe PR = PL + UL —UR

Thvax = 1079 s

Case 3.6 Tammann EOS - Unsteady contact discontinuity

The results provided by all schemes are similar to those provided with the
perfect gas EOS (see Case 1.6). Pressure and velocity are exactly preserved (see
appendix A), and the jump of density is smeared by all schemes (in particular
by the Rusanov scheme).

Left State | Right state
PL = 103 PR — 102
up = 103 Uup = 103
pr =10°% | pr=10°

TMAX =2 ms

Case 3.7 Tammann EOS - Rarefaction wave propagating over vac-
uum

This test computes a l-rarefaction wave with a sonic point. The 2-contact
discontinuity and the 3-shock wave are not of significant importance, like in the
Case 1.7. We have used in the following last two cases : ¥ = §(Y). In this
case, only VFRoe ncv (7, u,p) with RK2-MUSCL integration (figures 7-8) and
(first or second order) Rusanov scheme enable computation (see figures 9-10 for
the first order). Note that the standard choice 0.5((%)r + (§)r) results in a
blow up of the computation. Initial conditions make all other schemes blow up.
These behaviours confirm the discrete difference between perfect gas EOS and

Tammann EOS.

Left State | Right state

pr =10° | pp =107

up = 0 Uup = 0
pL=10° | pr+pc=10"2

TMAX = 0,6 ms

Case 3.8 Tammann EOS - Vacuum occurence

This test results like Case 1.8 in a vacuum occurence in the intermediate state.
Recall that vacuum can appear though rarefaction waves are not supersonic.
As above, VFRoe ncv (7, u, p) and Rusanov schemes enable computation. Note
that PVRS and VFRoe schemes also perform well in this test (see figures 11-14).
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Left State | Right state
pPL = 103 PR — 103
ur = 1500 | ug = 1500
pr = 10° pr = 10°

TMAX = 0,6 ms

3.4 Van Der Waals EOS

Results of both computations discussed below were achieved using the stan-
dard definition for VFRoe ncv (7, u,p) and PVRS schemes of the mean of ¥ :

0.5((%)z + (¥)r) instead of : ¥ = F(Y) when focusing on VFRoe ncv scheme.
Differences between results for both choices could hardly be noticed for the
following.

Case 4.1 Van Der Waals EOS - Subsonic 1-rarefaction wave

Initial conditions below are taken from the paper by Letellier and Forestier [30].
The main advantage of this case is that it clearly exhibits the rather unpleasant
behaviour around the contact discontinuity. Though both the exact Godunov
scheme and VFRoe scheme with (7, u,p) variables predict equal velocity and
pressure of intermediate states on each side of the LD field, cell values of both u
and p are not in equilibrium (this confirms results of appendix A for the VFRoe
schemes with (¢, u, p) variable). Obviously this well-known drawback (see [30])
tends to vanish when the mesh size decreases, or when time increases. First
order results are provided on figures 15-20.

Left State Right state

pr = 333,33 pr=111,11
up = 0 Uup = 0

pr, = 37311358 | pr = 21770768

TMAX =5ms

Case 4.2 Van Der Waals EOS - Moving contact discontinuity

Initial conditions are similar to those given in Case 1.6. Note that the Riemann
invariants u and p are not very well preserved around the contact discontinu-
ity when using coarse meshes, and ”first” order scheme (see appendix A for
more details on VFRoe ncv schemes with (g, u, p) variable). The ”second’ order
version of the scheme performs much better. Unlike sometimes heard, we em-
phasize that the approximation is still convergent. Small oscillations apart from
the LD scheme which were reported in [30] do not arise when using approximate
Godunov schemes, which is still unexplained and rather amazing. Due to the
very small rate of convergence measured in the LD field (smaller than 2/3) | it
is clear that this slows down the whole rate of convergence on both velocity and
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pressure variable, compared with what happens when focusing on perfect gas
EOS. Hence, none among schemes presented here are able to preserve velocity
and pressure constant on a given mesh (see figures 21-26 for results performed
by first order schemes).

Left State | Right state

pr =1 pr = 10
uy, = 100 ug = 100
pr = 10° pr = 10°

TMAX = 6 ms
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o VFRoe ncv (Tau,u,p) 1-1 without entropy correction
+ VFRoe ncv (Tau,u,p) 1-1 + Relaxation
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Figure 1: Case 3.2 : density (a) - p+ p¢ (b)
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o VFRoe ncv (Tau,u,p) 1-1 without entropy correction
+ VFRoe ncv (Tau,u,p) 1-1 + Relaxation
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Figure 2: Case 3.2 : velocity (a) - ¥(p, p) (b)
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Figure 3: Case 3.2 : density (a) - p+ p¢ (b)
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe ncv (Rho,u,p) 1-1
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Figure 4: Case 3.2 : velocity (a) - ¥(p, p) (b)
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe 1-1
x Rusanov 1-1
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Figure 5: Case 3.2 : density (a) - p+ p¢ (b)
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Figure 6: Case 3.2 : velocity (a) - ¥(p, p) (b)
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+ VFRoe ncv (Tau,u,p) 2-2
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Figure 7: Case 3.7 : densité (a) - p+ p¢ (b)
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+ VFRoe ncv (Tau,u,p) 2-2
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Figure 8: Case 3.7 : vitesse (a) - momentum (b)
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Figure 10: Case 3.7 : velocity (a) - momentum (b)
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+ VFRoe ncv (Tau,u,p) 1-1
x VFRoe ncv (Rho,u,p) 1-1
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Figure 11: Case 3.8 : densité (a) - p+ p¢ (b)
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+ VFRoe ncv (Tau,u,p) 1-1
x VFRoe ncv (Rho,u,p) 1-1
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Figure 12: Case 3.8 : vitesse (a) - momentum (b)

34



1000.0

800.0

600.0

400.0

200.0

0.0
0.

1500000000.0

X X
% £
11; );F
1000000000.0 x x -
x X
£ *
X X
x * b
* *
* *
* *
500000000.0 - * * .
* *
* *
* *
* *
* * 1
;& qc*
X, X
0.0 | \W\ |
0.0 2.0 4.0 6.0 8.0

+ VFRoe 1-1
x Rusanov 1-1

(@)

a@(% fk 8
L Xt X u
X 4
- 4
o +x ,
Xt +x
X4 4
i X £ |
X X
+ + 1
X X
* *
X X
X X
R 1
£ %
| - XX -
+7+
++
J'+ o
| | | |
0 2.0 4.0 6.0 8.0
(b)

35

Figure 13: Case 3.8 : density (a) - p+ pc (b)
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+ VFRoe 1-1
x Rusanov 1-1
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o VFRoe ncv (Tau,u,p) 1-1 without entropy correction
+ VFRoe ncv (Tau,u,p) 1-1 + Relaxation
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Figure 15: Case 4.1 : densité (a) - p+ p¢ (b)
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o VFRoe ncv (Tau,u,p) 1-1 without entropy correction
+ VFRoe ncv (Tau,u,p) 1-1 + Relaxation
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Figure 16: Case 4.1 : vitesse (a) - ¥(p, p) (b)
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe ncv (Rho,u,p) 1-1
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Figure 17: Case 4.1 : densité (a) - p+ p¢ (b)

39

10.0



o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe ncv (Rho,u,p) 1-1
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Figure 18: Case 4.1 : vitesse (a) - ¥(p, p) (b)

40



400.0

200.0

100.0
0.0

35000000.0

30000000.0

25000000.0

o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe 1-1
x Rusanov 1-1

(@)

T
X

I
X
+d°

20000000.0 ‘ ‘ ‘
0.0 . .

8.0 10.0
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe 1-1
x Rusanov 1-1
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Figure 20: Case 4.1 : vitesse (a) - ¥(p, p) (b)
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Figure 21: Case 4.2 : densité (a) - p+ p¢ (b)
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o VFRoe ncv (Tau,u,p) 1-1 without entropy correction
+ VFRoe ncv (Tau,u,p) 1-1 + Relaxation

(@)
100.20 ‘

100.15 - 5

100.10

100.05

100.00

99.95

99.90 : : : : : : : :
0.0 2.0 4.0 6.0 8.0 10.0
(b)
1.330 w
&
4
1.328 | N .
4
1.326 - .
4
1.324 - B
&
1.322 - f
4
e
1.320 i T T T T | |
0.0 2.0 4.0 6.0 8.0 10.0

Figure 22: Case 4.2 : vitesse (a) - ¥(p, p) (b)
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe ncv (Rho,u,p) 1-1
x VFFC 1-1
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Figure 23: Case 4.2 : densité (a) - p+ p¢ (b)
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe ncv (Rho,u,p) 1-1
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Figure 24: Case 4.2 : vitesse (a) - ¥(p, p) (b)
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o VFRoe ncv (Tau,u,p) 1-1
+ VFRoe 1-1
x Rusanov 1-1
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Figure 26: Case 4.2 : vitesse (a) - ¥(p, p) (b)
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3.5 Actual rates of convergence

Perfect gas EOS - Sod shock tube

e Energy relaxation

1st order | 2nd order
p 0.654 0.791
u 0.853 0.967
p 0.812 0.988
e Rusanov
1st order | 2nd order
p 0.651 0.780
u 0.842 0.970
0.823 0.989
e VFFC
1st order | 2nd order
p 0.655 0.792
u 0.855 0.968
p 0.814 0.988
e VFRoe
1st order | 2nd order
p 0.654 0.791
u 0.853 0.967
p 0.811 0.988
e VFRoe ncv (p, u,p)
1st order | 2nd order
p 0.654 0.791
u 0.853 0.967
p 0.811 0.988
e VFRoe ncv (7,u,p)
1st order | 2nd order
p 0.653 0.791
u 0.853 0.967
p 0.812 0.988
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Perfect gas EOS - Sonic rarefaction wave

e Energy relaxation

e Rusanov

e VFFC

e VFRoe

e VFRoe nev (p, u, p)

e VFRoe ncv (7,u,p)

1st order | 2nd order

p 0.890 0.810

u 0.933 0.973

p 0.927 0.995
1st order | 2nd order

p 0.684 0.827

u 0.794 0.985

p 0.821 0.999
1st order | 2nd order

p 0.667 0.819

u 0.808 0.977

p 0.798 0.996
1st order | 2nd order

p 0.669 0.828

u 0.791 0.975

p 0.796 0.996
1st order | 2nd order

p 0.667 0.840

u 0.805 0.977

p 0.796 0.995
1st order | 2nd order

p 0.653 0.809

u 0.822 0.973

p 0.802 0.995
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Figure 37: VFRoe ncv (p, u, p)
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Figure 34: Rusanov
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Perfect gas EOS - Symmetrical double rarefaction wave

e Energy relaxation

1st order | 2nd order
p 0.771 0.998
u 0.785 0.999
0.775 0.999

e Rusanov

1st order | 2nd order

p 0.773 0.999
u 0.787 1.000
p 0.777 0.999
e VFFC
1st order | 2nd order
p 0.768 0.998
u 0.782 1.000
p 0.772 0.999
e VFRoe
1st order | 2nd order
p 0.771 0.998
u 0.785 0.999
p 0.775 0.999
e VFRoe nev (p, u, p)
1st order | 2nd order
p 0.771 0.998
u 0.785 0.999
p 0.775 0.999
e VFRoe ncv (7,u,p)
1st order | 2nd order
p 0.771 0.998
u 0.785 0.999
p 0.775 0.999
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Figure 43: VFRoe ncv (p, u, p)
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Figure 40: Rusanov
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Perfect gas EOS - Symmetrical double shock wave

e Energy relaxation

1st order | 2nd order
p 1.062 0.935
u 1.157 1.156
1.050 1.017

e Rusanov

1st order | 2nd order

p 1.060 1.028
u 1.056 1.115
p 0.996 1.001
e VFFC
1st order | 2nd order
p 1.060 0.905
u 1.157 1.154
p 1.049 1.019
e VFRoe
1st order | 2nd order
p 1.063 0.927
u 1.157 1.153
p 1.050 1.019
e VFRoe nev (p, u, p)
1st order | 2nd order
p 1.063 0.929
u 1.158 1.154
p 1.050 1.019
e VFRoe ncv (7,u,p)
1st order | 2nd order
p 1.062 0.947
u 1.157 1.153
p 1.050 1.019
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Figure 49: VFRoe ncv (p, u, p) Figure 50: VFRoe ncv (7, u, p)
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4 Conclusion

Several approximate Riemann solvers have been compared in this study. Some
among them are based on an approximate Godunov scheme, applying various
changes of variables in order to compute approximate values of state at the inter-
face. These make use of conservative variable W, flux variable F/(WW) or variable
(p,u,p) or (1, u,p). The latter enables to preserve unsteady contact discontinu-
ites provided the EOS agrees with some conditions (perfect gas EOS, Tammann
EOS belong to the latter class). The practical or theorical behaviour of these
schemes when computing steady shock wave, steady contact discontinuity, or
vacuum has been investigated. All schemes perform rather well in all experi-
ments, except in vacuum occurence or propagation over vacuum. One drawback
of the VFFC scheme can be emphasized : when computing a double supersonic
rarefaction wave (with or without vacuum occurence), this scheme blows up
after a few time steps. Concerning VFRoe ncv (7, u,p) and PVRS schemes,
changing slightly the average state can increase their robustness and accuracy.
The energy relaxation method applied with VFRoe ncv (7, u,p) scheme has
been computed too. The behaviour of this method is nearly the same as the
original VFRoe ncv (7,u,p) scheme. However, the energy relaxation method
makes vanish non entropic shocks. The Rusanov scheme provides good results
too, though it is slightly less accurate than other schemes investigated, due to
important numerical diffusion. But the Rusanov scheme converges as fast as
other schemes (in terms of mesh size exponent in the error norm). Moreover,
it is the most robust scheme computed here, in particular in test cases with
vacuum.

The framework of this paper has been restricted to the computation by
Finite Volume schemes of a conservative and hyperbolic system, in one space
dimension. Let us recall some extensions of methods used here, in different
applications.

Of course, all schemes presented herein can be extended to 2D or 3D prob-
lems (see [4]). Rusanov (see [45]), Godunov (see [45]), VFFC (see [2]) and
VFRoe ncv (7, u, p) (see [9]) schemes have been applied to Euler equations with
real gas EOS, Shallow Water equations (see [7]) and compressible gas-solid two
phase flows (see [11]), with structured or unstructured meshes. Since these sys-
tems stay unchanged under frame rotation, a multidimensional framework may
rely on a one dimension method (see [20]).

Some systems arising in CFD cannot be written under a conservative form,
and thus, approximate jump relations must be proposed (see [14] and [10]).
Some of the previous schemes have been extended to the non conservative for-
malism : Godunov (see [16]), Roe (see [3], [23], [24], [38]), VFRoe ncv (see [5],
[8], [45]) and VFRoe (see [31], [1]).

Others non conservative systems are conditionnally hyperbolic, in particular
focusing two fluid two phase flows (see [37]). Three main directions have been
proposed up to now in the literature. The first consists in splitting the jacobian
matrix in several matrices, which may be diagonalised in R (see [12]). The
second way consists in using the sign of the real part of eigenvalues to choose
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the flux direction (see [33] and [2]). A third approach is based on a development
in power series of eigenvalues and eigenvectors in terms of a small parameter

(see [38], [43]).

A Numerical preservation of velocity and pres-
sure through the contact discontinuity in Eu-
ler equations

We discuss in this appendix about schemes and state laws, in order to pre-
serve velocity and pressure on the contact discontinuity, in a one dimension
framework. We focus on initial conditions of a Riemann problem, with constant
velocity and constant pressure. Schemes investigated here can be derived from
the formalism of VFRoe ncv scheme, with variable :

Y = (¢, u,p)

where ¢ = ¢(p,s) (s denotes the specific entropy) must be independant of
pressure p (for instance ¢ = p, 7, ...).
Restricting to regular solutions, Euler equations can be written related to
Y = *(p,u,p) as follows :
Y. +AY)Y,=0

where :
u pp, 0
A= 0 u p!
0 Ap U

At each interface, we linearize the matrix A(Y) to obtain a linear Riemann
problem, which may be easily solved. Initial conditions are defined by the
average values in cells apart from the considered interface (i + % for instance) :

oy oy
WJFA( )%_0
Y("”’O)—{ Ye=Y(Wh,) ifz>0

(10)

with Y such that Y(Y, Y)=Y.
To compute the solution at the interface, we need to write the eigenstructure of
the matrix A(Y). As usual, the eigenvalues are (¢ stands for the sound speed) :

AM=u—c, dy=u, Ag=u+c

The associated right eigenvectors are :

Pe.p 1 PE.p
T’l(Y) = —C s T’Q(Y) = 0 s 7’3(Y) = Cc
pc? 0 pc?
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Left eigenvectors of A(Y) are :

1 0 1 [ L 1 [
ll (Y) = ﬁ —(i 5 ZQ(Y) = c_2 0 5 ZS(Y) = ﬁ Cl
P P P

In the following, we denote ~ variables computed on the basis of Y. The solution
of the linear problem (10) is :

« (T _ t7 ~
Y <?,YL,YR) = Y.+ Z;(M(YR—YL))T’;@
<Xk
= Yr— Y (l.(Yr— Y1)k
5 A%

Since the three eigenvalues of the linear system are distinct, two intermediate
states Y7 and Y3 may occur :

Yi1 = Yi+aim

Y, = Yg—o3r;

with :

where A(.) = (.)r — (). Note that the two intermediate states Y7 and Y3 do
not depend on the choice of .

Recall that initial conditions investigated herein are unsteady contact disconti-
nuity. Thus :

Au=Ap=0 = a;=a3=0
= Y1=Y,and Y, =Yg

Note that these equalities are verified at each interface of the mesh. Hence, if
we denote PiyL the numerical density of the problem (10) at the interface i+ %,
ug and pg initial velocity and pressure, the Finite Volume scheme applied to the
mass conservation equation gives :

At

n+1 _ n , .

it = - —QI((P“)H% = (pu)i_y)
At

= p- EUO(PH% - Pi—%)

Now, if we apply the Finite Volume scheme to the momentum conservation
equation, it gives :

At
(PU)§hLl = (pu)i — A—((PU2 +P)i+§ - (pu2 —|—p)i_%)

x
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L At
= (pw)i - A—((Pw%ug +10) = (pi—1up +po))

X

n

At
= (pu)i — E“%(PH% - Pi-%)

. At
= uo\p — EUO(PH% _Pi—é)

1
= upft

Thus, we have u]'T! = ug, Vi € Z.
To study the discrete preservation of pressure, let us write the Finite Volume
scheme applied to energy conservation equation :

n . At
N At
= Ei _EUO(EZ'+%_EZ'—%)
Energy is defined by F = pe + %puz. Thus, we have :
At
(pe)i*t = (pe)} — EUO((PE)H§ - (P5)i_§)

Let us assume that the equation of state can be written under the form :

pe = f(p) +bp+ec (11)

where b and ¢ are real constants, and f a inversible function (for instance perfect
gas EOS, Tammann EOS, ...). If we introduce this equation of state in the
previous equation, it gives :

(f(p) +bp+ )i ™ = (fp) +bp+0)f

R uo((F(p) + bp+ eligs — (7(p) + bp+€)iy)

TP +opit +¢ = flpo) +bp} +¢

— x50 ((f(po) = F(po)) + b(piys — pimy) + (c =€)

@) = fpo)
Thus, p?t! = pe.

(]
Hence, if a state law can be written under the form (11), then a VFRoe ncv
scheme, whose variable is (¢, u, p)-like, maintains velocity and pressure constant.
Moreover, if the contact discontinuity is steady (ie ug = 0), we can remark
that the VFRoe ncv (g, u,p) scheme preserves pressure and velocity exactly

constant, whatever the state law considered.
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