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Summary We study here the convergence of a finite volume scheme for a diffusion-convection equation
on an open bounded set of IR? (d = 2 or 3) for which we consider Dirichlet, Neumann or Robin boundary
conditions. We consider unstructured meshes which include Voronoi or triangular meshes; we use for
the diffusion term a “four points” finite volume scheme and for the convection term an upstream finite
volume scheme. Assuming the exact solution at least in H? we prove error estimates in a discrete H}
norm of order the size of the mesh. Discrete Poincaré inequalities then allow to prove error estimates in
the L? norm.
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1 Presentation of the problem

Let Q be an open bounded subset of IR¢ (d = 2 or 3) which is assumed to be polygonal if d = 2 and
polyhedral if d = 3. We denote by 0% its boundary and by n the unit normal to 99 outward to €.
We consider the following convection diffusion reaction problem:

—Aule) + div(v(e) u(x)) +b(x), u() = fx), reD, (1)

with different boundary conditions and the following hypotheses

Assumption 1 f € L*(Q), b € L™(Q) and v € C*(, ]Rd) such that divv /24 b > 0 almost every-
where.

In this paper, we consider three different types of boundary conditions for the previous diffusion convection
equation, namely Dirichlet, Neumann or Robin boundary conditions; these conditions are not necessarily
homogeneous. This elliptic problem is then discretized with a finite volume scheme: a “four points”
scheme 1s used for the diffusion term and an upstream scheme for the convection term.

Finite volumes are known to be well adapted to the discretization of conservation equations, particularly
in the presence of convection terms. Their theoretical study has recently been undertaken. Two main
ways are usually followed in order to obtain convergence properties of finite volume schemes. The first
one consists in writing the finite volume as a finite element or mixed finite element method by using
some numerical integration, see for instance [1], [2], [17], [18] or [19]; the convergence then follows from
the general finite element framework. The second one, see for example [5], [6], [11], [9], [20], [13] or
[21], consists in establishing the convergence by using the direct formulation of the finite volume scheme
together with some appropriate discrete functional analysis tools. This last approach is considered here.
A discrete system is obtained for each type of boundary condition. Existence and uniqueness (sometimes
up to a constant like in the continuous case) of the approximate solution is proven. The stability of
the scheme is shown in each case by establishing some estimates on the approximate solution which are
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independent of the mesh size. If the exact solution is assumed to be at least in H?({2), one may then
establish the convergence of the scheme by proving error estimates. A first one in a discrete H} norm is
obtained and a second one in L? norm follows with the help of discrete Poincaré inequalities. It is also
possible to prove error estimates in the L? norm, see [4], for all ¢ such that 1 < ¢ < +o0 if d = 2 and
such that 1 < ¢ <6 if d = 3 establishing discrete Sobolev’s imbeddings.

This work 1s divided in four sections. The first one introduces the admissible meshes which are needed
for the discretization of the elliptic problem, and the three following sections correspond to the three
types of boundary conditions which we consider here. Homogeneous Dirichlet conditions were studied
in e.g. [11], [20], [9], [13], with different assumptions on the data and the mesh; to our knowledge,
nonhomogeneous Dirichlet, Neumann and Robin boundary conditions have only been considered up to
now in [6] with some simplifying assumptions; the convergence of the method for Neumann and Robin
conditions requires some additional work compared to that of the Dirichlet case. In the case of Neumann
boundary conditions, a “discrete Poincaré-Wirtinger” inequality needs to be proven in order to obtain an
L? error estimate. The stability results for both Neumann and Robin boundary conditions are obtained
by using a discrete trace inequality which we prove to be true for piecewies constant functions. In the
case of the Robin condition, it is interesting to note that an artificial upwinding has to be introduced in
the treatment of the boundary condition in order for the scheme to be well defined with no additional
condition on the mesh.

2 Admissible meshes

Definition 1 (Admissible meshes) A finite volume mesh of Q, denoted by T, is given by a family of
“control volumes”, which are open polygonal (or polyhedral) convex subsets of Q (with positive measure),
a family of subsets of Q0 contained in hyperplanes of IRd, denoted by £ (these are the edges (if d = 2) or
sides (if d = 3) of the control volumes), with strictly positive (d — 1)-dimensional measure, and a family
of points of Q denoted by P. The finite volume mesh is said to be admissible if the properties (i) to (iv)
below are satisfied and restricted admissible if the properties (i) to (v) below are satisfied.

(i) The closure of the union of all the control volumes is Q;
(i1) For any K € T, there exists a subset Ex of & such that 0K = K\ K = Uyeg, 0. Let £ = Uge7Ek.

(1ii) For any (K, L) € T2 with K # L, either the (d — 1)-dimensional Lebesque measure of K N L is 0
or KN L =7 for some o € £, which will then be denoted by K|L.

(iv) The family P = (xg) ket is such that xx € K (for all K € T) and, if o = K|L, it is assumed that
g # xr, and that the straight line Dk 1 going through xx and xp is orthogonal to K|L.

(v) For any o € & such that o C 0%, let K be the control volume such that ¢ € Ek. If xx & o, let
Dk o be the straight line going through xx and orthogonal to o, then the condition Dk o No # O is
assumed; let y, =Dk , No.

In the sequel, the following notations are used. The mesh size is defined by: size(T) = sup{diam(K),
K € T}, where diam(K) is the diameter of K € T. Forany K € T and o € £, m(K) is the d-dimensional
Lebesgue measure of K (i.e. area if d = 2, volume if d = 3), m(c) the (d — 1)-dimensional measure of
o, and ng , denotes the unit normal vector to o outward to K. The set of interior (resp. boundary)
edges is denoted by Einy (resp. Eexi), that is Eny = {0 € &; 0 ¢ OQ} (resp. Eext = {o € E; 0 C 00}).
The set of neighbours of K is denoted by N(K), that is N(K) = {L € T; 30 € £k, ¢ = K NL}. If
o = K|L, we denote by d, or dg|;, the Euclidean distance between xr and xy (which is positive) and
by dx o the distance from xg to o. If 0 € Ex N Eext, let d, denote the EBuclidean distance belween x
and y, (then, d, = di ). For any o € &; the “transmussibility” through o is defined by 7, = m(o)/d, if
de #0 and 7, = 0 if dy = 0 In some results and proofs given below, there are summations over o € &,
with & = {0 € £; d, # 0}. For simplicity, (in these results and proofs) & = & is assumed.



Admissible (or restricted admissible) meshes include, for instance, meshes made with triangles and rect-
angles in two space dimensions, and also Voronol meshes: the latter consist in building a mesh using the
orthogonal bisectors from a given family of points (for more details see [7]). Admissible meshes will be
used for the Neumann boundary conditions. Property (v) of the restricted admissible meshes is needed
for the Dirichlet and Robin boundary conditions.

3 Dirichlet boundary conditions

The first type of boundary condition which we consider is a Dirichlet condition:
u(z) = gP(x), = €0, (2)

where g7 € H'/?(09).

Let us denote by §” a function of H'(Q2) such that F(§”) = ¢”, where 7 denotes the trace operator from
HY(Q) into HY/?(09).

Under Assumption 1, there exists a unique variational solution u € H*(£2) of (1), (2) by the Lax-Milgram
Theorem. That is to say, u satisfies u = @ + §” where @ € H{(Q) is the unique solution to

/ﬂ(va(@») Vo (z) + div(v(z) i(z)) ¢(z) + b(x) il(x) q[)(x)) dz
- / (-3 (2) - Vé(a) — div(v(2) §°(2) 6(x) — b(2) §° (2) d(z) + [ (2) 6(2)) da,

for all ¢ € HE (D).
In order to obtain an error estimate, we shall need some more regularity on the boundary condition
(however, the definition of the finite volume and its convergence require less regularity, see Remark 1):

Assumption 2 ¢P € H3/2(9Q).

3.1 Discretization

The approximate finite volume solution which is sought here is constant on each cell of the mesh. The
discrete unknowns are denoted by (ux )k e7. The principle of classical finite volume schemes is to integrate
the equation on each cell of the mesh in order to obtain an equation which is sometimes called the balance
equation, for each control volume.

Let K € T, using Green’s formula, one has:

/K {—Au(l‘) + div (v(x) u(x))+b(x) u(x)} dx
= Z /[—Vu(x)—I—V(:L‘)u(x)]nKygdy(x)_F/

ceEr 'O K

b(z)u(x)de = /K f(z) de,

where dv is the integration symbol for the (d — 1)-dimensional Lebesgue measure on the considered
hyperplane.

For all K € T and all o € €k, let us denote by Fk » the approximate diffusion flux (respectively by Vi o,
the approximate convection flux) that is to say an approximation of [ —Vu(z) -ng o dy(z) (respectively
of fo v(z) -ng o u(x) dy(z)).

In order to prove the convergence of the scheme, one needs two basic properties. The first one, called
conservativity of the scheme states that the numerical flux through a given edge is conservative, i.e.:

Fxo=—Fro forall K € T, L € N(K) and where 0 = K|L. (3)

The second one is that ﬁFK,G is a consistent approximation of ﬁ fg —Vu(z) ng , dy(z) (for more

details see Lemmas 2 and 3). The same properties are required for Vi ,.



The numerical diffusion flux F , is chosen as:

Fr,o =—-m(K|L) 4L — UK if o = K|L, (4)
dk|rL
and
Frodro =—-m(0) (ue — ur) if o€ Exi NEk. (5)

The numerical convective flux Vi, is obtained with an upstream scheme, that is:

VK,U = VUK,0c Uo,+ (6)
with

VKo = /V(x).nK}a dy(z), (7)

and
ug ifvg e >0,
ifo = K|L, Ug 4 =
uy  otherwise,
UK if VKo Z 0, (8)
if o €&t NEK, Uy, =
Uy otherwise.

and where we set
Uy :gD (yo)) (9)
with y, defined in Definition 1.

Remark 1 If Assumption 2 is weakened to gP € L*(9Q), gP is no longer defined pointwise, but (9) may
be replaced by u, = $ fg g7 (y) dy(y), where dvy stands for the (d — 1)-dimensional Lebesque measure.

In this latter case we do not obtain an error estimate but only a convergence resull as in [7].

For all K € T, let fi, respectively by, denote the mean value of f, respectively of b that is to say

1 1
= w)dr and bg = b(x) dx. 10
K (K /K f(z)de an K () /K () do (10)
Then the considered finite volume scheme is defined by the following equations:
> (Fio +vko o )+m(K) b uxe = m(K) fi. (11)
o€fK

Remark 2 The definition of the diffusion flux on a boundary edge (5) allows dg » =0, in this case one
has ug = u, and Fg , becomes an unknown.

3.2 Existence, uniqueness and stability of the approximate solution

The proof of existence and uniqueness of the approximate solution may be performed by establishing a
discrete maximum principle

Proposition 1 Under Assumptions 1 and 2, let T be an admissible mesh in the sense of Definition 1.
Let (ua)o'egext7 (fK)KETf (bK)KET and (UK,G)GESK,KET be deﬁned by (9)7 (10) and (7) ]f fK Z 0 fOT
al K €T, and us > 0, for all 0 € Eexs, then if (ug)kxeT is a solution to (11), (4), (5), (6), (8), then
ug >0 foradl K €7T.



The proof of this maximum principle may be found in [6] or [9] using a strong formulation and in [7]
for a weak formulation. It immediately yields the existence and uniqueness of the solution to the finite
volume scheme. We may therefore now define the approximate finite volume solution ur by:

ur(@)=ug ifzeK KeT, (12)

where (ug ) ke is the unique solution to (4)- (11).
The following stability estimate on the approximate solution was proven in [7], in the more general case
of a semilinear convection diffusion equation.

Lemma 1 Under Assumptions 1 and 2, let T be an admassible mesh in the sense of Definition 1, and
let:

. . . dKo' . . dKO'
_ 7K 7 ) 13
¢ = min(gin mip T (K), min min -7 ). (13)

Let ur € X(T) be defined by ur(z) = ug for ae. x € K, and for any K € T ; there exists C € IR, only
depending on Q, (|§l|m(q), ¢, M = maxger card(Ex), b and f, such that

larllir <€ and |lar|lL2@) < C, (14)
where )
ur(z) = g = ug — () /Kg(y) dy forallz € K and all K €T (15)

3.3 Error estimates

In this section, one proves the convergence of the approximate solution uy towards the exact solution u
to (1), (2) assuming u € C%(Q) or u € H?(Q) and an additional assumption on the mesh. To do this, we
establish error estimates in a discrete H} norm. Some similar results are also in [5], [6], [9] and [11].
Let us now define the discrete H{} norm of a piecewise constant function from Q to IR.

Definition 2 (Discrete H} norm) Let T be an admissible finite volume mesh in the sense of Defini-
tion 1. For u which is constant on each control volume of T, that is to say u(z) = ug a.e. ¢ € K, one
defines the discrete H} norm by

1/2
llulls,7 = <ZT0 (Dou)2> )
og€e€

where Dou = |ux —ur| if 0 € Ent, 0 = K|L, Dou = |uk| if 0 € Eext NEx, To and the sets £, Eint, Eext
and €k are defined in Definition 1.

Remark 3 Let o € &y and assume 0 = K|L with K € T and L € N(K). One can see the difference
quotient Dyu/d, as a discrete normal gradient of w on o and therefore also on the diamond shaped dual
cell defined by the vertices of ¢ and zx and xr, note that the measure of this dual cell is d, m(o)/d,
where d = 2 or 3 is the space dimension. Let o € Eoxy and assume o € Ex with K € T. Again in this
case, assuming u = 0 on 09, the difference quotient Dyu/d, can be seen as a discrete gradient of u on
o and so on a dual cell defined by the vertices of ¢ and vk of measure d, m(o)/2.

1/2
Hence ||ull1, 7 = (Zdo m(O')(Dou/dg)2> can be seen as a discrele H} norm of u.
oc€ef

Let us now state the error estimates under some regularity assumption on the solution.

Theorem 1 (C? regularity) Under Assumptions 1 and 2, let T be a restricted admissible mesh in the
sense of Definition 1 and ut be the solution to ({)-(12). Assume that the unique variational solution u of
Problem (1), (2) satisfies u € C*(Q). Let et be defined by er(z) = ex = u(rgx) —ug ifr € K, KeT.



Then, there exists C' > 0, only depending on u, v, b, d and Q, such that

lello,7 < Csize(T), (16)
where || - ||1,7 is the discrete HE norm defined in Definition 2. Furthermore:
||6T||L2(Q) < Csize(T). (17)

Theorem 2 (H? regularity) Under Assumptions 1 and 2, let T be a restricted admissible mesh in the
sense of Definition 1 and let
o . . dK,U
¢= KET ocen diam(K) "
Let ur be defined by (4)-(12). Assume that the unique variational solution u to (1) and (2} belongs to
H?(Q). Let er be defined by er(z) = ex = u(rg) —ux ifr € K, KeT.
Then, there exists C, only depending on u, v, b, Q, d and (, such that (16) and (17) hold.

Remark 4

1. Inequality (16) (resp. (17)) yields an estimate of order 1 for the discrete H} norm (resp. L*
norm) of the error on the solution. Note also that, using u € C'(Q) (or u € H(Q)), one deduces,
from (17), the existence of C, only depending on u, b, v and Q (or u, b, v, Q and (), such that
lu — urllL2(q) < Csize(T).
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2. In Theorem 2, the function et is still well defined and so is the quantity “Vu n,” on o, for all
o € &. Indeed, since u € H*(Q) (and d < 3), one has u € C(Q) (and then u(zg) is well defined
for all control volume K € T ) and Vu -n, belongs to L?(c) (for the (d — 1)-Lebesque measure on
o) foralloce&.

3. Note that, under Assumptions | and 2 with b = v = g2 = 0 the (unique) variational solution of
(1), (2) is necessarily in H%(Q) provided that Q is conver.

4. Thanks to (iv) of Definition 1, (, in Theorem 2, is always defined. The important fact is that the
constant C' in the error estimates (16) and (17) depends on (.

5. For rectangular meshes ¢ depends on the ratio of the length and the width of rectangles. For a
triangulation, all angles of triangles must be lower that w/2 4+ 1 where 1 is a positive constant and
¢ depends only on 7.

6. In the case of the pure diffusion operator, one may approximate the diffusive flures through the mesh
interfaces up to the second order with the same difference quotient by using appropriate meshes such
as rectangles or Voronoi meshes. Indeed if y, is the mid-point of [, xr] for any o = K|L € &,
the proof of Lemma 3 may be adapted to show that the consistency error on the flur Ry , defined
in (22) below is of order 2 with respect to the mesh size size(T) instead of 1 as in (24) below. This
is in good agreement with numerical results which are presented in the recent paper [3] for a related
co-volume scheme. In the case of the diffusion-convection operator however the consistency error
of the upwind approrimation of the convection flur remains of order one for any mesh. Hence the
order one estimate which we obtain here seems to be sharp fro the upwind scheme. Order one is
also obtained in the numerical results of [3] for the convective case.

Proof of Theorems 1 and 2

One proceeds in two steps. In the first step, one proves that the approximation of the fluxes is consistent.
In the second step, one establishes error estimates using this property and the conservativity of the scheme

(see (3)).

Step 1 (Consistency)



Let K be a control volume and ¢ € £x. We define the exact diffusion flux FKJ and the exact convection

flux VK,U by:

Fro= —/ Vu(z) - ngody(z) and Vike= / u(z)v(z) ng  dy(x). (18)
Next for all K € 7 and ;ll o €&k, let Ff i o and VI’;U be defined by:g
Fg ., =—-m(K|L) %ﬁu(m, ifo = K|L € £k N &int, (19)
di o F , = —m(0) (u(yo) —u(zk)), ifo € Eexi N &k, (20)
VE o = VK ou(®s 4 ), (21)

where 25 + = 2k (resp. zp) if 0 € &y, 0 = K|L and vg o > 0 (resp. vk, < 0) and 2,4 = 2 (resp.
Yo) if 0 € Ek N Eext and vk o > 0 (resp. vk o < 0). Then, the consistency error on the diffusion and
convection fluxes may be defined as

_ 1 Fal * _ 1 I/ *
Rico = s (FK,G - FKVG) and e = s (VKya - VKVO). (22)
Moreover, we define
1
= — dr — . 2
PK (K /K u(z)dz — u(zg) (23)

Thanks to the regularity of v and v, a Taylor expansion immediately yields the following lemma which
gives the consistency of scheme in a finite volume sense when u € C*().

Lemma 2 Under Assumptions 1 and 2, let T be a restricted admissible mesh in the sense of Definition 1.
Assume that the unique variational solution u of Problem (1), (2) satisfies u € C*(Q). Then there erxists
C > 0, only depending on u and v, such that

|RK,0| + ‘TK,0| + lpr| < Csize(T),
forany K € T and o € Ek, where Rk o, Ti,o and pi are defined by (22) and (23).
We prove a similar lemma when u only belongs to H*(Q).

Lemma 3 Under Assumptions 1 and 2, let T be a restricted admissible mesh in the sense of Definition 1

¢ = min min 7dKU
K€T oegx diam(K)’
For K € T, let Vgo = {teg + (1 —t)z, 2 € 0, t € [0,1]}. For o € &ns, let Vo = Vi o UVL , where K
and L are the control volumes such that o = K|L. For 0 € £ NER, let Vo = Vi 5.
Assume that the unique variational solution u to (1), (2) belongs to H*(2). Then there exists C1, only
depending on d and (, and C'y, only depending on d, v, ( and p such that for all K € T and dall o € &k,

|Ri 0| < Cysize(T) (m(o)do) ™2 ||ul| 2w, ), (24)
rio| < Cosize(T) (m(o)do) " [Jullwiow,), (25)

and
o | < size(T) m(K)™H7 [Jullw k). (26)

for all p > d and such that p < 400 if d =2 and p < 6 ifd = 3,
where, for all p such that 1 < p < +o0:

Nl oy, = lullogy,) + Z I1Dsullo

D; is the (weak) derivative with respect to the component z; of z = (z1, -+, z4)" € RY.



Proof of Lemma 3

First note that thanks to Sobolev’s imbeddings, if v € H?(Q) then u € WP (Q) for all p such that
1 <p<+4ooifd=2 and such that 1 < p <6 if d = 3. Then (25) and (26) are well defined.

Let o € €. Since u € H?(2), the restriction of u to V, belongs to H?(V,). The space CQ(V_G) is dense in
H?(V,) (see, for instance, [16], this can be proved quite easily by a regularization technique). Then, using
a density argument, one needs only to prove (24), (25) and (26) for u € C?(V,). Therefore let us first
assume that u € C?()V,). The density argument will be proven for (24) in the sequel. It is straightforward
for (25) and (26).

First, one proves (24) if ¢ € &pe. Let K and L be the two control volumes such that ¢ = K|L. It is
possible to assume, for simplicity of notations and without loss of generality, that ¢ = 0 x &, with some
o C IPLd_l, and xx = (_deo"O)t’ xrp = (dLyo"O)t.

A Taylor expansion, using u € C%(V,) gives, for a.e. (for the (d — 1)-Lebesgue measure) = = (0,%)! € o,

u(zr) —u(z) = Vu(e) - (2, — ) + /0 Hu)({te+ (1 —tap) (e — ) - (zr — a) tdl,
where H (u)(z) denotes the Hessian matrix of u at point z, and
u(zg) —u(z) = Vu(z) - (zxg — ) + /0 H(u)({te + (1 —t)ag) (e — ) - (xxg — )t dl.

Remark that xj — xx = ng ,d,; substracting one equation off the other and integrating over o yields
|Rk o| < Bk,s + Br,o, with, for some C3 only depending on d,

s : )
Bk, = m(U)dg/g/O |H(u)(te + (1 —ak)||lex — x|t dt dy(),

d
where [H (u)(2)]* = 357 ;i [Di Dju(z) |,

The quantity By o is obtained from Bk , by changing K in L. One uses a change of variables in Bg .
Indeed, one sets z =tz + (1 —t)zx. Since |zx — 2| < diam(K) and dz = 4~ 1 dg , dt dvy(z), one obtains,

using 21 = (t — 1) dk o, 2 = (21,7)" withz € R,

Cs (diam(K))? (dgo)*?
Hl((f) do‘ /VK,o |H(U)(Z) |dK,a (Zl + dK,a)d_z

This gives with the Cauchy-Schwarz inequality,

1/2 1/2
Cs (dk )% 3 (diam(K))? 2 I .
Br.o < o, (/VKU |H (u)(2)] dz) (/VKU (71 F dr ) (= D2 d ) . (27)

For d = 2, remarking that m(Vk ) = (dx - m(c))/2, (27) gives

BK,U S dz.

1/2
Cs5 (diam(K))? 9
Br o, < V2 (m(0) do) /2 (dy dig o)1/ </Vx,c, |H (u)(2)] dz) .

A similar estimate holds on By , by changing K in L and dg » in df ». Since dg o, dp o > (diam(K) and
do = dg,o+dr,e > 2(diam(K), these estimates on Bk , and By, , yield (24) for some C only depending
on d and (.

For d = 3,

1/2
Cs5 (diam(K))? 9 Cssize(T)
Bl S (o) &2 d ) 72 (/v e dz) < V2 (m(e) dyirz 1 (v




With a similar estimate on By ,, this yields (24) for some C' only depending on d and (.

Now, one proves (24) if o € Ecx. Let K be the control volume such that o € £x. One can assume,
without loss of generality, that zx = 0 and ¢ = dg» x ¢ with ¢ C R?™!. The above proof gives (see
Definition 1 for the definition of y,), with some C4 only depending on d and ¢,

u(yo) — u(zk) 1 2 (size(T))?
_ ) /UVu(x) ‘g edy(z)] < C4W

/ H) () Pde,  (28)
Vs

dK,o
with ¢ = {(dx,»/2,%/2), 2 € 6}, and Vs = {tyo + (1 —t)z, z € 6,1 € [0,1]} U {tex + (1 — t)z, = € &,
t € [0,1]}. Note that m(¢) = m(e)/297! and that Vs C V,.

One has now to compare I, = m(lg) fg Vu(x) -ng ody(x) with Is = $ f& Vu(z) ng ody(x). A Taylor
expansion gives

1

m(c)

1

1, —Is = / / Hu)(zg +t(z —2k))(z — 2k ) - ng odtdy(z).

The change of variables in this last integral z = zx + ¢(z — 2k ), which gives dz = 2dg , t4~1 dt dvy(z),

ylelds, with E, = {tz+ (1 —t)zg,z €0, 1 € [%, 1]} and some Cj5 only depending on d (note that ¢ > %),
|Io - [6| <

ﬁ/ﬁ] | H (u)(2)||z — zx|d2.

Then, using once more the Cauchy-Schwarz inequality and |z — 2k | < diam(K),

m(e)ds JRLEEIEE m(o)d, JRCCER (29)

4 -4

I, — I5]* <

with some Cg only depending on d.

Inequalities (28) and (29) yield (24) for some C only depending on d and { for u € C*(V,). Taking C
convenient for o € &ipy and Eexs gives (24) for all o € £.

Now for the density argument, let w € H?(V,) and let (u,)nen C C*(V,) be a sequence which converges
to u in the H2(V,) norm. Thanks to the previous result, one has

up(zr) — up(2g)
dK,a

_ m%o’) /OVun(J?) ‘ng e dy(z)| < Cysize(T) (m(o) do)—l/z ltn 209, )

Thanks to Sobolev imbeddings the sequence (u,)nen C C*(V,) converges to u € H*(V,) uniformly and
the sequence (Vu, -ng . C L%(c) converges to Vu - ng , in L?(0) and therefore in L!(s). Hence one
pass to the limit in the left hand side term and obviously in the right hand side too. This gives (24) for
some (' only depending on d and ¢ for u € H2(V,).

Let us now prove (25) in the case ¢ € &ps; let ¢ = K|L with K € 7 and L € N(K). One assumes
vk,s > 0 (the case vk » < 0 works in the same way) so

1

m(7)

[ ) (w0 = ule)) o)

IrK,o| = ‘

It is possible to assume, for simplicity of notations and without loss of generality, that ¢ = 0 x &, with
some & C R and zx = (—dg o,0)". A Taylor expansion, using u € C*(V,) gives with z = (0,2)" € ¢

Iric,o| < sup|v(z)] Size(g) L/Ol‘vu((t -1) deg,t;E)‘ dt dz.

e m



Let p > d be such that p < 400 if d = 2 and p < 6 if d = 3, let p’ be its conjugate exponent that is
}% + ]% = 1. Thanks to Holder’s inequality:

1/p
|7 o| < sup |v(z)] size( (// ‘V (t=1)dg,s,t%) td_ldK,adtd;i)

TEQ
/ / o dt dz

tdld

1/p’.

!

Using a change of variables such that (%,¢) — 2z = ((¢t — 1) dk,»,¢ &) and remarking that v (d-1) =
p
(p' —1)(d — 1) < 1 since p > d, one obtains

—1/p 1 1 1/p
ol < sup V()] s v o) size(T) (m(o) dic o) (/0 mdt)

TEQ

_ supgv()
(1= -1 @-1)

Remarking that d, = dg o + dp o > 2 diam(K) > 2( di » one obtains (25) for some C' only depending
on v, ¢ and p.

Now let us prove (25) for ¢ € Eoxt NEx, K € T. If vg o > 0, the proof of (25) is identical to the case
o € &ing, SO one assumes vgk,, < 0; hence:

. =1/p
o ullwsvi )y size(T) (m(@) dico) . (30)

1

g

/Gv(x) ‘DK o (u(af:) — u(yo)) dy(x)|.

7K ,0| =

One can assume, without loss of generality, that zx = 0 and ¢ = dg , x & with ¢ C IR?!. We introduce

o= {(dK Z,%),x € 6}. Note that m(¢) = gld(_gl), then:
1
dy(z) dy(y) + W/a d'y(y)) :

2
Then using a Taylor expansion, a change of variables and Hélder’s inequality (for more details see the

proof of (30)), one has:

u(y) — u(yo)

]
WHSMQWM( :
senl m(o) m(c

1kl < Cllullwrn (v, size(T) (m(e)dy) ™

for any p > d such that p < +00 if d = 2 and p < 6 if d = 3 and where C only depends on v, d and p.
Finally let us prove (26). Using a Taylor expansion, one obtains

size(T)

lpr| < (K /K/O [Vu(tz+ (1 —t)zk)|dt de.

Using the change of variables such that  — z =tz + (1 — ) 2k and denoting by K; the image of K by
this change of variables, one obtains:

il 50 [ [y T

where yk, 1s the characteristic function of K.
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Thanks to Holder’s inequality and using m(K,) < t¢ m(K), one has:

1/p’
size(7) ! , 1/p (m(Kt)) ! size(T) |
|pK| S m([{) o K |Vu(z)| dz +d dt (I()l/p HUHWLP(K) o W dta

/\

for all p > d such that p < oo if d =2 and p < 6if d = 3. As p > d we obtain (26). This concludes the
proof of Lemma 3 and also step 1.

Step 2 (Error estimates)

Now, one proves Estimates (16) and (17).
As u is the exact solution to (1), (2), for all K € T, one has:

> (Fro+ Vo) +/ b() u(x) de = / ) da. (31)
oyl K K
Substracting (11) off the previous equation, using (22) and the regularity of u yields
S (=P (Vi o =Vieo) )+ m(Kex = = [ 06e) (uta)-u(ok) ) do= 3 m(o)(Rico+ra).
cefk K cEEK
Multiplying the result by ex, summing for K € 7, and noting that

S5 (Fio = Frco)ex = Y 1Dael? 70 = llellE 7.

KeTo€elk 4512

yields

lerlir+ Y 3 vkocomen + [ Ha) (er(a)* da (32

KeToelx
Z (K)prex Z Z 0)(Rk o+ TK,0)eK,

KeT KeToelk

< bl

where |D,e| is defined in Definition 2 and e, 4 = u(2o,+) — Uo, +.

Reordering the summation over the set of edges, one has

1
S vkotorex =Y vo (6v,+ - eo,—) Cot = 5 > v, ((607+ —eo )+ (eh 4 — 63,—))a

KeTo€elxk oc€ef oc€e€
where v, = |fg v(z) - n, dy(x)|, n, being a unit normal vector to o, and e, _ is the downstream value
to o with respect to v, that is to say if o = K|L, then e, - = e if vg » <0, and e, - = e otherwise;
if 0 € €k N&exi, then e;— = ug if vx » <0 and e, — = 0 otherwise.

Now note that:

Sur =Y ([ v uen) = [ @ive e

ce€ KeT
Then, one obtains
1
Z Z VK 0€o +CK > 2/(d1vv( ))e%—(m)dm,
KeTo€elk

and so, using this result in (32),

lerlir+ [ (5 400 ) éhto)de < ol

Z [\ pKeK

KeT

= >  m(o)(Rr.o + o)k

KeToelx
(33)

11



Let us now deal with the consistency error terms: By Young’s inequality, for all § > 0, one has

, ) o
bl | 3 m(K)pen] < Slerlzaqay +Iobee 37 (k) e
KeT KeT
Hence if « € C?(Q), using Lemma 2, one obtains, for all § > 0:
c g Cl8ll% (.
blls | D m(K)prer| < Sllerllia) + — 5 (size(T))?, (34)
KeT

where C' only depends on u and €.
If u is only in H%(Q2), thanks to Lemma 3 and to Holder’s inequality one has, for all § > 0 and all p > d
such that p < 4ooif d =2 and p <6 if d = 3:

¢ s (II6]]oc size(T))* i
Bl | 3 m(E)prcer| < gllerlEam + 75— > m(E) = llulfiynoy
KeT KeT
] bl oo size(T))? _
< 5”67'”%2(51) + w ||u||%/l/l,p(ﬂ) m(Q)(P 2)/17’

choosing p = 4, one obtains (34) for all § > 0, where C only depends on u and €.

Furthermore, thanks to the conservativity property of the scheme (see (3)), one has Rx » = —Rp,» and
TKo = —TL,g for 0 € &py such that o = K o = |Rk,o| and ro = |rg | if ¢ € Ex. Reordering
the summation over the edges and using Young’s inequality, one obtains

|ZZ RK0+TK06K|<ZH1 06)(Ro+r0)

KeTo€elk oce€

< %Zm;:) (Do) + %Zm(a)do(Ro +10)%. (35)
cel o€
Now, using Lemma 2, if u € C*(Q), or Lemma 3 (with p = 4) and Hélder’s inequality, if u is only in
H?(Q) (for more details see the proof of inequality (34)), and remarking that 3 .. m(c)d, = dm(Q),
(35) yields the existence of C', only depending on u, v, d and Q if u € C*(Q) and on u, v, d, { and Q if
u is only in H?(Q), such that

1> > mo)(Rro+rro)ex| < 5 ||eT||%,T+C(Size(7-))2~

KeTo€elk

Hence, (33), (34) and the previous inequality yield for all § > 0

sllerlfrt [ (T4 000)) 3 0)de < Gl By + € (14 5) GNP, @0

where C' depends only on b, u, v, d and Q if u € C*(Q) and on b, u, v, d, ¢ and Q if u is only in H?(€).
If there exists 6 > 0 such that divv/2 4+ b > §/2, this inequality yields Estimate (16) and Estimate (17).

Otherwise, to obtain Estimate (16), one uses the inequality (36) with § = the positivity of

2 (diam(£2))?’
divv/2 + b and a discrete Poincaré inequality which is proved in [9] or [7] and which we recall here:
Lemma 4 (Discrete Poincaré inequality) Let 7 be an admissible finite volume mesh in the sense of

Definition 1 and u be a function which is constant on each cell of T, that is u(z) =ug ifr € K, K € T.
Then

llullL2(qy < diam(Q)|u|l,,T,
where || - ||1,7 is the discrete HE norm defined in Definition 2.

12



Using the above lemma once more and Estimate (16) gives Estimate (17).
This concludes the proofs of Theorems 1 and 2 and shows that the numerical solution converges towards
the exact solution to (1), (2). ]

4 Neumann boundary conditions
The second boundary condition we consider is a Neumann condition:

Vu(z) -n(z) =g (z), =€0Q, (37)
where

Assumption 3 b = 0 a.e. on Q, divv =0 on Q, v-n = 0 on d9Q, and gV € H1/2(8Q) satisfies the
following compatibility relation: [, gV () dvy(x) + Jo f(x) de = 0.

Then under Assumptions 1 and 3, by Lax-Milgram Theorem, there exists a unique variational solution
u € H'(2) such that [, u(x)de =0, of (1), (37). That is to say u € H'(Q) such that [,u(x)dr =0
satisfies for all ¢ € HY(Q)

/Q(Vu(l‘)-V¢>($)+div(v(m)u(z))¢>(x)) dw:/

o0

o™ (2) 7(8) () dy (i) + /ﬂ £(z) 8(z) d,

where 7 denotes the trace operator from H'(Q) to H'/?(9Q) and dy is the integration symbol for the
(d — 1)-dimensional Lebesgue measure.

Remark 5 The assumptions b =0, divv =0 and v -n = 0 are sufficient to prove the coercitivity of the
bilinear form of the variational formulation. However, if the hypotheses on v and b of Assumption 3 are
not satisfied, we do not need a compatibility relation. This latter case is therefore treated in section 5
which deals with Robin boundary conditions.

4.1 Discretization

We use the same notations as in the previous section. Let 7 be an admissible mesh in the sense of
Definition 1 and (ug)ke7 be the discrete unknowns associated with the control volumes K € T. Let
us integrate equation (1) on each cell of the mesh; the diffusion flux is discretized on interior edges only
since 1t is known on the boundary of €2; an upstream scheme is used for the convection term and one

obtains:
Z (FK,U + VK, o uo7+): m(]{) fK + Z gé\f’ (38)

o €EKNEint oc€ER NEext

where Fg , is defined by (4) if o € &ne, 0 = K|L,
gy = / g (x) dy(x) if o€ Ext (39)

and where vk » and fx are defined by (7) and (10) and u, 4+ is defined by:

UK if 'UK,o Z 0,
ifc=K|L, Up g = (40)
uy;, otherwise.
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4.2 Existence, uniqueness and stability of the approximate solution

One proves the following Proposition which gives the existence of the approximate solution and the
uniqueness up to a constant like in the continuous case.

Proposition 2 Under Assumptions 1 and 3, let T be an admissible mesh in the sense of Definition 1.
Then, there exists a solution uy to (12), (38), (39), (40), (4), (7) and (10). This solution is unique up
to a constant.

Proof of Proposition 2

Let us first study the kernel of the linear operator defined by the left hand side of (38). For all K € T,
suppose that ZoefexmiK g¥ +m(K) fx = 0. Let us denote by K a cell of 7 such that ux, = minge7 uk.
Since divv = 0 on € and v -n = 0 on 9%, one has

numerical scheme (38), one gets:

> —m(Ko

LeN(Ko)

[, v(z) ng, o dy(x) = 0; then, using the

€€k NEint

L) UL — UK,

+ Z VKo,o (ua,+ - UKD) =0.

d
Kol L 0E€EKGNEint

Now remarking that ug, < ug for all L € N(Ky) and EJEEK iy VKoo (uo+ — ug,) < 0, one obtains
oNEin

ur, = uk, for any neighbour L of Ky. Since Q is connected, one has uy, = ug for all (K, L) € T2. So the
dimension of the kernel of the linear operator defined by the left hand side of (38) is 1. Let us now study
its image. First note that its dimension is card(7) — 1 where card(7T) is the number of control volumes
of the mesh.

Summing Equation (38) over K € T, remarking that v-n =0 on 0Q and vg o = —vp s for all K € T
and all L € N (K), one obtains:

Z ( Z géV—I-m(K)fK) :/ gN(m)d'y(m)—i-/f(m)da::O.
KeT \o€€.unék a0 Q

So assuming fan gV () dvy(z) + fﬂ f(z) dz = 0 there exists a solution to (12), (38), (39),(40), (4), (7) and
(10) and this solution is unique up to a constant.
Let us introduce, like in the Dirichlet case, the discrete H' semi-norm of a function from Q to IR which
is constant on each control volume (or cell) of 7.

Definition 3 (Discrete H' semi-norm) Let T be an admissible finite volume mesh in the sense of
Definition 1. Let u be a function which is constant on each control volume of T, that is u(x) = ug if
© € K, K €T, one defines the discrete H' semi-norm by

1/2

m(c

lul1,7 = ( Z d(a)(Dou)z) ,
0€Eint

where Dou = |u —ur| if o = K|L and the set Ene 1s defined in Definition 1.

Let us now give an estimate on the approximate solution.

Lemma 5 Under Assumptions 1 and 3, let T be an admussible mesh in the sense of Definition 1. Let
ur be the solution to (12), (38), (39), (40), (4), (7) and (10) such that [, ur(x)de = .
Then there exists C € IRy depending only on Q such that

furlir < € (l9V lusom + I lliee) + @) (41)

where |.|1 7 is defined in Definition 3
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Proof of Lemma 5
Let K € T, we multiply (38) by ug and we sum the result over K € T, we obtain:

UK — U .
E E <%UKIH(O')+UKIG Uo, 4 UK) = E m(K) frx ux + E g gév UK.
KET 0€€x NEint Kl KeT KET 0€€xNEaxe

o=K|L

Now let us note that:

YooY E—ume)= Y md(a) (Dyu)? (42)

KeT ot OKIL 0€Eim C
oc=K|L
Furthermore, for o € &ny, 0 = K|L, let uy— = ug if vgo < 0 and u, - = ug otherwise and v, =
|vk,o| = |vL,0|- Then, one has
S wkeunsux= Y (U)o o) (43)
KeT 0€€xNEiny €€t
oc=K|L
_ (o4 —uo-)® | (Uo4)®  (uo-)” 1 2
I LD
0 €€int KeT o€€int

=3 /ﬂdiV(V(l’)) (w7 ())? dr = /m%) n(z) (ur)? dy(@).

Using the both previous results, Assumption 3 and Young inequality, we get for all § > 0:

1
furl? 7 < 6 (9™ 1=00) + 1R )+ 55 (1107 2oy + lur ey )

where u7(2) = ug for almost every # € o, 0 € Eeuy N Ek .
In order to conclude, one uses Lemmas 6 and 7, which are stated and proved bellow, one obtains

C 2

2 N2 2 2 2
rlt <8 (19 B + 1)+ (o7l r + - 0?)
for all § > 0 and where C' only depends on 2.

Choosing § = 2C gives (41).

Lemma 6 (Discrete Poincaré-Wirtinger inequality) Let T be an admissible mesh in the sense of
Definition 1. Let u be a function which is constant on each cell of T, that is u(z) = ux ift € K, K € T.
Then

2
sy < Clutr + 2 (@)™ ([ oy )
where C' only depends on Q and |- |1 1 is defined in Definition 3.

Proof of Lemma 6
Let 7 be an admissible mesh and u be a function which is constant on each cell of 7. Let mgq(u) be the

mean value of u over Q, that is
1 /
ma(u) = —— [ u(z)dz.
(1) = gz . o)

JullZ2() < 20w = ma (w2 (q) + 2(ma(u))*m(Q),

Note that
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and therefore the proof of Lemma 6 is reduced to the proof of the existence of D > 0, only depending on
Q, such that
[ = ma(u)|Z2qy < Dlult 7. (44)

The proof of (44) may be decomposed into three steps (mdeed, if © is convex, the first step is sufficient).
Step 1 (Estimate on a convex part of Q)

Let w be an open convex subset of Q, w # f and m, (u) be the mean value of v on w. In this step, one
proves that there exists Cp, depending only on w, such that

1
(Ju(z) = mo (w)[[7 20y < MCOWHZT (45)

(Taking w = €, this proves (44) and Lemma 6 in the case where w is convex.)
Noting that

dy dx,

[ o) = )" aa

(45) is proved provided that there exists Cy € IH_|_, only dependlng on w, such that
[ [ @) = )y dedy < Colufy 7. @

For o € &, let the function yo from IR? x IRY to {0, 1} be defined by

Xolz,y) =1, if v,y €ew, [z, y|No #0,
Xo(z,y) =0, ifa¢wory¢gw or [z,y|No=0.

(Recall that [z,y] = {te + (1 —t)y, t € [0,1]}.) For a.e. 2,y € w, one has, with Dou = |ug — uy| if
o€ &, o= K|L,

(u(@) = u(@)? < (Y [Daulyalz, ),

0€EEint

(note that the convexity of w is used here) which yields, thanks to the Cauchy-Schwarz inequality,

|D<7u|2
(u(x) — u(y))2 < TXG (ﬁ, y) Z dGCG,y—ZXG($a y); (47)
0€Emy © YT 0€Eint
with
y—z ‘
-n
|y — |

recall that n, is a unit normal vector to o, and that xx — x = +don, if 0 € &y, 0 = K|L. For a.e.
x,y € w, one has

y—x
ly— ]’

Z doco,y—xXo (:c, y) =

o€t

(xx — L)

for some convenient control volumes K and L, depending on # and y (the convexity of w is used again
here). Therefore,

Z doCoy—zXo(z,y) < diam(w).

o€€int

Thus, integrating (47) with respect to z and y in w,

| Do ul?
y2dzdy < diam(w) Z dixo(x, y)dady,
wJw oCoy—a

0€Eint
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which gives, by a change of variables,

| Do ul?

// ) dady < diam(w )/}Rd( > CiogTw/on(x,x—‘r-z)da:)dz. (48)

0EEint

Noting that, if |z| > diam(w), x, (¢, 2+ z) =0, for a.e. ¥ € w, and
/ Xo(z, 2+ 2)dz < m(0)|z -n,| = m(0)|z|e,, . for ae. z € IRY,

therefore, with (48):

//(U(l‘) —u(y))?dzdy < (diam(w))*m(B,) Z %’

0EEint

where B, denotes the ball of IR? of center 0 and radius diam(w).
This inequality proves (46) and then (45) with Cy = (diam(w))?m(B,) (which only depends on w).
Taking w = €, it concludes the proof of Lemma 6 in the case where €2 is convex.

Step 2 (Estimate with respect to the mean value on a part of the boundary)

In this step, one proves the same inequality than (45) but with the mean value of u on a (arbitrary) part
I of the boundary of w instead of m, (u) and with a convenient Cy depending on I, Q and w instead
Of CO .

More precisely, let w be a polygonal open convex subset of  and let I C dw, with m(I) > 0 (m() is
the (d — 1)-Lebesgue measure of I). Assume that I is included in a hyperplane of IR?. Let yu be the
“trace” of u on the boundary of w, that is yu(z) = ug if © € dwN K, for K € T (if + € K N L, the choice
of yu(x) between ug and uy does not matter). Let my(u) be the mean value of yu on I. This step is
devoted to the proof of the existence of C, only depending on Q, w and I, such that

[lu(x) = s (u)l[Z2 () < Cululi 7 (49)

For the sake of simplicity, only the case d = 2 is considered here. Since I is included in a hyperplane, it
may be assumed, without loss of generality, that I = {0} x J, with J C IR and w C IR} x IR (one uses
here the convexity of w).

Let « = max{zy, * = (x1,22)" € @} and a = («,B)" € w. In the following, a is fixed. For a.e.
v = (x1,22)" € w and for a.e. (for the 1-Lebesgue measure) y = (0,7)" € I (with ¥ € J), one sets
z(z,y) = ta + (1 — t)y with ¢ = z1 /. Note that, thanks to the convexity of w, z(z,y) = (21,22)" € ©,
with z; = x1. The following inequality holds:

E(u(z) —yu(y) < fu(e) — u(z(e, )| + |u(z(z, y)) = yuly)l
In the following, the notation Cj, i € IN*, will be used for quantities only depending on €2, w and 1.

Let us integrate the above inequality over y € I, take the power 2, from the Cauchy-Schwarz inequality,
an integration over ¢ € w leads to

/ mr(u))?de < U// v.1)))?dy(y)de
/ [ (et ) = w(w))? o)

Then,
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with, since w is convex,

A= / / (S 1Dsulo (@, (2, 9))) " d(y) de,

o€&int

5= [ [ ipeteton )

0€&int

Recall that, for £, n €@, xo(&,7) = 1if [, n]No # 0 and x,(&,7) = 0if [§,9]N o = §. Let us now look
for some bounds of A and B of the form Clul 7.

The bound for A is easy. Using the Cauchy-Schwarz inequality and the fact that

Z Cow—z(ay)doXo (T, 2(7,y)) < diam(w)

€€t

and

(recall that ¢, = ||Z—| -1, | (for n € IR?\ 0) gives

A<02// 3 [ “J:(” El’y)) dz dy(y).

o€€int 2(,y)Co

Since z; = x1, one has ¢y p_s(cy) = Coe, With e = (0, 1)*. Let us perform the integration of the right
hand side of the previous inequality, with respect to the first Component of xz, denoted by x1, first. The
result of the integration with respect to 21 is bounded by |ul? 17- Then, integrating with respect to

and y € I gives A < Cs|ul? T T

In order to obtain a bound B, one remarks, as for A, that

B §C4/w/ Z |D u| XU $dy) )dl‘d’y(y)

e Coy—e o

In the right hand side of this inequality, the integration with respect to y € [ is transformed into an
integration with respect to & = (£1,&2)" € o, this yields (note that ¢ y_.(s,y) = Co,a—y)

pecyy E [ [ a0 sl

o o CT,a—y(¢) la — &
where y(&) = s£ + (1 — s)a, with s&; + (1 — s)a = 0, and where 1, is defined by

Yol(x,&) =1, if y(€) € I and & <z
Yo (2,6) =0, ify(€) € I or & > 2.

Noting that ¢ ,_y(¢) > C5 > 0, one deduces that

=) Lot [ ([ nte 222900} o) < ot

o€Ein

with, for instance, C7 = Cs(diam(w))?. The bounds on A and B yield (49).

Step 3 (proof of (44))

Let us now prove that there exists D € R4, only depending on € such that (44) hold. Since Q is a
polygonal set (d = 2 or 3), there exists a finite number of disjoint convex polygonal sets, denoted by
{4,...,9Q,}, such that @ = U, Q;. Let I; ; = Q; NQ;, and B be the set of couples (i, j) € {1,...,n}?
such that i # j and the (d — 1)-dimensional Lebesgue measure of I; ;, denoted by m(7; ;), is positive.
Let m; denote the mean value of w on Q;, ¢ € {1,...,n}, and m; ; denote the mean value of u on I; ;,
(1,j) € B. (For o € &y, in order that u be defined on o, a.e. for the (d — 1)-dimensional Lebesgue
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measure, let K € T be a control volume such that o € £k, one sets u = ug on ¢.) By definition,
m; ; = mj; for all (¢, j) € B.
Step 1 gives the existence of C;, i € {1,...,n}, only depending on € (since the ; only depend on ),
such that

||u_ml||%2(ﬂl) SCZ'|U|?7—, Vied{l,... n}, (50)

Step 2 gives the existence of C; ;, ¢, j € B, only depending on €2, such that
= 13 j||72(q,) < Cijluli 7 V(i) € B.

Then, one has (m; —m; ;)?m(Q;) < 2(Ci + Cij)|u %7—, for all (,j) € B. Since € is connected, the
above inequality yields the existence of M, only depending on €, such that |m; — m;| < M|u|i 7 for all
(i,7) € {1,...,n}?, and therefore |mq(u) — m;| < M|ul|y 7 for all ¢ € {1,...,n}. Then, (50) yields the
existence of D, only depending on €, such that (44) holds. This completes the proof of Lemma 6.

n

Lemma 7 Let T be an admussible finite volume mesh in the sense of Definition 1 and u be a function
which is constant on each cell of T and each edge of Eext, that is u(z) = ug if v € K, K € T and
u(z) =uy ifx €0, 0 € Eext. Let I' C 0K such that its (d— 1)-dimensional measure m(I') # 0 and O C Q
such that its d-dimensional measure m(Q) # 0. Then there exists C, only depending on 0, such that

el oy < € (1l 7 + Nulleqry ) (51)

and
lll2 2000y < € (1 7 + 11ull32(09) - (52)

where | - |1 7 is the discrete H} norm defined in Definition J.

Proof of Lemma 7

We proceed in two steps. The first two steps deal with the proof of (51) while the third step deals with
(52). The first step consists in proving (51) on a part of Q with a boundary containing I'. In the second
step we use a discrete trace inequality which is stated in Lemma 8 to conclude the proof of the announced
result on .

Step 1

We can assume without loss of generality that T is included in a hyperplane of IR, indeed if it is not we
can split T in several parts included in hyperplanes of IR¢ since Q is polygonal if d = 2 or polyhedral if
d=3. For z,y € IR*, one defines [z,y] = {tz+ (1 —t)y ; t €[0,1]}. Let us define

o) :{xEQ; Jy € I such that (z —y) -y =0 and [z,y] C Q} (53)

Then we choose a coordinate system such that a point y € I' has for coordinate (0, g) with g € I C R*!
and such that if we consider a point € O(T') with @ = (21,%), € I, then 2, > 0.

Let us denote by 5 the first unit vector of the coordinate system, so 5 = (1,0) if d =2 and n = (1,0, 0) if
d=3. For o € &, we define x, from IR x R? to {0, 1} by Xo(z,y) =1lifoN[z,y] # 0 and x,(x,y) =0
otherwise.

For g € I, let denote by Dy, the semi-line defined by its origin (0, §) and the vector 5, and by a(g) the
real such that (a(9),7) € Dy, NOQ and [(0,7), (a(7),9)] C Q.

Let y = (0,9) € T and x1 €]0, «(g)][, then

(s, )] < Ju(0,3)| + 3~ (Dou) xo ((2(5). ), v).

c€Ef
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where D, u 1s defined in Definition 4.
Using the Cauchy-Schwarz inequality, and setting ¢, = |n, - n| where n, is a unit normal vector to o,
one gets

| (551, )| < 2|u(0 y)|2+2 (Z%XU<(Q(Q)’g)ay)> (Z da Cng((a(g),g),y)) .

o=t oge€

Remarking that > . docs Xo ((a(g), g),y)g diam(€2) and integrating with respect to #; and ¥, one

obtains

2 o -
ol oy < 2 ullf ey + 2 (diam(@ L/}j Do o ({0, 3).0) di
Since f; xo ((a(gj), v), y) dy <m(o) ¢y, one has

lal a0y < € (o) + lull? 7) |
where C' only depends on €2. This concludes the first step.

Step 2 Proof of (51)

By compactness of the boundary of 0O(I') (where O(I') is defined by (53) and dO(I') denotes its bound-
ary), there exists a finite number of hyperplanes of RY, {T;, i=1,.. N}, such that o0(ry c UN.T;
and T; NT; C IR ford,j € {1,---, N}, i # .

Let j € {1,---, N}, then, thanks to Lemma 8 which is stated and proved below, one has:

el aynm < €1 (el s + Il 7). (54)

whereyu denotes the “discrete trace” of u, that is yu = ug for all x € ¢ such that ¢ € 4t N EK and Cy
only depends on €.
Let us define

O(FjﬂQ):{xEQ; dy e T; NQsuch that (x —y) -y =0 and [a:,y]CQ\(’)(F)}

Then applying the first step to I'; N €2 instead of I', one gets

1l a0y < C2 (1l rng + el 1)
where C'y only depends on €.
Then using (54)
1013 200 < (C2+CC1) (Il 2oy + el 7 )
and thanks to Step 1
lal2 0 0ynay < € (llam) +lullir)

where C' only depends on 2.
Iterating this process so long as a part of € has not been reached, we obtain (51) where C' only depends
on £ which concludes the proof of (51).

Step 3 Proof of (52)
Thanks to Lemma &8

el agory < € (Iullzqmnoy + llull )

where C' only depends on 2.
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Let us denote by 9@ the boundary of @. We denote by ~yu the discrete trace of u on 90, that is for all
redO,if x € K, K €T then yu(z) = ug, if ¢ € 0, 0 € Eext then yu(z) = uy, if 2 € 0, 0 € &,
o = K|L C 00 and K C O then yu(x) = uy, finally if # € 0, ¢ € & and 0 = K|L ¢ 9O then
yu(z) = uy, or ug. Using (51), one gets

s (@0 < € (vl soo) + lullir)

where C' only depends on €2.
Using Lemma 8 once more, one obtains

Iyl =) < C (el zo) + lulfi 7).

where C' only depends on 2.
These three results yield (52). This concludes the proof of Lemma 7. [

Lemma 8 (Trace inequality) Let Q be an open bounded polygonal subset of RY, d=2o0r3. Let T be
an admissible mesh in the sense of Definition 1, and u be a function from Q to IR which is constant on
each control volume of the mesh. Let ug be the value of u in the control volume K. Let vu be defined by
yu = ug a.e. (for the (d — 1)-dimensional Lebesque measure) on o, if 0 € Eext and 0 € Ex. Then, there
exists C, only depending on 0, such that

lvullz(o0) < C(luli,7 + (|ullL2@))- (55)

Proof of Lemma 8

By compactness of the boundary of 9, there exists a finite number of open hyper-rectangles (d = 2 or
3), {Ri,i=1,..., N}, and normalized vectors of R*, {n;,i=1,...,N}, such that

8QCUfV:1RZ»,
ni-n(z) >a>0foralee RyNONie{l,...,N},
{r+ini,zr e RiNdQteRL}NR; CQ,

where « is some positive number and n(z) is the normal vector to 9Q at z, inward to Q. Let {oy,i =
1,...,N} be a family of functions such that vazl ai(z) = 1, for all € 0Q, a; € C=(IRY IRy) and
a; = 0 outside of Ry, for all ¢ = 1,... N. Let I'; = R; N 98; let us prove that there exists C; only
depending on « and «; such that

leivullzy < Cilluly 7+ [ull L2 () - (56)

The existence of C, only depending on €, such that (55) holds, follows easily (taking C' = Zf\;l C;, and
using Zf\;l a;(z) = 1, note that a and a; depend only on ). It remains to prove (56).

Let us introduce some notations. For ¢ € €& and K € T, define x, and yx from R x IRY to {0,1}
by Xo(z,y) = 1, if [z,y] No £ 0, xo(z,y) =0, if [z,y]No =0, and xk(v,y) = 1, if [z,y] N K # 0,
xk(z,y) =0, if [2,y) "N K = 0.

Let i € {1,..., N} and let # € T;. There exists a unique ¢ > 0 such that @ +1in; € OR;, let y(z) = z +1n;.
For o € &, let zo(x) = [z, y(z)] N if [z, y(z)]No # B and is reduced to one point. For K € T, let
¢k (z), i (x) be such that [z, y(¢)] N K = [Ex (z), nk (z)] if [z, y(x)]N K # 0.

One has, for a.e. (for the (d — 1)-dimensional Lebesgue measure) € T,

i@ < 30 e @) (u = sy (o () + Y | (o€ () = sl () s e, y(a)),
o=K|LEEins KeT
that is,
jaryu(e) < Ale) + B(o) (57)
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with
Ay =20 Y leilzo(@)(ur — ur)lxo (2, y(@)))%,
o0=K|LEEint
=20 (eslEre () — il (@) [ (2, y(2)))*.
KeT

A bound on A(z) is obtained for a.e. # € I';, by remarking that, from the Cauchy-Schwarz inequality:

) < Dy Z |D UI oz, y(x)) Z docoXo(z, y(z)),

€€t 0 €Eint

where D; only depends on a; and ¢, = |7; - n,|. (Recall that Dou = |ug — ur|.) Since
Z docoXo(2,y(2)) < diam(Q),
0EEint

this yields:
| Dy ul?

ovo

A(z) < diam(Q) Dy >

o€€int

Xo (2, y(7))-

Then, since
1
[ xola vte)dr(a) < oo,
r a

there exists D, only depending on 2, such that

A= / A(x)dy(w) < Dalul 7.
r

i

A bound B(z) for a.e. « € T'; is obtained with the Cauchy-Schwarz inequality:

B(z) < D3 > ujoxx (v, y(2)) e (z) — i (0)] Y 1€k () — nxc(2) X (2, y(x)),

KeT KeT
where D3 only depends on «;. Since

3 (o) = mc(o)lnc (e l)) < diam(@) and [ e pleDléx () = mc(@)lda(a) < (i)

KeT T
there exists Dy, only depending on , such that

B= /F B(z)dy(x) < D4||U||%2(ﬂ)

@

Integrating (57) over I';, the bounds on A and B lead (56) for some convenient C; and it concludes the
proof of Lemma 8. L]

4.3 Error estimates

Theorem 3 (C? regularity) Under Assumptions 1 and 3, let T be an admissible mesh in the sense of
Definition 1. One assumes that the unique variational solution u € HY(Q), such that fn z)de =0, of
Problem (1), (37) satisfies u € C*(Q). Let ur be the solution to (12), (38), (39),(40), (1), (7) and (10),
such that ) .7 m(K)ug = ) gcr m(K) u(zk ), where xx is defined in Definition 1. Let er be defined
byer(x) =ex =u(eg) —ug ife e K, KeT.
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Then, there exists C' > 0 only depending on u, v, b, d and € such that
erlur < Csie(T), (58)
where | - |1 7 is the discrete H' semi-norm defined in Definition 3. Furthermore
ller||z2(q) < Csize(T). (59)
Theorem 4 (H? regularity) Under Assumptions 1 and 3, let T be an admissible mesh in the sense of
Definition 1 and let

. . dK,a
¢ = min min ———
KeT oefx diam(K)

One assumes that the unique variational solution uw € H'(), such that [,u(x)dr = 0, of Problem
(1), (37) satisfies u € H*(Q). Let ur be the solution to (12), (38), (39),(40), (4), (7) and (10), such
that Y- peer m(K)ug = Y ger m(K)u(zk), where xg is defined in Definition 1. Let et be defined by
er(z) =ex =u(eg) —ug fe € K, KeT.

Then, there exists C, only depending on u, v, b, d, Q and {, such that (58) and (59) hold.

Proof of Theorems 3 and 4

As u is the exact solution to (1), (37), one has:
> (Fro+ Vo) = [ Serde s 3 o),
TEER N Eint K TEER NEext

where FKyg and VKyg are defined by (18).
Substracting (38) off the previous equation yields

S (Feo-Fro)t Y (Vio-Vio)== > m@)Rko— > m(@)rke, (60)
0=K|LEEnt 0E€EK NEint o=K|LEEins 0€EK NEint

where F};a is defined by (19) and Vfgp = v ou(2s 1), Vo € Exk N&ng, YK €T, where z, 4+ = xx (resp.
wp) if o € Ene, 0 = K|L and vk o > 0 (resp. vk o <0), finally Rk, and rk o are defined by (22).
Multiplying (60) by ex, summing for K € 7 and noting that

S 5 (o o) = X o =kl

KeTo=K|LEEns €€t

where | - |7 - is defined in Definition 3, yield

|e7—|i7— + Z Z VK,0€o+ 6K < — Z Z m(o) (Ri,s + 7K,0) €K, (61)

KeTo=K|LEEm KeTo=K|LEEm

where e, 1 = u(25 1) — U 4.

Reordering the summation over the set of edges, one has

1 2 2 2
Yo D tKetorex = Y U (eo,+ - eo,—) Cot =5 > v ((ea,+ A B o (e 60,_)),
KeTo=K|LEEnt 0€Eint 0E€Eint
where, for all o € &, vo = |fov(x) -ndy(x)|, n being a unit normal vector to o, and e, _ is the
downstream value to ¢ with respect to v, i.e. if ¢ = K|L, then e, - = ex if vk, <0, and 5 = ¢

otherwise. Thanks to the assumptions divv =0 on € and v -n = 0 on 92, one obtains

1 1 1
3 2 vl me ) =g Y vl e )53, 3 kol

0€Eint €€t KeToeEext

_ %I;T (/aKv(m) ~an’y(x)> €2 = %/ﬂ(diw(x))e%(x)dx 0.
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Hence, (61) yields

6717—_— milo Ko TK_g CK .

lerli 7 <= Y m(e)(Rxo+TKo) (62)
KeTo€e€k

Thanks to the conservativity property of the scheme (see (3)), one has Rx o = —Rro and rg o = —71 0

for o € &y such that ¢ = K|L. Let Ry = |Rk o| and 7, = |rg 0| if o € Ex. Reordering the summation
over the edges and using Young’s inequality, one then obtains

1> Y. mE)Rre+rreex] < Y m(o)(Doe)(Ro + 7o) <

KeTo=K|L€Ent o EEint

1 m(o) 9, 1 2
5 2 g, Pee)? 5 D mle)do(Ro £ 7o) (63)

€€t o€Eint

Using Lemma 2, if u € C?(Q), or Holder’s inequality and Lemma 3 (with p = 4), if u is only in H?(Q)
(for more details see the proof of inequality (34)), and remarking that } .. m(c)d, = dm(£2), (62) and
(63) yield the existence of €, only depending on u, v, d and Q if u € C*(Q) and on u, v, d, Q and  if u
is only in H?({2), such that

o727 < C (size(T))*.

This estimate gives (58). In order to obtain (59), we use a discrete Poincaré-Wirtinger inequality which
is given in Lemma 6. This concludes the proofs of Theorems 3 and 4. ]

5 Robin boundary condition
The last type of boundary condition we consider is a Robin condition:

Vu(z) -n(z) + Mz) u(z) = gF'(x), =€0dQ, (64)
with

Assumption 4 ¢¥ € H'/?(9Q), A\ € L°°(0Q) such that v -n/2 + X > 0 a.e. on 0Q. Furthermore, if
v(z) -n(z)/2+ AMz) = 0 for allmost every x € I then one assumes the existence of O C Q such that its
d-dimensional measure m(Q) # 0 and such that div(v)/24+ b # 0 a.e. on O.

Then, under Assumptions 1 and 4 the Lax-Milgram theorem ensures the existence of a unique variational
solution u € H'(Q) of (1), (64). That is to say u € H'(Q) satisfies

[ [Fute)- Tote)+ div(v(@)u(e) ola) + ba) ula) () do + [ M) (ut) 70) ) dr(2)
Q o0
= [ s @T@@ ¢ + [ @) ole)d, forall 6 € (@),
N Q

where 5 denotes the trace operator from H'(Q) into H'/?(9Q) and d~ is the integration symbol for the
(d — 1)-dimensional Lebesgue measure on J€2.

Remark 6 Assumptions 1 and j give the coercitivity of the elliptic operator associated to the above
vartational equality. It does not need a compatibility relation, even in the case A = 0 a.e.; in this last
case, even though the boundary condition looks like a Neumann condition, the solution behaves as if the
problem were a Robin condition and the proof of the error estimate is the same as for a Robin condition.
The case A = 0 under assumptions 1 and 4 is therefore treated in this section.
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5.1 Discretization

Let 7 be an admissible mesh in the sense of Definition 1. The discretization of the diffusion-convection
equation (1) with a Robin boundary condition is performed with the help of some auxiliary unknowns
which are defined on the edges of the boundary. These may be eliminated when solving the linear system.
We shall however keep them throughout our study because they simplify several expressions in the error
estimate. Hence in this section the discrete unknowns are (ug)xe7 U (t5)oes.,,. In order to obtain the
discretized equation let us as usual integrate (1) on each cell of the mesh. Using a “four points” finite
volume scheme for the diffusion terms and an upstream scheme for the convection terms, one gets, for all
KeT,
Z {FK’(7 + VK, o U, + +bg m(K) UK = m(K) fx, (65)
cEEK
where, for all K € T and all ¢ € €k, vk o, fx and bx are defined by (7) and (10), ue 4 is defined by
(8). Furthermore Fk , is defined by (4) if ¢ € &y, 0 = K|L, and by (5) if 0 € oy, and we set for all

(S gext
— gt x x an = R x x
g5 /Ug (z) dy(z) d X, ©) /0)\( ) dy(x). (66)

There remains to give the equations associated with the boundary unknowns (us)see.,,. These are
obtained by discretizing (64). The discretization which we choose involves the upstream valued uy 4 in
order for the scheme to be well defined with no additional condition on the mesh (see remarks 7 and 8).
It writes:

—Fro+ (m(a) Ao + vkyo) Uy — VKo Uo = gt for all ¢ € Ex N Eext, (67)

Remark 7
1. Using (5) and (67), one can eliminate uo for all o0 € Eext in (65) and obtain

(00 TO) dic o+ m(0)) ur +dic.o g%
m(c) + (m(a) Ao + VK0 — (va(,J_O)> dea’

Uy =

where for all a,b € R, aTb = max(a,b) and aLb = min(a,b). Again, the numerical unknowns are
(uk)KeT-

2. In order to discretize the boundary condition on an edge o € Eext of K € T, we use a non centered
scheme summaing and substracting vy ,. This choice is performed, even though to our knowledge
there 1s no physical background to this choice, in order to prove existence, uniqueness and conver-
gence towards the exact solution, with no restriction on the mesh (see Remark 8), for A such that
there exists a subset of O with a (d-1)-dimensional measure not null and such that A < 0 on this
subset. In fact, it would be more natural to discretize the boundary condition as follows:

—Fro+XAom(o)uy,=gf, Vo€EkNEexi, VEKET. (68)

We shall give the idea of the proof for this scheme in Remarks 8 and 9. Hence, (67) will be preferred
for the discretization of the boundary condition so as to be able to handle negative values of \ with
no additional condition on the mesh.

5.2 Existence, uniqueness and stability of the approximate solution

Let us first introduce as in the previous sections the discrete H! norm of a function which is constant on
each cell of the mesh and each edge on the boundary.
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Definition 4 (Discrete H! norm) Let T be an admissible finite volume mesh in the sense of Defi-
nition 1. Let u be a function which s constant on each control volume of T and on each edge on the
boundary with uw(z) = ug if e € K, K € T, and u(z) = u, if ¢ € 0, 0 € Eext, one defines the discrete

H' semi-norm by
1/2
b 7 = (Z’”d(") <Dau>2> ,

o€ g

where Dou = |ugx —ur| if 0 € &nt, 0 = K|L and Dou = |ux — us| if 0 € Eext NEx, K €T .

Proposition 3 Under Assumptions 1 and 4, let T be an admissible mesh in the sense of Definition 1.
Then there exists a unique solution (ug)xeT U (Us)oee.,, Lo (69), (67), (66), (4), (5), (7), (8) and (10).
Furthermore let ur be defined a.e. from Q to IR by ur(z) = ug ife € K, K € T and ur(z) = u, if
T €0, 0 € Eext; then there exists C' € IRy depending only on Q such that

furlir < € (lg” lezom) + 1fllz2e) ) (69)

and
ez llzz(om) + llerlliz@y < C (9" laoa) + 1fll2m). (70)

Proof of Proposition 3
Let K € T and 0 € Eexs N Ex, then we multiply (65) by ug and (67) by uy; summing the results, we get

Ug — U .
Z uu;gm(o)—i— Z VK o Uo+ UK + bF m([&)(uK)Z
o€EfK

— — 1 1

+ E IH(O') oK o U + to K Uy + Aa + —VK,o (UO')Z — ——F7 VK0 Ug 4 Uo
dr o dr o m(o) m(o)

0EEK NEext '

= Zm(K)quK—i— Z uggf.

KeT 0€Eext

Summing the result over K € T, using (42), (43) and Young inequality, one gets for all § > 0 and all
e>0

IuTIiTJr/Q (M —|—b(x)> (ur (2))? da
DIEDY [“Kﬁ (“M UK — @ — gt Uy + %) + (/\gm(a) + ”’;”) (u0)2]

KeT 0€€xNEext

2 0 €
< ||f||%2(n) + g||9F|l%2(an) T3 ||UT||%2(Q) T35 ||UT||%2(an)~

S N

Remarking that for all K € 7 and all ¢ € & N €K, VKo (u07+ UK — gu_;ﬁ — Uo 4+ Uy + ﬁu—gﬁ) > 0,

hence:

urlr+ [ (5 400 reas + |

<

<>\(:c) + w) (ur(2))? de (71)

Q

2 ) €
111720 + g||gF||%2(an) T3 lurllzq) + 2 llur 12250

| N

for all 6 > 0 and all € > 0.
Hence if there exists 6 > 0 and ¢ > 0 such that div(v)/24+b > /2 ae. on Qand v-n/24+ X > £/2 ae.
on 9Q, (71) gives (69). Otherwise, thanks to Assumption 4 there are two cases.
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The first one is when there exists T' C 9 such that its (d — 1)-dimensional measure m(I') # 0 and such
that 4, = infzep(v(x) -n(z)/2+ /\(ac))yﬁ 0.

The second one is when there exists @ C €2 such that its d-dimensional measure m(Q) # 0 and such that
is = infeco (div(v(x))/2 + b(x) ) # 0.

In both cases one uses Lemma 7 in (71).

In the first case, one obtains

) 2 2 J ¢
url 4 s o oy < 5 Wy + 219" oy + G (545 (14 Ca) ) (urlsey + hur ),

for all § > 0, all ¢ > 0 and where C, only depends on 2.
In the second case, one gets

. 2 2 e 4
lur | 7 +ii ||UT||i2(0) < 3 ||f||iQ(n) + g||gF||iz(zm) + Ca (5 T3 (1+ Cﬂ)) (||UT||%2(0) + |UT|%,T),

for all § > 0, all € > 0 and where Cg only depends on Q.
Then a well adapted choice of § and ¢ gives in both cases (69). And using once more Lemma 7 gives (70).

Now let us assume f =0 on © and ¢ = 0 on 9Q then, thanks to (70), ug = 0 for all K € 7 and u, =0
for all & € Eext. This proves uniqueness and therefore existence since the dimension of the space is finite
(equal to the number of discrete unknowns). m

Remark 8 If the discretization (68) is used instead of (67), remarking that

2

Z Z (UK,a Ug 4+ UK — VK o (u;() + m(o) Ay (UG)Z)

KeT 0€€xNEext

=3 [MWKGH(MU)AGH@’”) (ug)Z] + > e (uk —uo) vk |

KeT |o€€ExNEext UEgKﬁfext
VK ,o 20

computations similar to those of the above proof yield:

rlt 4 [ (40 e o

2 X [MIUK,JH(H%)A#M;U)(UG)Z]JF 2 oo m(e) (uo)’

KeT |0€EkNEext 0EEK NEext
'UK,UZO

2 2 ) €
< 5 ||f||%2(n) + EHHFH%z(an) T3 ||UT||%2(Q) T35 ||UT||%2(an)a

foralld > 0 and alle > 0. Soif A > 0 a.e. on 09, this inequality gives Proposition 3, otherwise one must
assume some more restrictive assumption on the mesh as already mentionned in Remark 7; for instance
one might assume m(c)A, + %vag + Modg om(o) > 0 if vg o > 0.

We may now define the approximate solution by

{ ur(z)y=ug ifzeK, KeT,

ur(@)=u, ifz€o, 06 CEx. (72)
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5.3 Error estimate

We prove in this section an error estimate in a discrete H'! semi-norm assuming u € C*(Q) or u € H?(Q)
(with more restrictive assumptions on the mesh in the latter case).

Theorem 5 (C? regularity) Under Assumptions 1 and 4, let T be a restricted admissible mesh in the
sense of Definition 1. Let ur be the solution to (72), (65), (67), (66), (4), (5), (7} and (10).

Assume that the unique variational solution u of Problem (1), (64) satisfies u € C*(Q). Let e be defined
byer(z) =ex =u(eg)—ug ife € K, KET ander(z) =¢eo = u(Yo) — Uy if 2 €0, 0 € Eexs.

Then, there exists C' only depending on d, u, v, b, A and Q such that

ler |17 < Csize(T), (73)

where | - |17 is the discrete Hj norm defined in Definition 4.
Furthermore
||6T||L2(Q) +||€7’||L2(6ﬂ) < CSiZG(T). (74)

One proves a similar result when u is only in H?({2), assuming more restrictive hypotheses on 7.

Theorem 6 (H? regularity) Under Assumptions 1 and 4, let T be a restricted admissible mesh in the
sense of Definition 1 and let

. . dK,a
¢ = min min ———
KeT oe€x diam(K)

Let ur be the solution to (72), (65), (67), (66), (4), (5), (7) and (10). Assume thal the unique variational
solution u of Problem (1), (64) satisfies u belongs to H?(Q). Let er be defined by er(z) = ex =
u(zg)—ug ife € K, K€T ander(z) = e = u(Yo) —Us if & € 0, 0 € Eext-

Then, there exists C, only depending on u, v, b, A\, Q and (, such that (73) and (74} hold.

Proof of Theorems 5 and 6

One proceeds, like in the Dirichlet case, in two steps. In the first one, one proves the consistency of the
scheme, in a finite volume sense. Then in the second step, using this result and the conservativity of the
scheme (see (3)), one proves error estimates.

Step 1

For all K € 7 and all 0 € £k let

PE = ﬁ/}((u(z) — u(xK)> de and rg, = ﬁ/ov(af) ‘DKo (U(l’) - U($a,+)> dy(z),

with zx defined in Definition 1 and z, 4 = zx if vg o > 0, 254 = 21 if vg o < 0 and ¢ € Ex N &t
o= K|L, finally x5 4 = 2, f viko <0 and 0 € Ex N Eexs-
Furthermore, if ¢ € £k N &int, 0 = K|L, one has

Rk o = —L/o (Vu(x) ‘N o — w) dy(z),

’ m(o) di,o

and, if ¢ € Ex N Eext xp 1s replaced by y, where y, is defined in Definition 1.
In a same way, one uses, for all ¢ € Eg N Eext

Ry = ﬁ/ (M) + (@) mic o) (ue) = () d (), (75)

o

One recalls that Lemmas 2 and 3 hold. Moreover, using Taylor expansions, one proves the following
result:
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Lemma 9 Under Assumptions 1 and 4, let T be an admussible mesh in the sense of Definition 1. Assume
that the unique variational solution u of Problem (1), (64) satisfies u € C*(Q2). Then there exists C > 0,
only depending on u, v and A, such that

|RK70| < C'size(T),
forany K €T and o € &k

With the same technique as was used for rx » in Lemma 3 we prove a similar lemma when u is only in
H2(Q):

Lemma 10 Under Assumptions 1 and 4, let T be an admissible mesh in the sense of Definition 1 and
let

¢ = min min _dro
KeT oe€x diam(K)

Assume that the unique variational solution, u, to (1), (64) belongs to H*(Q). Then there exists C, only
depending on X, d, v, ( and p such that, for all K €T and all ¢ € €k,

|Ric,o| < C'sine(T) (m(e) do) ™7 flullwro (v, (76)
for all p > d and such that p < 400 if d =2 and p < 6 if d = 3, where V, is defined in Lemma 3.

This concludes the proof of the scheme consistency in a finite volume sense, i.e. step 1.
Step 2
Let K € T, since u is the exact solution to (1), (64), one has:

U%/ —Vu(z) nge +v(r) ngo u(z)) d’Y(l‘)+/Kb(x)U(x)dx:/Kf(x)dx

Substracting (65) off the previous equation, one gets for all K € T

Yo S T T g+ Y = mo)+ Y vke et +bm(K) e

d d
TEEK NEing K|L TEERNE ext Ko oEEK
o=K|L

= [ o) (s =) = 3 e (e (57

c€EEK

where, for all 0 € €k, 54 = eg vk o > 0,654 =ep if vg o <0 and 0 € Eg N &nt, 0 = K|L, finally
ot = €0 ifvg , < 0and o € Eg N Eexe-
In a similar way, using (64) and (67), one has for all K € T

€ — €K
dK,a

+ (Hl(tf) Ao + UK,a) €o — VK 0€o 4+ = M(0) (RK,a — RK,U + T‘K,a)~ (78)

m(c)

We then multiply (78) by e,, we sum the result over ¢ € Ex, we multiply (77) by ex, we sum these two

equalities and we finally sum the result over K € 7. Using for the left hand side term the same technique

as the one used in the proof of Proposition 3, one obtains

ety + [ (S5 0] rnar [ (Mo + LLEED) () i

S mK)pgex|— > > m(o) (Rro + 7o) ek

KeT KeT o€efk

+ Z Z m(c) (RK,U - RK,U +rK,0) €0

KET 0€E€xNEext

< 18f]eo
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Using Young’s inequality, Lemma 2 if u € C?(Q) and Lemma 3 (with p = 4) and Hélder’s inequality if u
is only in H?(2) (for more details see the proof of Theorems 1 and 2), one gets for all § > 0

ertir+ [ (P 00 er@n?ae+ [ (3@ + X2
_

. )
< A (Gine(T))? + Sllerlloimy — D2 30 mlo) (Rrco +ric0) ex
KeT o€€g

+ Z Z m(o’) (RK,U — RK,J + T’K,cr) €o;

KeT 0€€xNEext

Q

where C only depends on u and Q if u € C*(Q) and on u, Q and ¢ if u is only in H?(Q).

Thanks to the conservativity property of the scheme (see (3)), one has, for all o € &, 0 = K|L,
Ri,o = —Rp,, and g, = —71,0. Then using this result, Young’s inequality, Lemma 2 if u € CZ(Q) and
Lemma 3 (with p = 4) and Holder’s inequality if u is only in H2(Q2) (for more details see the proof of
Theorems 1 and 2)), one obtains

- E Z m(o) (Ri,o + ko) €K + Z Z m(o) Ri o €6 <

KeT o€€k KeT 0€€rxNEext

le7[i 7 + C (size(T))?,

N | —

where C only depends on v, d, u and Q if u € C*(Q) and on v, d, u, Q and ¢ if u is only in H?().
The two previous inequalities yield for all § > 0

@+/ﬂ (MH(@»)) (eT(m))zdab—}—/an (A(m)+ w) (e7 (2))* de

1\ . , 0 9 ~
<0 (145) G + Gllerliog = Y 3 o) Reoce
KeT 0€E€kNEext
where C only depends on d, u, b, v, and Q if u € C*(Q) and on d, u, b, v, Q and ¢ if u is only in H?*(Q).
Finally, using Young’s inequality, Lemma 9 if u € C*(Q) and Lemma 10 (with p = 4) and Holder’s

inequality if u is only in H2(£2) (for more details see the proof of Theorems 1 and 2)), one obtains for all
g>0andalld >0

IeTQI%,T +/ﬂ (div(;(x)) H(x)) (eT(x))de/m <)\(l°)+ w> (e7(2))? da (79)

1 1 . ) €
<0 (14 5+ 3) i) + Sller o + Sl

where C' only depends on d, u, b, v, A and Q if u € C?(Q) and on d, u, b, v, A\, Q and ¢ if u is only in
H?(Q).

Remark 9 If A >0 a.e. on 9 and if one uses (68) instead of (67) in order to discretize the boundary
condition. One proves (79), using Remark 8 for the left hand side. For the right hand side, one introduces

1
m(o)

then using a technique similar to the one used in the above proof, one gets (79).

o= o [ M) (u60) = ) o),

Hence if there exists § > 0 and ¢ > 0 such that div(v)/24+b> /2 ae. on Q and v-n/24+ X >¢/2 ae.
on 9%, (79) gives (73) and (74). Otherwise, thanks to Assumption 4 there are two cases.
The first one is when there exists I' C 9Q such that its (d — 1)-dimensional measure m(I') # 0 and such

that ¢, = infxep(v(.r) -n(x)/2+ /\(r))# 0.
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The second one is when there exists @ C €2 such that its d-dimensional measure m(Q) # 0 and such that
is = infreo (div(v(e))/2 + b(x) )# 0.

In both cases one uses Lemma 7 in (79).

In the first case, one obtains

. 1 1 .
Fivller oy <€ (145 + 1) fsie(T)’
Cq 2 Co 2
+7(5+ 509) lerllzzr) + 7(5+ e+ 509) leT |17

ler|? -
2

for all § > 0, all ¢ > 0, where C only depends on A, d, u, b, v, and Q if u € C?(Q) and on A, d, u, b, v,
Q and ¢ if wis only in H%(Q), and where Cq only depends on €.

In the second case, one gets

. 1 1 .
tisllerlay < € (14 5+ 1) ine()?

|6T|f1z,7
2
Cq 9 Co 2
+5 (49 Ca) ller 20 + 5 (e + 6+ 9 Ca) lerl? -
for all § > 0, all ¢ > 0, where C only depends on A, d, u, b, v, and Q if u € C*(Q) and on A, d, u, b, v,
Q and ¢ if w is only in H?(Q2), and where Cq only depends on €.

Then a well adapted choice of § and € gives in both cases (73) and using once more Lemma 7 yields (74).
This concludes the proof of Theorems 5 and 6. L]
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