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Abstract
We prove the convergence of a finite volume method for a noncoercive linear elliptic problem, with
right-hand side in the dual space of the natural energy space of the problem.
1 Introduction
We take © a polygonal open subset of R? (d = 2 or 3), and we study the problem

—Au+div(vu) + bu =L in Q, (1.1)
u=0 on 0N )

with the following hypotheses on the datas:

3p > d such that v € (LP(Q))?,
be L"(Q) withr >1ifd=2andr=23ifd=3, b>0a.e. onQ, (1.2)
Le H ().

Of course, solutions to (1.1) are taken in a weak sense, that is to say
u € HF (D),

1.3
/QVU'V(P_/QUV'VSO"F/QI)UQD:<L=<P>H—1(Q),H3(Q)a Vi € Hy (). (1.3)

Existence and uniqueness of a solution to (1.3) have already been proved in [3] (see also [4] for nonlinear
problems).

Our purpose is to prove the convergence of a finite volume discretization of (1.1). Finite volume methods
have been widely used to approximate solutions to convection-diffusion equations, either using structured
or unstructured grids (see for example [2], [9], [5], [6], [8]). The grids we consider here are the same as in
[5], that is to say grids made of convex polygonal control volumes with some geometrical properties (see
the next section).

There are two main originalities in the work we present here. First, we consider elliptic problems which
are not, necessarily coercive, because it is not supposed that %div(v) + b is nonnegative. Moreover, the
regularity we have taken on the velocity v is minimal (that is, just enough for (1.3) to make sense —
in previous papers on the finite volume discretization of convection-diffusion equations, the convection
velocity is in general C''-continuous, see e.g. [5] or [9]); considering a non-regular convection velocity is
a first step toward the treatment of coupled systems, in which v comes from the resolution of another
partial differential equation.

The second originality concerns the right-hand side: here too, we consider a datum with minimal reg-
ularity (that is, in the dual space of the energy space associated to the equation — previous papers
take in general a right-hand side in L?*(Q2)); in fact, H=*(Q) is a natural space for right-hand sides of
convection-diffusion equations.
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In the next section, we define the finite volume scheme used to discretize (1.1), and we state the main
convergence result of this paper; since we consider data v and L which lack of regularity (with respect
to previous works), we present a new way to discretize them, using what we call “half-diamonds”. We
also give, in this section, technical results useful to the rest of the paper. In Section 3, we prove a priori
estimates on the solutions to our finite volume discretization of (1.1); the problem being noncoercive,
obtaining estimates on these solutions is not straightforward: we must adapt the techniques of [3] to the
discrete setting. Along with the compactness results of [5], these a priori estimates allow us, in Section
4, to prove our main result, that is to say existence and uniqueness of the approximate solutions and
their convergence toward the solution of (1.3); to prove the convergence result with our irregular data,
we approximate them by regular data and adapt then known techniques (see [5], for example). In the
last section, we present a modified scheme which consists in discretizing the data v and L using another
method (based on the “full-diamonds”); comparing this scheme to the one of Section 2, we easily obtain
the convergence of the associated approximate solutions.

2 Definition of the scheme and main result

Definition 2.1 An admissible mesh T of Q is a finite family of polygonal open conver subsets of (2 (the
“control volumes” ), together with a finite family € of disjoint subsets of ) contained in affine hyperplanes
(the “edges”) and a family P = (xx)ker of points in Q such that

i) Q= UKGT?}
ii) each o € & is a non-empty open subset of OK for some K € T,
i) by denoting Ex = {0 € E |0 CIK}, OK = Uyeg, T for all K € T,

) for all K # L in T, either the (d — 1)-dimensional measure of KN L is null, or KNL =& for some
o € &, that we denote then o = K|L,

v) fordl K €T, zx € K,
vi) for all o = K|L € &, the line (xx,xr) intersects and is orthogonal to o,

vit) for allo € £, 0 C INNIK, the line which is orthogonal to o and going through xx intersects o.

The size of the mesh is then defined by size(7) = supy s diam(K) (where diam(K) is the diameter of
K). We denote by meas(K') the Lebesgue measure of K € 7. The unit normal to o € £ outward to K
is denoted by ng .

We define &y = {0 € £ | 0 ¢ IN} and Eexy = E\Eint. If 0 € €, m(0) is the (d — 1)-dimensional measure
of 0; if 0 = K|L € &, dy is the Euclidean distance between the points (zx,zr) and dx,, denotes
the distance between zx and o; if 0 € et N €k, dy = dk,, is the distance between zx and o. The
transmissivity through an edge o is 7, = md(j). We denote by v the (d — 1)-dimensional measure on the
edges of the mesh.

If K € T and o € &k, the “half-diamond” Ak, is defined by Ag , = {tex +(1—-t)z, t € [0,1], z € o}.

m(o)dx,o

It will be useful to notice that meas(Ak,») =
The following quantity measures the “regularity” of the mesh:

KeT \océx dy

reg(7) = inf ( inf dK—”)

If 7 is an admissible mesh, and under Hypothesis (1.2), we can define the finite volume discretization of

(1.1).



We first write

L= f+div(G), with f € L?(Q) and G € (L*(Q))%.
It is well-known that any element of H~!(Q) can be written this way; in fact, in models of physical
problems, the right-hand side naturally appears in this form, see e.g. [7], and there is thus no trouble
to define the following scheme (this is also why we have kept f, which can be taken, from a theoretical
point of view, null).
The finite volume discretization consists in integrating the equation —Awu + div(vu) + bu = f + div(G)
on a control volume K: with some integrates by parts, we formally obtain

Z —/Vu-nKﬁd'\/—l— Z /uv-nK,UdW—l—/ bu:/ f+ Z G- -ng,dy.
o o K K

o€k o€k o€k g

By letting ux be an approximate value of v on the control volume K, we must then discretize each term
of this relation. To this aim, we denote, for K € 7 and o € &k,

1 1
T Mo, b= [ b,
UK, (meas(AKp) /AK,C, v) K, K meas(K) /K

1 1
Ji = meas(K) /K fooand Gro = (meaS(AK,a) /AK,C, G) e

(these are, respectively, approximate values of v-ng , on o, of b on K, of f on K and of G-ng , on o),
and the finite volume scheme is written

VK €T, Y Fro+ >, m(0)vk ke +meas(K)bxux = meas(K)fx + Y m(0)Gr,o, (22)

0€EK 0€EK occlk

VKGT,VJEEK, FKJZ m(g)(ug—uK), (2.3)

T dk.s
Vo =K|L € &ny, Fr,o +m(0)vk otk o+ —m(0)GEk,o
= —(Fr,o + m(o)vp,ocur,er —m(0)GL,e), (2.4)
Vaeé’ext, UU:Oa

(2.1)

Vo =K|L € &nt, UKo+ =ur if vke >0, uke+ =ur otherwise, (2.5)
Vo € Eext NEK UKo+ = Ur if VKo >0, urs4+ =0 otherwise. ’

Equations (2.2) (2.5) are a linear system in (ux )rxe7 and (uy )seg, but thanks to (2.4) (which describes
the conservativity of the fluxes), we can eliminate the unknowns (uy)sce, so that (2.2)—(2.5) can be
considered as a linear system of size Card(7), with unknowns (ux)xer.

We naturally identify the set R 4(7) to the set X (7) of functions defined a.e. on € and constant on
each control volume K € 7.

Our main result is the following.

Theorem 2.1 If 7T is an admissible mesh, then there exists a unique solution to (2.2)—(2.5). Moreover,
let o > 0; denoting by ur € X(T) the solution to (2.2)—(2.5), ur converges in L4(2), for all ¢ < 2%,
to the unique solution of (1.3), as size(T) — 0 with reg(T) > «.

Remark 2.1 We will not use, to prove this theorem, the existence of a solution to (1.3). The finite
volume method allows, as usual, to prove the existence of a solution to the continuous problem.

Remark 2.2 In dimension d = 2, the reqularity we suppose on v is minimal in order for all the terms
in (1.3) to make sense (see the Sobolev injections in [1]). But, if d = 3, the minimal regularity on the
convection velocity would be: v € (L3(2))3; in fact, cutting v in two parts (one small in (L3(2))3, the
other in (L>=(Q))> — see [3] for the reasoning in the continuous case), we could also prove Theorem
2.1 under this minimal hypothesis on v. However, for the legibility of the following proofs, we prefer to
suppose Hypothesis (1.2).



2.1 Technical results

To prove this existence, uniqueness and convergence result, we first search for a priori estimates on the
solutions to (2.2)—(2.5). These estimates are obtained via the following discrete HJ norm.

Definition 2.2 If T is an admissible mesh and vy = (vi)xer € X(T), we define

1/2
vzl = (Z Ta(DaUT)Z) :

o€l
where Dovy = [vg —vr| if 0 = K|L € &gy and Dovr = vk | if 0 € Eext N EK -

Notice that this norm takes into account a boundary condition “vz = 0 on 02", since we have defined
Dyvr = |vk| if o C 98 (this comes down to consider that functions of X (7) are defined on RY and are

null outside ).
The following proposition sums up a few useful properties of the norm || - ||1,7.

Proposition 2.1 i) (Discrete Poincaré inequality) If T is an admissible mesh and vy € X(T), then
l[vr|lz2(0) < diam(Q)||vr|l1,7 (where diam(Q) is the diameter of Q).

it) (Discrete Sobolev inequality) If T is an admissible mesh and 0 < ¢ < reg(T), then there exists C
only depending on (S0, ) such that, for all q € [1, 2%, for allvr € X(T), ||vr||pa) < Cyllvr]|ir.

iii) (Discrete Rellich Theorem) If (Tp)n>1 i a sequence of admissible meshes such that size(7,) — 0
and if vy, € X(7Ty,) is such that (||vp]l1,7, )n>1 is bounded, then (vp)n>1 is relatively compact in
L*(Q) and any adherence value in L*(Q) of (vn)n>1 belongs to HL ().

For a proof of these properties, see [5].

The following discrete integrate by parts formula will be quite useful in the sequel.

Lemma 2.1 Let T be an admissible mesh and ur = (uk)rker satisfy (2.2) (2.5). Then, for all o7 =
(ox)ker € X(T), we have

E To(ug —up)(Yr — L) E meas(K)bxuxpx
A<t KeT

dK o
Z meas(K) fkox + Z ( Zur, ,oUL o+ — (I; 7)K,0“K,a,+) (pr — L) (2.6)
KeT oel 7
dK o dL,a
+> m( Ok~ 7 CLe | (Px —¢1).
oge€

where we have denoted 0 = K|L if 0 € &y and up, = ur o4 = 0o = dro = Gro = ¢ = 0 if
0 € Eext NEK.

Proof of Lemma 2.1

We notice that, thanks to (2.4), the quantity ax - = Fx,o +m(0)Vk, o UK,0+ —m(0)G K, is conservative,
that is to say, if 0 = K|L € &, then ax,, = —ar -

Multiplying (2.2) by ¢x and summing on the control volumes K € T, we have

Z Z 0K, PK + Z meas(K)bgugpr = Z meas(K) fxpk.

KeT oefk KeT KeT



Using the conservativity of ax , and gathering by edges, we deduce

Z ax,o(pr — L) + Z meas(K)bgurgpr = Z meas(K) frpr (2.7)
ocE KeT KeT

where 0 = K|L if 0 € &t and ¢, = 0if 0 € Eext N Ek.
Let us now compute the (ax,o)xe7, ccex- If 0 = K|L € &g, then (2.3) and (2.4) give u,; indeed,
dividing (2.4) by m(c), we have

Uo UK Uo ur,
- + + VK,0UK,o0,4+ — GK,O’ = 5 - — VL, 0cUL,o0,+ + GL,o’a
dK,a dK,O’ dL,o’ dL,o'
that is, noticing that d, = dx - + dr.,0,
dg UK ury,
Us = + + VK0 UK 0,4+ T VL,0UL,0,+ — GK,U - GL,aa
dK,UdL,U dK,U dL o

which gives

dL,Ju dK,au + dK7O'dL7O'
dy T d, " dy

Us = (UK,UUK,U,+ + UL,cUL,oc,4+ — GK,U - GL,O’) .

With this value of u,, we obtain
_m(o) dK,gu 3 dK’au ~ m(o)dL,.
dK,a da v da K do'

+m(0)vk otK,o+ — m(0)GK,o

aK,o (UK,UUK,U,+ + UL,cUL,0,+ — GK,U - GL,U)

o d (oa
= To(ux —ur)+m(o) < 5’ VKoUK o+ — %UL,UUL,0,+>
dK o dL o
— ~Gro——Grs |-
m(U)( 7. Ox 7, )

Note that this equality is also valid if 0 € Eexy N Ex, providing that we define uy = ur o4+ = v, =
Gr,. = ¢r =0 in this case.
Using this expression in (2.7), we obtain the desired formula. m

3 A Priori Estimates

We prove here some a priori estimates on the solution to (2.2)—(2.5). As already said, we adapt the
methods of [3] to the discrete setting; however, the estimation of the convection term (the noncoercive
part of the equation) requires new ideas, to take advantage of the upwind choice in (2.5).

3.1 Estimate on In(1 + |ur|)
Proposition 3.1 Let T be an admissible mesh. If (ux)keT is a solution to (2.2) (2.5), then
2
(1 + ur DI 7 < 2011z @) + 24 (1G] 22 @) + [TV ]229) "
where | X| denotes the Buclidean norm of a vector X € RY.

Proof of Proposition 3.1
Step 1: A preliminary estimate.



Let ¢(s) = [ (I-Ht\ . Applying Formula (2.6) to (¢x)xer = (¢(uk))keT, and since ¢ is bounded by
1 and bKquo(uK) > 0 for all K € T, we have

> Tolur —ur)(p(ur) — p(ur))

oe&
< Z meas(K)|fx| + Z ( dg’” UK,UUK,U,+> (p(ur) — p(ur))
KeT = 7
+ Y lo) (G, - oGy, ) (pluse) ~ p(uz) 3.1)
oe&

(with the notation ¢ = K|L if 0 € & and up = ur o+ = Vo = dro = Gro = @(ur) = 0 if
0 € Eext N (.C:K)

We have
> meas()lfxl < Y [ 111= 1o (3.2)

KeT KeT

Using the Cauchy-Schwarz inequality, we can write

S mlo) (B2 Gres - E2GL ) (plur) = o)

dy de
oel

o\ 1/ 1/2
S (Z m(a)da <dfl(:7 GK,J - dé;o GL,a) ) (Z Ta (UL))2> . (33)

oce€ oe€

2
. di .o dr.o dK.o 2 dr.o ~2 dK .o dr.o
Since ( . Gio — I GL,U> <2 GKJ + 2 GL,U (we have used the fact that . and = are

bounded by 1), gathering by control volumes, we have

S s (e, - 2as,) <23 Y moncaG,

oe€ KeT o€k

But, for all K € 7 and all o € £k, by Jensen’s inequality and since meas(Ag ) = , we have
m(0)dk,sG%, < d [, |G|*. Using the fact that {Ax,, K € T, 0 € £k} is (up to a set of null
Lebesgue measure) a partltion of Q, we deduce

dKO' dLa
S (o) ( Grer — 26 ) <2y Z/ G =206 ey (3

oce& KeT o€k

m(o)dko
d

¢ being nondecreasing and Lipschitz-continuous with Lipschitz constant 1, we have (p(ux) — p(ur))? <
(ug —up)(p(ur) — ¢(ur)); (3.3) and (3.4) give then

S (o) ("K—’”GK,U - dL’“GL,a) (o) @(UL))‘

e dg d[,—
1/2
< V2d|||G] ||z @) (Z To(ur —ur)(p(ur) — <P(M))> : (3.5)
e



We need now to estimate the terms of (3.1) coming from the discretization of the convection part of (1.1).
We first notice that, if 0 € ot N €k,

dy dy dyc
LU0+ — — VK UKo+ | (Plur) — @(ur)) = ——Zvk gtk g4 0(uk) < 0.
de dgy de

Indeed, if vk, > 0, this last term is —dg—"’vK,gquo(uK), which is nonpositive since sp(s) > 0 for all
s € Ry if vk » < 0, this last term is null (because ug -+ = 0 in this case). Thus,

dr.o dK o
> m) (5—’UL,GUL,U,+ - g UK,aUK,a,Jr) (p(ur) — p(ur))

dr & dg.o
< 3 o) (Ut on s~ Do s ) (olur) = tur) (3.6

0€E&ins 7
Let 0 = K|L € &y and denote

dK,U’

dLo’
d B=
i 1|

5

VL,o UKo | -

H

dr,. o dr .
A= ( 5’ VL,oUL, o4 — 5’ UK,UUK,U,+> (plur) —(ur)), A=

a o

We separate the cases.

o If vk, and vy, are nonnegative, then A = (Aur — Bug)(p(ux) — ¢(ur)) is, by item i) of Lemma
3.1 below, bounded from above by 0 if ugur, < 0 and by |A — B|inf(|ur], |ux]|)|p(ur) — @(ur)]|
otherwise.

o If v » and vr , are negative, then A = (—Aux + Bur)(p(ur) —¢(ur)) = (Bur — Auk ) (p(uk) —
o(ur)) is once again bounded from above by 0 if ugur < 0 and by |A — Blinf(|ur|, juk]|)|e(uk) —
o(ur)| otherwise.

o Ifvg, >0and vy, <0, then A = —(A+ B)ur (¢(ur) —¢(ur)) is, by item ii) of Lemma 3.1 below,
bounded from above by 0 if urur, <0 and by (A + B)inf(Jur|, |uk|)|e(uk) — ¢(ur)| otherwise.

o Ifvg, < 0and vy, > 0, then A = (A4 Blur(p(ux) — ¢(ur)) = —(A + B)ur(e(ur) — ¢(ux))
is, as before, bounded from above by 0 if uguy, <0 and by (A + B)inf(|ux]|, |ur|)|e(ur) — p(uk)|
otherwise.

In either case, we notice that A < 0 if ugur < 0 and that A < (A + B)inf(Juk|, jur|)|e(ur) — o(ur)]
otherwise; thus, by denoting A = {0 = K|L € &nt | ugur > 0}, (3.6) gives

dr.o di o
5 (0) (U on s~ B s ) (olur) = o)

dr, & dr. &
< X mlo) (ool + Ee o,

) inf (jue . [uz)lp(uz) — p(uz).
ocA

. dic.o .o .
Since =»* and =% are bounded by 1, we obtain

dr,o dK,o
5 m(0) (e ontr s~ e ) (o) — )

d
oceé 7

J J 1/2 1/2
< <2Zm<o>da( E0f, + ;‘K)> (Zrainf<|uK|,|uL|>2<sa<uK>so(uL»Z) (37)

oA ccA




Gathering by control volumes, and using Jensen’s inequality, we can write

dro dKU o)dk.c ?
Zm(a)do ( . UL,0+ ) Z Z meas( AKU /AK,G ME

occA KeT oe€k

Since mezgs()zj;o) -

of Q, we deduce

dand {Ag,, K €T, 0¢€ &k} is (up to aset of null Lebesgue measure) a partition

dL,U dK,a
> mio)dy (U2, + Uik, ) <l 1o (3.5
oceA 7 7

For all 0 = K|L € A, since uguy, > 0, item iii) of Lemma 3.1 gives

inf(jukl, lur|)®(e(urx) — p(ur))® < (ux —ur)(e(ur) — o(ur))-

Using this and (3.8) in (3.7), we finally obtain

dr o dr o
5 (o) (S vn g0 — vt ) (o) = o)

el

1/2
< V2d||[v] ||z <Z To(ux —ur)(p(ux) — sD(UL))> : (3.9)

ocel
Gathering (3.2), (3.5) and (3.9) in (3.1), we get

> Tolurx —ur)(eluk) — o(ur))

oel
1/2
< iy + V2d (1G] z20y + V] |22 () (ZTU(UKUL)(VP(UK)w(uL))) ;
oge€

which gives, thanks to Young’s inequality,

2
D tolux —ur)(p(ur) = o(ur)) < 2lf L) +2d ([11Gl 2@ + 11 VI |2(@) - (3.10)
océ

Step 2: Estimate on In(1 + |uz]).

s sgn(t) dt 2
We notice that, for all s € R, In(1 + [s]) = [, sglfl)t‘ . Thus, for all (z,y) € R?, by the Cauchy-Schwarz

inequality and since ¢ is nondecreasing,

(In(1+ |2|) — In(1 +[y]))* = (/m%t?tdt)

/I dt
y (L)

Using this bound in (3.10), we deduce the desired estimate on In(1 + |ur|). m

IN

|z — vl = |z = yllp(x) — e(¥)] = (= — y)(p(2) — p(y)).

It remains to state and prove the following technical result, which has been used in the course of the
preceding proof. This lemma shows the usefulness of the upwind choice in (2.5): thanks to the first two
items of the lemma, the upwind choice allows to reduce the estimate on the discrete convection term to
the cases ugur > 0; these cases are then, thanks to item iii), bounded by the discrete diffusion term.

Lemma 3.1 Let (s fo (1+|t\



i) Let A and B be nonnegative real numbers and (x,y) € R2. If zy <0, then

(Az — By)(p(y) — (x)) <0

and, if xy > 0, then
(Az — By)(e(y) — ¢(x)) < |[A = Blinf(|z], [y])e(y) — o(z)].

ii) Let (z,y) € R%. If xy <0, then
—y(p(y) —p(x)) <0

and, if xy > 0, then
—y(e(y) — ¢(z)) < inf(|zl, [y)]e(y) — ()]

iii) Let (z,y) € R%. If 2y > 0, then

inf (|2, ly1)*(e(y) — o(2))* < (y — 2)(p(y) — ().

Proof of Lemma 3.1

The first two items are only consequences of the nondecreasingness of ¢ and of the fact that sp(s) > 0
for all s € R.

Consider i). Suppose first that 2y < 0. Up to a permutation of z and y, there is no loss of generality if
we assume that x < 0. If z = 0, then (Az — By)(¢(y) — ¢(z)) = —Byp(y) <0. If 2 <0, then y > 0 >z
and, A and B being nonnegative, we have By > 0 > Az, thus Az — By < 0; ¢ being nondecreasing, we
deduce that (Az — By)(e(y) — ¢(x)) < 0.

Suppose now that zy > 0. Up to a permutation of z and y, we can suppose that |z| < |y|. We have then

(Az — By)(¢(y) — (7)) = (A = B)z(p(y) — ¢(2)) + Bz — y)(e(y) — ¢()).

¢ being nondecreasing, the second term of the right-hand side of this equality is nonpositive, and we
obtain thus (Az — By)(¢(y) — ¢(x)) < (A= B)a(p(y) — ¢(z)) < |A = Bl |z|¢(y) — ¢(z)] as desired.

Let us now study the second item. If zy < 0, then either z =0, ory=0,orz<0<yory <0<z In
the first case, —y(¢(y) — p(x)) = —yp(y) < 0; in the second case, —y(p(y) — ¢(x)) = 0; in the third case,
—y < 0 and ¢(y) — ¢(x) > 0 so that the result holds; in the fourth case, —y > 0 but ¢(y) — ¢(z) < 0 and
the result still holds. Assume now that zy > 0; the result is obvious if |y| = inf(|z[, |y|), so that we can
take |y| > |z|; then either 0 < 2 < y or y < 2 < 0. In both cases, the nondecreasingness of ¢ easily gives
—y(e(y) — p(xz)) <0, and the desired inequality is thus satisfied.

To prove the third item, we notice that, since ¢ is C*-continuous on R, there exists 6 € [z, 3] such that
o(y) — p(x) = ¢’'(0)(y — x). Using the fact that ¢ is nondecreasing, we obtain

it (o} )2 (o(0) — p(2)? < SR o) - pto)

inf(|z], [y/)?
< W(y —z)(p(y) — p(z)).

But, since z and y have the same sign and 0 € [z,y], we have inf(|z|, |y|) < |6], and the result is thus a
consequence of the previous inequality. m



3.2 Estimate on [|ur||1 um

Theorem 3.1 Let T be an admissible mesh, 0 < ¢ < reg(7) and M be an upper bound of || [v|||L» )
There exists C > 0 only depending on (Q,p, M, ) such that, if ur is a solution to (2.2)—(2.5), then

lurllrr < C(Ifllz2 @) + 1G22 ()

Proof of Theorem 3.1
(2.2)—(2.5) being a linear system, proving a bound on uy whenever

ALz + G2 @) <1 (3.11)

is enough to prove the theorem in the general case.
We denote, for k > 0, Ty (s) = max(—k, min(s, k)) and Si(s) = s — Tk(s).

Step 1: estimate on Sy (ur).

Let £k > 0. We use (26) with YK = Sk(’LLK); since (Sk(’LLK) — Sk(’LLL))Z S (LLK — uL)(Sk(uK) — Sk(LLL))
(Sk, is nondecreasing and Lipschitz-continuous with 1 as Lipschitz constant) and bxugSi(uk) > 0 (Sk(s)
has the same sign as s), we get

> To(Sklux) = Sk(ur))?

oge€
dr o dK o
< ) meas(K) fxSk(uk) + Y m( ) T pup s — T pugos ) (Sk(uk) — Sk(ur))

do dos

KeT ocf

dK o dL,o’

+ Z GK o Gr.o | (Sk(uk) — Sk(ur)). (3.12)
ock g

By means of the Cauchy-Schwarz inequality, the discrete Poincaré inequality and (3.11), we have

1/2 1/2
<Z meas(K fK> (Z meas(K)(Sk(uk)) )

KeT KeT
< 2@l 1Sk (ur)l| L2 @)
< diam(Q)||Sk(ur)||1,7- (3.13)

IA

> meas(K) fx Sk(uk)

KeT

The Cauchy-Schwarz inequality, associated to (3.4) and (3.11), gives

Zm(a) (dK’U Gr,o — du, ZGL o') (Sk(ur) — Sk(ur))

oel dU da
J J o\ 1/2 1/2
K,o L,o 2
< . _
S (Z m(a)dg < dg' GKyg dg’ GL7(,> ) (Z T(O‘)(Sk<uK) Sk(uL)) )
o€ ed<to
< V2d||Sk(ur)|1.7 (3.14)
We bound now the convection term, beginning with
dr o dK .o
> m(o) < 5 UL+ CI; UK,UUK,U,+> (Sk(ux) — Sk(ur))
oef o o
g p o\ 1/2
< (Z m(o)dy ( ;UWL,UULJ#* g’”vK,auK,a,+) ) Sk (uz)l1,7- (3.15)
ogel o e
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Since dk,o/d, < 1 and dy,,/d, < 1, gathering by control volumes and using Holder’s inequality (with
p/2>1and p/(p —2)), we find

2
dL o dK,cf
Z m(o)d, g VLoULot = T VKoUK ot

o€
d d
< 23 (“ s+ e )
ogel 4
< 2 Y Y mo)dcor
KeT océk
p—2
P
<2y ¥ou ) (X 5 morctuss#) " g
KeT o€k KeT o€ék

But, by Jensen’s inequality,

1 d
m(o)dg o k.olP < ’”(‘7)71‘0/ P = d/ v|?
meas(Ax,y) Ax.o Ak

so that, since {Ax,,, K € T, 0 € Ex} is (up to a set of null Lebesgue measure) a partition of 2,

YD m)drlvrelP < dl| V][], < dMP. (3.17)
KeT o€k

On the other hand,

Yo N modrolurosE = JuxlrE Y m(o)d(K, o)

KeT ock KeT el
where
e d(K,0) =dk,, if 0 = K|L € &y satisfies v, > 0 and vy, > 0,
o d(K,0) =dk,o +di,c = dos if 0 = K|L € &g satisfies vg » >0 and v, < 0,
o d(K,0) =dp, it 0 = K|L € &y satisfies vg , < 0 and vg , <0,
o d(K,0) =01if 0 = K|L € &y satisfies vg , < 0 and vg, » > 0,
o d(K,0) =dg,, if 0 € Eext N E satisfies vk » > 0,
e d(K,0) =0if 0 € Eext N Ek satisfies vi , < 0.

In either case, we have d(K,0) < d, < dlz."’, so that

1 2 d P
> 3 moMialuscas 75 < 2 3 fuxl ™2 3 mlodia < Fllurl?E, (3.18)

KeT o€k KeT oclk )

(we have used > . m(0)dk,c = dmeas(K)).
(3.16), (3.17) and (3.18) together give

dr.o dic.o \/_d
<Zm(o)da< 5’ VL oUL o — ;(’ vK’o.uK,g’Jr) ) — M||’U/T|| 2 . (3.19)

ey o C 2p Lr=2(Q)
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Since |ur| < k + |Sk(ur)|, (3.15) entails

dr & dK .o
Zm(O)( ;7 VL,oUL,o 4 — g’ UK,UUK,U,+> (Sk(ur) — Sp(ur))

< Cik|[Sk(ur)

1Sk ()l 22, o 1Sk (el (3.20)

where C4 only depends on (2,p, M, () (a dependence on ) takes into account a dependence on d).
But p > d, so that p2—p < 2d . Let ¢ e] L, 7 2[ (the choice of such a ¢ only depends on (d,p)). Since
Sk (ur) = 0 outside Ej, = {x e Q| Jur(z )| > k}, the Holder inequality and the discrete Sobolev inequality
give

||Sk(UT)||LP%(Q) < meas(Ey) 5 ||Sk(UT)||Lq ) < Comeas(Ey) % 4 ISk(ur)l 7
where C5 only depends on (£2,¢,¢) (i.e. on (2,p,()). (3.20) leads then to

dr, & d
Zm(a)( L ot — g UKJUKUJr) (Sk(ur) — Sk(ur))

< Ckl|Se(ug)llng + Cameas(Ey) 5~ ||Su(ur)|2 7 (3.21)
where C3 only depends on (2, p, M, ().
Gathering (3.13), (3.14) and (3.21) in (3.12), we obtain
[1Sk(ur)|13 7 < (diam(R) + v2d + Csk)||Sk(ur)|[1,7 + Cameas(Ey) =~ ||Sk(ur)|} 7- (3.22)

But, by Tchebycheft’s inequality, the discrete Poincaré inequality and Proposition 3.1, we have

(1 + Juz )|[F2 0 Cy
Ey) = Q| In(1 >1In(l+k <
meas(Ex) = meas({z € 2| 1n(1 + ur (o)) > 1+ 1)) < - TS < O
where C, only depends on (,p, ) Thus, since % — % > 0, we can find kg only depending on

(€0, p, M, ¢) such that Csmeas(Ey,) 2 i< 1 and (3.22) allows to write

HSkO(’U/j)Hl,T < 2(diam(Q) + V2 + Cgko) =5 (3.23)
with Cs only depending on (€2, p, M, ().
Step 2: estimate on Ty, (u7) and conclusion.
With the ko obtained in the previous step, using ¢x = Tk, (ur) in (2.6), the fact that (T, (ur) —
Tko(uL))z < (uK - uL)(TkO(uK) — Tko(uL)), that bKuKTkD(uK) > (0 and that |Tk0(uK)| < ko, we find

1 Tko (ur)|3 7

< kol + Y mlo) (dL’

d
. vK,ouK,a,+) (Th () — T (ur))

d, oot g,
gl
dK o dL,cT
+_m( ( Gro— KGL,U> (Tho (urc) = Tho (ur))- (3.24)

oeé

The Cauchy-Schwarz inequality, (3.4) and (3.11) lead to

> (o) (B2~ 26 ) (T ) ~ Tiy(ur)) < VBT (). (325
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Thanks to the Cauchy-Schwarz inequality and to (3.19), we also have

dr.o dr,o
Zm(rf)( UL UL g vK,UuK,U,+> (Tho () = Ty (1)

o

< Collurll, ga, o T ) .7

< (07 + CrllSky ()l 2,

s ) [T (el r

where Cg and C7 only depend on (2, p, M, () (we have used |ur| < ko + |Sk,(ur)|). Thanks to the
discrete Sobolev inequality (recall that 2—1’2 < 24) and to (3.23), we deduce that there exists Cs only

e
depending on (2, p, M, ¢) such that

dr. o dK.o
5 o) (U on s = B ot ) (Do) = T ) < Cl i -
oel 7 7

This inequality, injected in (3.24) together with (3.25), gives ||Tk, (ur)||1,7 < Co with Cy only depending
on (9, p, M, ().

Since ur = T, (u7) + Sko(ur), we deduce that ||ur||1,7 < Cs + Cy, which concludes this proof. m

4 Proof of the existence, uniqueness and convergence result

Proof of Theorem 2.1

The existence of a unique solution to (2.2)—(2.5) is an immediate consequence of the estimate of Theorem
3.1: indeed, if f = G = 0, then this theorem shows that any solution to (2.2)—(2.5) is null, that is to say
that the square matrix defining this linear system is invertible.

Let us now prove the convergence result.

Since the solution to (1.3) is unique (see [3]), it is sufficient to prove that, for any sequence of admissible
meshes (7,)n>1 such that size(7,) — 0 and reg(7,) > «, we can extract a subsequence (still denoted
(7n)n>1) such that the solution uz, to (2.2)—(2.5) (with 7, instead of 7) converges to the solution of
(1.3).

Take such a sequence (7,)n>1. Thanks to Theorem 3.1 and to item iii) of Proposition 2.1, we see that,
up to a subsequence, we can suppose that uz, — w in L?(2), for some u € H}(Q); by the discrete
Sobolev inequality, (u7, )n>1 is also bounded in L4(Q) for all ¢ < dz—i, so that Vitali’s Theorem gives the
convergence of (ur, )n>1 to u in LI(Q) for all ¢ < 2L

We are now going to prove that u is a solution to (1.3), which is enough, as noticed above, to conclude
the proof of the theorem.

To simplify the notation, we forget the index n.

Of course, it is sufficient to prove that u satisfies the equation of (1.3) for all ¢ € C2°(€2). Take such a
@. Using (2.6) with px = ¢(zx), we have

> roluk —uL)(p(rk) — e(wr)) + Y meas(K)bguxe(rx)

oce€ KeT
dr o dK &
— 3 meas(R) acelon) + 3 m0) (L on un s~ T gt ) (elan) = (o)
KeT o€ 7 7
dK,a dL,o’
+ 3 mio) (B e, ~ L, ) (o) - pler) (4.26)
oceé 7 7
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(with p(x) = 0 whenever 0 € Eext N EK).

Step 1: convergence of the diffusion and the lower order terms.
The convergence proof in [5] immediately gives

ZTJ(quuL)(cp(xK)fcp(xL %/Vu Vo, Zmeas K)bgugp(rg) — /buga

ccE KeT Q (4.27)

and Zmeas Vrp(rk —>/ng

KeT

as size(T) — 0 (in fact, to prove the convergence of ) ., meas(K)bxux@(rx ), we must slightly adapt
the method of [5], since b is constant in this reference).

Step 2: convergence of the term involving G.

Let us study the convergence of »__.m(o) ('{’j’" Gk, — d;—"’GL,(,) (pxx) — p(xr)). We first notice

that, for size(7') small enough, since ¢ has a compact support in 2, this sum is reduced to Eing; we take,

from now on, size(7') satisfying this property.

Fix € > 0 and take H € (C'(Q))? such that |||G — H|||p1) < & let, for K € T and 0 € &k,
1

Hg,, = (meas(AK,c,) fAK’g H) 1k,

By regularity of ¢ and gathering by control volumes, we write

5 (o) (B, - 261, ) (plar) - o(ar)

S <>(

“Hy o, — L, 2 Hp a) (p(rr) — SD(IL))‘

g€Eint d
S C(1 do HKO’|+—‘GLO' HL,0|)
aegmt
< G Y Y mo)dre|Gre — Hi ol
KeT océk
< Cidd Y / |G — H| < Cyde (4.28)

KeT oeék AK.o

where C7 only depends on ¢.
By regularity of H and ¢, we have

5 mio) (B Hee - L ) (loxe) — pla))

oEEint do
dKa'
- > H Ny, dy — o dv | (e(rx) — p(zL))
g€Eint
dKa' . dLa . .
< Gy Y, m(cr)da( - size(T) + = sme(T)) < Chdmeas(Q)size(T) (4.29)
g€Eint o o

where Cy only depends on (H, ¢).
Gathering by control volumes and noticing that ng , = —nj, , whenever o = K|L € &4, we can moreover

write
dr o
> (% [ en

0€Einy

dv)u x) — olen))
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Z w(rK) Z /H-nKyc, dry

KeT c€EKNEmt ¥ 7
= E (,D(.TK)/ H - ng o d"‘/.
KerT OK\IQ

Since ¢ = 0 on the control volumes K € 7 such that 0K NN # (§, we have in fact

dx L0
3 ( £ /H.nK,a d”/%/H'nL,ad"/> (p(rr) — (rL))

0€E&int
= 3 low) [ Homiady
oK

KeT
. size(7)—0
= Z (,p(mK)/ div(H) — /cpdlv /H Vo, (4.30)
KeT K

the convergence being a consequence of the regularity of ¢ and H.
We also remark that

/H-V(p—/ G-V(p‘ < Cse, (4.31)
Q Q

where C5 only depends on ¢.
Gathering (4.28), (4.29), (4.30) and (4.31), we deduce that

dr o dr.«
lim sup Z m(o) < us Gr,o — L GLJ> (p(zx) — < /G Vgo) (Cid + C3)e
size(7)—0 € Eimt
for all € > 0 and, since C; and C3 only depend on ¢, this gives
di.o dp.s
5 (o) (%G - %26 ) (otan)  plar)) - [ 629 (4.32)
o o Q

0€Eins

as size(7) — 0.

Step 3: convergence of the convective term.

It remains to study the convergence of the term in (4.26) coming from the convection, that is to say
de&m m(o) (fi;—;"vLyguLy(,ﬁ — dg—;"vK’[,uK,gﬁ (p(zx) — p(zr)) (the sum is reduced to &y because
size(7) has been chosen small enough).

Take ¢ > 0 and w € (C*(Q))? such that |[|v — w|||r2@q) < e. Let, if K € T and 0 € €k, Wk,o =
(m fAK,a W) - ng ,. We have, by regularity of ¢,

> mo) (dg’

dg
0L UL+ — y ’”vK,UUK,a,Jr) (o(rr) — o(zL))

g€€int v 7
d d
= D7 o) | Frwreure s — =T wk etk ) (P(rx) = @(rr))
dy dy
oC€&int
d d
< G Z m(o)dy L70|UL,0_wL,a||UL,a,+|+ Lo o~ WK,o| UKo+
do dos
g€Eint
< G YN mo)dolvke — wE el [uk o+ ]
KeT o€ék
1/2 1/2
< (z S (o) (s - wK,g>2) (z > ch,uM))
KeT oc€i KeT oc€xi
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(C1, which only depends on ¢, is the same constant as before). The same way we have obtained (3.18),
we can prove that

d
Z Z 0)dr o (UKo 1) < ZHUTHL?(Q) < Cy

KeT o€l

where Cy only depends on (,p,|||v|||zr(),¢) (We use here Theorem 3.1 and the discrete Poincaré
inequality to obtain a bound on uz in L?(Q2)). Moreover, by Jensen’s inequality,

>3 moMolun, i) < 0 30 TP [ w2 v wl g <
K,o

KeT o€€k KeT o€k

Thus, we have

0€Eint

- > m < _ do wK7ouK,a7+) (plzx) —p(zL))

0€Eint
< eCiv/Cud (4.33)

By regularity of w and ¢, and gathering by control volumes, we find Cs only depending on w and ¢ such
that

dr & dx .o
> m(o) ( L oLt — L'LUKJUKJ;F) (plzk) — p(zL))

€&t da da
dLo’
— Z W - nLg—d/ULo-+ s d/VuK,U,-‘r ((P(I‘K)—SD(ﬁL))
0€Eint
dLo' dK,a .

< G Y mlo)d, T size(T)uL o, | + == size(T) ur,o,|

0€Eint 7 7
< Cssize(T Z Z 0)dK o |UK 0, +]-

KeT océk

Once again we can prove, the same way we have obtained (3.18), that >z > ce, M(0)dK o UK 0,+] <
%||uT||L1(Q), which is bounded by Cg only depending on (2, p, || [v|||zr(0),¢)- Thus we get

dr. o dr s
3 m<a>( I < wK,UuK,U,+) (olax) - pler))

do- k) ) do-
o€E&int
dL YL,o
- > Wng o dyuLge — o dyuro ) (plek) —e(rL))
0€Eing
< C5CGSIZ6(T>. (4.34)
Denoting by wg » = fg Wng o dy, U, = dr.oUb,o+HdK o UK 0.+ oy noticing that Wx » = —Wr,» whenever

o = K|L € &int, we can write

Z dL—’U/w-n dvy u de
do’ i L,o @Y UL o+ d

0EEint
= = ) Wil (plrk) — ¢(zL)).

0€Einy

iy uK,a,+) (olrxe) — plez))
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Gathering by control volumes (and since Wk, = —Wr , if 0 = K|L € &int), this gives

dL o
Z d—, WL, d,-y Ur,o,

0€Einy

oy uK,M) (o(ax) — plr)

=Y > WrUep(ax)

KcT 0cExNEint

=D D TKoTep(rx) (4.35)

KeT océk

(recall that size(7) is small enough so that ¢(zx) = 0 whenever Eexy N Ex # D).
The technique is then the same as in [5]: we decompose

Z Z Uk, olUop(TK) Z Z Uk,o(Te — UK )P Z Z Wi Uk P(TK)- (4.36)

KeT océk KeT océk KeT oeéx
Since Y, e, Wk,o = [f div(w), by convergence of uz to u in L?() and by regularity of ¢, we have
Z Z W, UkP(TK) Z ug (T / div(w) — / updiv(w (4.37)
KeT o€k KeT
as size(7) — 0. We also have

Y Wrolo —ur)plrr) — > Y (U, —ux /W ng o dy

KeT o€ék KeT o€k

< Cisize(T| Wl oy Y. Y, m(o)ls — uxkl.

KeT o€k

But @, is a convex combinaison of (ug,ur) if o0 = K|L € &y, and U, € {0, ur} if 0 € Eoxt NEK, SO that,
in either case, |4, — ux| < Dyur and

SN Trolo —uk)plek) = D> Y (Te —ux /W ng o dy

KeT o€k KeT oeék
< Crsize(T)|[ Wl oy Y. Y, m(o)Dour
KETJEEK
< 2Csize(T)|| W] llo@) > m(e) Dour
oe€
1/2
< 2Csize(T)|| Wl |o @) (Z m(c)da> lur |17
ogeé

ur||1,7 being bounded as size(7) — 0 and m(o)d, being constant (it is dmeas(2)), we deduce
s oce€
that

I § o oESTSSRERRED v oISy R ) EURNTE
KeT oe€k KeT oc€i
We have, gathering by edges and since ¢ = 0 on ¢ whenever o € Eqyy,

Z Z ug/w ng ,pdy = Z Uy (/w-nK70¢dﬂ/+/W-nL70¢d7> =0

KeT océi o€Einy
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since ng , = —ny , if 0 = K|L € Epy. Moreover,
Z Z uK/W-nK,agod'y: Z uK/ div(ew) —>/udiv(g0w)
KeT oefx o KeT K Q
as size(7) — 0. Thus, (4.38) implies
Z Z Ur,o(Ue — ur)p(rr) — —/ udiv(pw)
KeT o€k Q

as size(7T) — 0. Together with (4.34), (4.35), (4.36) and (4.37), this gives

dr » dx .o
> m(U)( ; WL,oUL,o,+ — %MK#TUK,U,‘F) (plzk) — p(zL))

0€Ent

- —/ngodiv(w)—i—/gudiv(gow) :/uW~V<,0 (4.39)

Q

as size(7) — 0.
By noticing that

[awevo- /qu-w‘ < Nlullz |l 1v — Wl 1zl 96l 1= oy < Cre

where C7 only depends on u and ¢, (4.33) and (4.39) allow to write

lim sup
size(7)—0

dr,. o dr &
5 (o) (B ur0 = vk s ) (plow) = olan) = [ wv vyl
o o Q

0€Eing
< (C1V/Cyd+ Cr)e

for all € > 0 and with Cy, C4 and C7 not depending on ¢, that is to say

dr,o di,o
5 000 (L vp v = v s ) (olow) = olo) — [wv-Ve (440
0€Eins 7 7 Q

as size(7) — 0.

Gathering (4.27), (4.32) and (4.40) in (4.26), we see that u satisfies the equation of (1.3). m

5 Another scheme

The scheme of Section 2 is based on a discretization of (1.1) that brings in approximate values of fo v -
ng,dy and [ G-ng o dy based on the values of v and G on a subset of K (the “half-diamond”). The
choice of such approximate values seems to be quite adapted when there is a link between the mesh and
v or G: for example, if v or GG is constant on each side of an hyperplane and if we take meshes such that
each control volume is on one side of this hyperplane.

But when there is no relation between v or G and the mesh, the reasons for using the values of v or G
only on K to approximate fg v-ng s dy or fU G - ng , dy are not so clear: we could approximate v or
G on o by some quantity v, or G, and then consider m(o)v, - ng,, or m(o)G, - ng, as a coherent
approximate value of fa V-ng s dy or fa G -ng , dy. This is what the following scheme does.
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Let 7 be an admissible mesh. If 0 = K|L € &, we define the “full-diamond” around o by A, =
Ao UAL o5 if 0 € Eex N €k, the “full-diamond” around o is simply A, = Ak,,. We let then, for
KeTando €€,

1 1
Vo = meas(Ay) /Ao v, b= meas(K) /K b

1 1
I = meas(K) /K fooand Go = meas(Ag) /Ao ¢

The new scheme for (1.1) is

VK €T, Z Frx o+ Z m(0)Vy - N sl 4 + meas(K)bguk
oc€EK oc€fk (5.1)
= meas(K)fx + Z m(0)Gey -k,

o€fK

VK € T,VO’ = K|L€ 8ngint7 FK7O' = M(’LLK —uL),

d 5.2
VKGT,VUEgngeXt, FK,cr:md(ZT)uKa ( )

Vo =K|L € &nt, Upt =ur if Vo -nrge >0, us+ =ur otherwise, (5.3)
Vo € et NEK,  Upy =ur if Vo -nge >0, u,, =0 otherwise. '

In fact, we can remark that (5.1)—(5.3) is exactly (2.2)—(2.5), provided that we define vg » = Vo - o,
Gro = Gs -ng, and let ug s+ = us 4 (for all K € T and all 0 € Ek). Indeed, in this case,
if o = K|L € &y, we have vg, = —vp,, so that (5.3) is equivalent to (2.5) (with the notation
UKo+ = Ug+), and Gg o = —GL 4, so that (2.4) comes down to Fx o = —Fp 5 (or uy = 0 if 0 € Eeyy)
which, associated to (2.3), is equivalent to (5.2).

Thus, we easily see that the preceding techniques to obtain a priori estimates on the solutions to (2.2)—
(2.5) give us estimates on the solutions to (5.1)—(5.3), which proves the existence and uniqueness of the
solution to this problem. The convergence proof also works as before, and we deduce that, if a > 0 is
fixed and w7 denotes the solution to (5.1)—(5.3), then uz converges in L4(Q), for all ¢ < 2%, to the
unique solution of (1.3), as size(7) — 0 with reg(7) > a.
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