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ABSTRACT

In this paper we study the questions of existence and uniqueness of solutions for equa�
tions of the form �Au � F �x� u�� posed in �� an open subset of RN �bounded or un�
bounded�� with Dirichlet boundary conditions� A is a nonlinear elliptic operator modeled
on the p�Laplacian operator �p�u� � div �jDujp��Du�� with p � �� and F �x� u� is a
Caratheodory function which is nonincreasing in u� Typical cases include F �x� u� � f�x�
or F �x� � f�x����u�� where � is an increasing function with ��	� � 	 �or even a maximal
monotone graph with 	 � ��	��� We use an integrability assumption on F which in these
cases means that f � L�����

The existence theory o
ers few di�culties when p � N � Here we consider the case
� � p � N and establish existence of a weak solution u� For p � �� ���N� and � bounded

the solution lies in the usual Sobolev space W ��q
� ��� with � � q � p� � N�p� ����N � ���

However� when � � p � �� ���N� we have p� � � and it is necessary to introduce a new

space T ��p
� ���� dened as an extension of W ��p

� ��� by means of a truncature method� Also
the question of decay at innity creates the need for a suitable functional setting when �
is not bounded� Let us recall that in our study � can be any open subset of RN �

The second main issue of the paper is uniqueness� Our solutions satisfy an additional
entropy condition� We prove that entropy solutions are unique�

In the case where F � f�x� � ��u� we can take f to be a bounded measure� under
additional assumptions on � we obtain existence of a solution�

AMS Subject Classi�cation� ��J�	� ��D	��

Keywords� Nonlinear elliptic equations� p�Laplacian operator� new functional spaces�
entropy solutions� existence and uniqueness of solutions�
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INTRODUCTION

Consider for instance the model problem

��pu � F �x� u� on ������

u�x� � 	 on �� ������

where � � p � �� Du � ���u� � � � � �Nu� denotes the gradient of u� the expression �p�u�
means div �jDujp��Du� and F is a continuous function which is nonincreasing in u and
such that F �x� 	� � L���� and F �x� c� � L�

loc��� if c �� 	�

Many authors have considered this problem� specially in the case p � �� in the form

��u� ��u� � f �

cf� �BBC�� �BS�� �BG��� � � � � We are interested here in the case � � p � N � The case
p � N o
ers less di�culties and for bounded � can be found in �LL�� Indeed� the solution
u is bounded and the gradient Du belongs to Lp���� so that variational methods apply�
This is not the case when p � N � so that we have to use a di
erent approach to obtain
existence and uniqueness�

There are two di�culties associated with the study of equation ������ even in a bounded
domain� which are not solved in former works� The rst is to give a sense to the solutions
of an equation of the form ��p�u� � f � L���� for p close to �� precisely for p � p� �

�� ���N�� In fact� we cannot expect the solution to be in W ���
loc ���� This can be seen by

direct inspection of the fundamental solution� i�e� the solution of ����� when F � a Dirac
mass� which takes the form

����� U�x� � Cjxj��� � �
N � p

p� �
�

We see that jDU j � Lp
loc�R

N � if p � N and also that jDU j � L�
loc�R

N � if p � p�� More
generally� the same conclusion holds for L� data� see Appendix I at the end of the paper �cf�
also the remarks in �BS� or �BGV��� Therefore� we cannot take the gradient of u appearing
in the p�Laplacian operator in the usual distribution sense� We solve this di�culty by
introducing a new space T ���

loc ��� in which we can naturally give a sense to the gradient of
u which in general is not locally integrable� The idea consists in considering truncatures of
the solution u� Tk�u�� and working instead of Du with the derivatives DTk�u�� which turn
out to be locally integrable� Precise denitions are given in Section �� Then the rst term
in equation ����� makes sense when jDujp��Du � L�

loc���� In order to take into account

condition ����� we seek the solution in a proper subspace of T ���
loc ���� T ��p

� ���� Of course�

when u �W ���
loc ���� and this happens for the solutions of ������ ����� when p � �� ���N��

the new derivative concept reduces to the usual one�

A second di�culty appears with the question of uniqueness of solutions� We obtain
existence and uniqueness of a special class of solutions of ����������� that satisfy an ex�
tra condition that we call the entropy condition �formula ����� below�� The use of such
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conditions is rather common in conservation laws� cf� �La�� �Kr�� but is novel to elliptic
equations�

Let us state next our precise framework� We will pose a slightly more general equation

����� �div �a�x�Du�� � F �x� u� in D���� �

The following assumptions are made on �� a and F �

�H�� � is an open set� not necessarily bounded� in RN � N � ��

�H�� The function a � � �RN �	 RN is a Caratheodory function �continuous in � for
a�e� x and measurable in x for every �� and there exist p � ���N� and 	 � 	 such
that

ha�x� ��� �i � 	j�jp

holds for every � and a�e� x� There is no restriction in assuming that 	 � ��

�H�� For every � and 
 � RN � � �� 
� and a�e� x � � there holds

ha�x� �� � a�x� 
�� � � 
i � 	 �

where h� i means scalar product in RN �

�H�� There exists � � R such that

ja�x� ��j � ��j�x� � j�jp���

holds for every � � RN with j � Lp�

���� p� � p��p� ���

�H�� F is a Caratheodory function� continuous and nonincreasing in u for xed x� and
measurable in x for xed Moreover� F �x� 	� � L����� and if

Gc�x� � sup
fjuj�cg

fjF �x� u�jg �

then Gc � L�
loc��� for every c � 	�

Let us brie�y summarize the contents of the paper� after a section devoted to develop
the necessary functional setting we introduce the concept of entropy solution and derive
the main properties of such solutions �Section ��� In Section � we derive the basic a priori
estimates on the measure of their level sets� We are then ready to establish uniqueness
�Section �� and existence �Section �� of entropy solutions for the Dirichlet problem ������
������ We gather in Section � some properties of the solution and their relation to the
theory of accretive operators and the generation of semigroups� Extensions to more general
settings will be commented upon and partially worked out in Section �� We treat in
particular the case where F �x� u� � f�x� � ��u�� with f a bounded measure and � a
maximal monotone graph� We note that our paper contains new results even for linear
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growth� i�e� p � �� for equations of the form �diva�x�Du� � F �x� u� posed in arbitrary
domains� Finally� four appendices contain technical results� The rst one comments on the
need of a new functional setting when p � p�� Appendix II gives di
erent characterizations
of the basic space T ��p

� ���� Appendix III is also related to spaces of truncated functions�
Finally� Appendix IV discusses the need of entropy conditions�

For reasons of concision and clarity of exposition we have chosen not to include the
study of the limit case p � N in the present work� The reader will easily check that most
of the theory developed below still applies though it has some particular features which
may deserve separate attention� In particular� the uniqueness theory is unchanged and
the estimates of Section � are easily adapted� The supercritical case p � N is easier since
solutions turn out to be continuous� We give some more precise details and results in
Section ��

Let us mention some parallel developments� First� the works of P�L� Lions and F�
Murat �LM� �see also �M�� on the equation div �A�x�Du���u�� �	u � f with f � L�����
where � is locally Lipschitz�continuous with any growth at innity� they prove existence
and uniqueness of a renormalized solution� a notion introduced in �DL� in the study of the
Boltzmann equations� The existence of a renormalized solution for f � H����� was proved
in �BGDM�� Entropy solutions and renormalized solutions are di
erent approaches to the
denition of a suitable generalized solution which will make the problem well�posed� Let
us also mention the work of Dall�Aglio �D� who constructed solutions for equations of the
form ��p�u� � g�x� u� � f with f � L����� dened as limits of variational solutions� and
proved uniqueness of the limit solution thus obtained� This notion of solution is related
to the abstract development of �BC�� The works of Rakotoson �R��� �R�� and �R�� address
equations of the form �div a�x� u�Du��g�x� u� � � where � is an L� function or a bounded

measure on �� he also introduces a space of functions similar to our T ��p
loc ��� �while smaller�

and proves existence of generalized solutions� in �R�� he proves existence and uniqueness
of renormalized solutions when � � L����� In all the aforementioned works the open set �
is assumed bounded� Some of the di�culties below will be related to the consideration of
unbounded domains� Finally� the parabolic equation ut � �p�u� has been treated amomg
others by DiBenedetto and Herrero �DBH����� For small p they also deal with truncated
solutions� In concluding we would like to point out that the basic ideas of this paper�
including the introduction of T �spaces to account for the unusual derivatives� and the a
priori estimates of the distribution function of u and Du� were announced years ago �see
�B�� and the reference ��� in �BGDM���

�� FUNCTIONAL SPACES

Before we discuss the concept of solution we need to go into the functional setting in
some detail� First� some notation� As usual� for � � p � � Lp��� and W ��p��� will

denote the standard Lebesgue and Sobolev spaces and W ��p
� ��� is the closure of C�� ���

in W ��p���� k � kp denotes the Lp�norm in �� We shall also use the local spaces Lp
loc���

and W ��p
loc ���� By L���� we denote the set of measurable functions u � � 	 R such that
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the sets fjuj � g have nite measure for every  � 	� This expresses the fact that the
functions go to 	 as jxj 	 � in measure� We have Lp��� 
 L���� for every � � p ���
For a measurable set A 
 RN we use the notation meas �A� � jAj to denote its measure�

We begin by introducing the truncature operator� For a given constant k � 	 we dene
the cut function Tk � R	 R as

����� Tk�s� �

�
s if jsj � k

k sign �s� if jsj � k �

For a function u � u�x�� x � �� we dene the truncated function Tku � Tk�u� pointwise�
for every x � � the value of �Tku� at x is just Tk�u�x��� We now introduce the functional
spaces we will need in our theory�

i� T ���
loc ��� is dened as the set of measurable functions u � � �	 R such that for every

k � 	 the truncated function Tk�u� belongs to W ���
loc ����

ii� For p � ����� we dene T ��p
loc ��� as the subset of T ���

loc ��� consisting of the
functions u such that D�Tk�u�� � Lploc��� for every k � 	� Likewise� T ��p��� is the

subset of T ���
loc ��� consisting of the u such that moreover DTk�u� � Lp��� for every k � 	�

iii� Finally� T ��p
� ��� will be the subset of T ��p��� consisting of the functions that can

be approximated by smooth functions with compact support in � in the following sense�
a function u � T ��p��� belongs to T ��p

� ��� if for every k � 	 there exists a sequence
�n � C�

� ��� such that

D�n 	 DTk�u� in Lp��� �

�n 	 Tk�u� in L�
loc��� �

This space will play an important role in what follows� Alternative characterizations of it
are given in Appendix II at the end of the paper�

Let us now devote some space to consider the properties of these spaces� To begin
with� it is clear that for every p � ����� we have the inclusions W ��p

loc ��� 
 T ��p
loc ��� and

W ��p
� ��� 
 T ��p

� ��� and in these cases we have

DTk�u� � �fjuj�kgDu�

where �A denotes the characteristic function of a measurable set A 
 RN � It is also clear
that T ��p

loc ��� � L
�
loc��� � W ��p

loc ��� � L
�
loc���� Moreover� we can easily convince ourselves

that the inclusions are strict� i�e� the new spaces are strict extensions� In fact� T ���
loc ��� is

not even a vector space� as the following example in one space dimension shows� consider
in � � ���� �� the functions u�x� � x sin���x� and v�x� � x��� Then v and u� v belong

to T ���
loc ���� but u does not� However� it is true for instance that if u � T ���

loc ��� and
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v � W ���
loc ��� � L

�
loc��� then u � v � T ���

loc ���� Let us remind the reader that in dening
T ��p��� we did not impose the condition Tk�u� � Lp���� Of course� this condition follows
immediately when � has nite measure �since Tk�u� is bounded�� but for unbounded � it
makes a real di
erence�

We want to give a sense to the derivative Du of a function u � T ���
loc ���� generalizing

the usual concept of weak derivative in W ���
loc ���� cf� �GT�� The following result paves the

way in this direction�

Lemma ���� For every u � T ���
loc ��� there exists a unique measurable function v � � �	 RN

such that

����� DTk�u� � v�fjvj�kg a�e�

Furthermore� u � W ���
loc ��� if and only if v � L�

loc���� and then v � Du in the usual weak
sense�

Here unique is understood in the almost everywhere sense� The proof of this result is as
follows� We have seen that formula ����� is true for u � W ���

loc ��� with v � Du� Note also
that for k�  � 	 we have Tk�Tk���u�� � Tk�u�� Therefore� we get a�e� in �k � fjuj � kg
the a�e� equality DTk���u� � DTk�u�� But�

S
k�� �k � �� hence the assertion �����

follows�

We are left with the proof that u � W ���
loc ��� if v � L�

loc���� Indeed� in that case
DTk�u� 	 v in L�

loc���� We still have to see that u � L�
loc���� If this were not true there

would exist a closed ball B 
 � such that

tk � kTk�u�kL��B� 	�

as k 	�� Normalize vk � Tk�u��tk� Then vk 	 	 a�e�� kvkkL��B� � � and kDvkkL��B� 	

	� This is a contradiction to the compactness of the embedding W ����B� 
 L��B�� �

Thanks to this result we de�ne the derivativeDu of a function u � T ���
loc ��� as the unique

function v which satis�es ������ This notation will be used throughout in the sequel� We

recall that in general the derivative of a function u � T ���
loc ��� � L

�
loc��� need not be a

locally integrable function� and that this denition of derivative is not a denition in the
sense of distributions�

The following straightforward result will be useful�

Lemma ���� If u � T ��p
� ��� and � � p � N then DTk�u� � Lp��� and Tk�u� � Lp

�

���

for p� � pN��N � p�� If � is bounded then for every � � p �� we have u � T ��p
� ��� i�

Tk�u� � W ��p
� ��� for every k � 	� Finally� for bounded � u � W ��p

� ��� i� u � T ��p
� ���

and Du � Lp����

Observe that if � � p � N then T ��p
� ��� 
 L����� Indeed� since Tk�u� � Lp

�

��� for
k � 	� u	 	 in measure as jxj 	 �� This will be used later on�
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It is sometimes useful to replace the truncation Tku introduced above by smoother
truncations� in this sense� it is worth noticing the following result�

Lemma ���� If u � T ��p
loc ��� then T �u� �W ��p

loc �R
N � for every Lipschitz�continuous func�

tion T � R �	 R satisfying

����� T ��s� � 	 for jsj large enough�

Moreover� DT �u� � P �u�Du where P is a measurable function de�ned a�e� by P �u� �

T ��u�� Finally� if u � T ��p
� ��� and T �	� � 	 then T �u� � T ��p

� ����

The proof of this lemma is straightforward since T �u� � T �Tk�u�� for large enough k�

We must notice that the sole assumptions u � T ���
loc ��� and T � R	 R Lipschitz continuous

�resp� Lipschitz continuous and bounded� do not in general imply that T �u� � T ���
loc ���

�resp� W ���
loc �R

N ��� See Appendix III for a counterexample�

�� ENTROPY SOLUTIONS

De�nitions� Let us consider now the concept of solution for our kind of equations in the
new functional setting� Thus� given the equation

����� �div �a�x�Du�� � f�x��

under the assumptions �H����H�� and with f � L����� by a solution we will understand

a function u � T ���
loc ��� such that a�Du�x�� belongs to L�loc��� and the equation is satised

in D����� i�e�

�����

Z
�

ha�x�Du��D�i dx �

Z
�

f�dx �

for every test function � � C�
� ���� In this paper we will deal with special solutions of

the homogeneous Dirichlet problem ������������ Thus� if in ����� we allow as test function
Tk�u� ��� k � 	� we obtain

�����

Z
fju��j�kg

ha�x�Du��Du �D�i dx �

Z
Tk�u� ��f dx �

Notice that both integrals in ����� are well dened� The second member o
ers no di�culty
since f � L��RN �� As to the rst member we observe that

����� ha�x�Du��Du �D�i�fju��j�kg � �ja�x�Du�jjD�j�fjuj�Kg �

where K � k� k�k�� Since the second member in ����� is integrable in �� the integral in
the rst member of ����� is well�dened�
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It must be observed at this stage that ����� cannot be derived in general from ������
We will brie�y discuss this issue in Appendix IV� We will in fact see that we cannot even
derive the inequalities

�����

Z
fju��j�kg

ha�x�Du��Du �D�i dx �

Z
Tk�u� ��f dx� k � 	�

This family of inequalities is precisely the basis of our theory�

Indeed� we define an entropy solution of problem ����������� as a function u �

T ��p
� ��� satisfying the family of inequalities ����� for every � � D��� and k � 	� This

will be referred to as the entropy condition�

As above the integrals in ����� are well dened� On the other hand� using the fact that
Du �D� � 	 a�e� on the set where ju � �j � k� it is clear that replacing the integration
set fju � �j � kg in the rst member of ����� by fju � �j � kg does not change the
value of the integral� so the latter set can be used in ����� instead of fju� �j � kg�

While a priori it is not clear� we will prove below that an entropy solution is always a
solution of ����� in the standard sense dened above� This will be done in Section � after
deriving convenient a priori estimates for the entropic solutions�

Properties� We are going to derive some properties of entropy solutions� Firstly� setting
� � 	 we obtain an immediate consequence of the denition

Lemma ���� If u � T ��p
� ��� is an entropy solution of ���	���	��� then for every k � 	

�����
�

k

Z
fjuj�kg

ha�x�Du��Duidx �

Z
jf j dx � kfk� �

Hence� under hypothesis �H�� we obtain the following bound in Lp���


����� kDTk�u�k
p
p �

k

	
kfk� �

It is technically useful to extend the entropy condition to more general truncations than
Tk and more general test functions than � � C�

� �RN �� To begin with� we introduce the
class F of functions T � C��R � R� � L��R � R� satisfying�

T �	� � 	� T � � 	� T ��s� � 	 for all s large enough �

T ��s� � �T �s�� and T ���s� � 	 for s � 	 �

For T � F we write k�T � � inffk � T �s� � T ��s� � kTk�g� Then we have

	



Lemma ���� The entropy condition ����� is equivalent to the statement that

�����

Z
ha�Du��DT �u � ��idx �

Z
�

fT �u � �� dx

holds for every test function � � C�
� ��� and every function T � F �

Proof� Suppose that ����� holds and let us prove ������ Take a k � �� We may use an
approximation of the standard cut Tk by an increasing sequence of functions Sn � F chosen
so that S�n�s� � 	 for jsj � k� S�n�s� � � for jsj � k � ���n� and S�n � � everywhere�
Since as n	� Sn�u���	 Tk�u��� uniformly and S�n�u���	 T �k�u��� a�e�� applying
����� with T � Sn and passing to the limit we obtain ������

Conversely� if ����� holds consider the case where T � F is just a combination of cut
functions�

T �
X

ajTkj � aj � 	 �

In that case we apply ����� to the Tkj and add to obtain that ����� holds� In the general

case T � F we approximate in C��norm by a sequence of functions of that type and pass
to the limit� �

Next we show that the entropy condition ����� holds for a much wider class of test
functions�

Lemma ���� If u is an entropy solution of ���	���	���� Then ����� holds for every test

function � � T ��p
� ��� � L�����

Proof� By denition there exists a sequence �n � C�
� ��� such that D�n 	 D� in Lp���

and �n 	 � in L�loc��� and a�e� Replacing �n by R��n� with R � C��R� � L��R��
R�s� � s for jsj � k�k� we may always assume that the �n�s are uniformly bounded in
�� We may also assume that there exists a function w � Lp��� such that jD�nj � w a�e�
We have

Tk�u� �n�	 Tk�u� �� a�e

and jDTk�u��n�j � jDTK �u�j�w� with K � k�supk�nk�� It is not di�cult to see that

DTk�u� �n�	 DTk�u� �� weakly in Lp����

Assuming now the denition of entropy solution we have

Z
ha�x�Du��DTk �u� �n�idx �

Z
Tk�u� �n�fdx�

We may pass to the limit in both sides� the right�hand side is clear since f � L����� As
for the left�hand side� observe that the integrand equals ha�x�DTK �u���DTk�u��n�i and

a�x�DTK �u�� � Lp�

���� �

�




Observe that for given a and k � 	 the function Tk�a�s� � Ta�s � Tk�s�� takes the
values

Tk�a�s� �

���
��

s� k sign �s� for k � jsj � s� a �

a for jsj � k � a �

	 for jsj � k �

Now� if v � T ��p
� ����L���� the expression Tk�a�u�v� can be written in the form Ta�u�w�

with w � v � Tk�u� v� � T ��p
� ��� � L����� Applying Lemma ��� we get

Corollary ���� If u is an entropy solution of ���	���	��� then

�����

Z
fk�juj�k�ag

ha�x�Du��Duidx �

Z
f Tk�a�u� dx � a

Z
fjuj�kg

jf j dx �

so that under hypothesis �H��

����	�
�

a

Z
fk�juj�k�ag

jDujpdx �
�

	

Z
fjuj�kg

fdx� �

This Lp�estimate for Du will play a fundamental role in the sequel�

�� A PRIORI ESTIMATES

As another preliminary to the existence and uniqueness theory we derive estimates for a
function u that satises the inequalities of previous section and for its gradient jDuj� The
estimates consist of controlling the measure of the level sets� i�e� we work in Marcinkiewicz
spaces� We recall� cf� �BBC�� that for 	 � q � � the Marcinkiewicz space Mq��� can
be dened as the set of measurable functions f � � 	 R such that the corresponding
distribution functions

����� �f �k� � meas fx � � � jf�x�j � kg

satisfy an estimate of the form

����� �f �k� � C k�q� C ���

It is immediate that Lq��� 
Mq��� 
 L���� and that for bounded � we have Mq��� 

M�q��� if q � �q� We begin with the estimate for u�

Lemma ���� Let � � p � N � let � be as above and let u � T ��p
� ��� be such that

�����
�

k

Z
fjuj�kg

jDujp dx �M

for every k � 	� Then u � Mp���� with p� � N�p���
N�p � More precisely� there exists

C � C�N� p� � 	 such that

����� measfjuj � kg � CM
N
N�p k�p� �

��



Proof� For k � 	 one has by Sobolev�s embedding

kTk�u�kp� � c�N� p�kDTk�u�kp � c�N� p��Mk���p�

For 	 �  � k we have fjuj � g � fjTk�u� � jg� Hence

measfjuj � g �

�
kTk�u�kp�



�p�
� c��N� p�M

N��N�p�kN��N�p��pN��N�p��

Setting  � k we obtain ������ �

Remark� Such estimates are not new for solutions of elliptic equations� They have been
proved by Talenti �Ta� for quasilinear equations using rearrangement theory� However� this
elementary proof is new�

We now proceed with the derivative estimates�

Lemma ���� Let � � p � N and assume that u � T ��p
� ��� satis�es ����� for every k�

Then for every h � 	

����� measfjDuj � hg � C�N� p�M
N
N�� h�p� � p� �

N�p � ��

N � �
�

Proof� For k� 	 � 	 set

��k� 	� � meas fjDujp � 	� juj � kg�

 From Lemma ��� we have

����� ��k� 	� � C�N� p�MN��N�p�k�p��

Using the fact that the function 	 �	 ��k� 	� is nonincreasing we get for k� 	 � 	

����� ��	� 	� �
�

	

Z �

�

��	� s�ds � ��k� 	� �

Z �

�

���	� s� ���k� s��ds�

Now� observe that since

��	� s� � ��k� s� � meas fjuj � k� jDujp � sg�

we have thanks to �����

�����

Z �

�

���	� s� � ��k� s��ds �

Z
fjuj�kg

jDujpdx �Mk�

Going back to ����� and using ����� and ����� we arrive at

����� ��	� 	� �
Mk

	
� C�N� p�MN��N�p�k�p��

Minimization of ����� in k and setting 	 � hp give ������ �

As a corollary we have

��



Corollary ���� Under assumptions �H	���H��� if u is an entropy solution of ���	���	���
then a�x�Du� � L���� � L���� and u is a solution of ���	�� i�e� ����� holds for every
� � C�

� ����

Proof� Using Corollary ��� and Lemma ��� we obtain ������ Using �H�� and p � N it
follows that

meas fja�x�Du�j � hg � Ch�N��N����

for some C � 	 depending on N� p� 	�� and kfk�� Therefore� a�x�Du� � L���� � L�����

Let now � � C�
� ���� Applying Lemma ��� with test function Th�u��� instead of � we

get Z
fju�Thu��j�kg

ha�Du�� �fjuj�hgDu�D�idx �

Z
Tk�u� Th�u� � ��fdx�

and then Z
fju�Thu��j�kg

ha�Du��D�idx �

Z
Tk�u� Th�u� � ��fdx�

Choosing k � k�k� at the limit h	� we have

Z
ha�Du��D�idx �

Z
�fdx�

Replacing � by �� we get the converse inequality� Hence� equality holds� �

In this way we have shown that an entropy solution is indeed a solution in the standard
distribution sense� This result would follow in any case from the existence and uniqueness
of sections � and �� Indeed� we will prove that entropy solutions are unique and then we
will construct a standard solution of the problem that is also an entropy solution�

�� UNIQUENESS

We settle here the question of uniqueness of entropy solutions in the spirit of Section ��

De�nition of solution� By a solution of ����������� we understand a function u � T ��p
� ���

such that F �x� u�x�� � L���� and which is a solution of equation ����� with second member
f�x� � F �x� u�x��� The denition of entropy solution is similar to ������

Our main result is

Theorem ���� Let u� and u� be two functions in T ��p
� ��� which are entropy solutions of

the equation
�div �a�x�Du�� � F �x� u�

under assumptions �H	���H��� Then u� � u��

Proof� �i� Let fi�x� � F �x� ui�x��� i � �� �� We are assuming that fi � L����� We
will write a�Du� instead of a�x�Du� for convenience� We write the entropy inequality

��



corresponding to solution u� with test function Thu� and u� with test function Thu�
�use Lemma ����� Adding up both results we get

�����

Z
fju��Thu�j�kg

ha�Du���Du� �DThu�idx�

Z
fju��Thu�j�kg

ha�Du���Du� �DThu�idx �

Z
�

f�Tk�u� � Th�u��� dx �

Z
�

f�Tk�u� � Th�u��� dx �

�ii� The conclusion u� � u� will be reached after passing to the limit h 	 � in this
formula and disregarding some positive but uninteresting terms� We proceed by splitting
the integrals above into the contributions corresponding to di
erent integration sets� Thus�
if we put

A� � fx � � � ju� � u�j � k� ju�j � h� ju�j � hg

when restricted to A� the rst member of ����� gives the following main contribution that
we will keep�

I� �

Z
A�

ha�Du�� � a�Du���Du� �Du�idx�

The remaining rst member integral is estimated as follows� Take the rst term� On the
set

A� � fx � � � ju� � Thu�j � k� ju�j � hg

we have Z
A�

ha�Du���Du� �DThu�idx �

Z
A�

ha�Du���Du�idx � 	�

while on the remaining set

A� � fx � � � ju� � Thu�j � k� ju�j � h� ju�j � hg

we getZ
A�

ha�Du���Du� �DThu�idx �

Z
A�

ha�Du���Du� �Du�idx � �

Z
A�

ha�Du���Du�idx�

In the same way we estimate the second integral in the sets A�
�� where ju�j � h� and A�

��
where ju�j � h and ju�j � h� All these sets and integrals depend of course on k and h�
Summing up we estimate the rst member of ����� in the form I � I� � I�� where

I� �

Z
A�

ha�Du���Du�idx �

Z
A�

�

ha�Du���Du�idx �

Now� I� goes to 	 as h	�� Indeed� the rst term can be estimated by

ka�Du��kLp� �fh�ju�j�h�kg�kDu�kLp�fh�k�ju�j�hg�

� ��kjkLp� �fju�j�hg�� � kDu�k
p
Lp�fh�ju�j�h�kg�

kDu�kLp�fh�k�ju�j�hg��

��



and this converges to 	 as h	� for every k � 	 thanks to Corollary ��� and Lemma ����
Likewise the second term�

�iii� The second member of ����� can be worked out by the same method� The integral on
B� � fx � � � ju�j � h� ju�j � hg gives

J� �

Z
B�

�F �x� u��� F �x� u���Tk�u� � u�� dx � 	 �

while on the set B� � fx � � � ju�j � hg the integral� J�� is estimated by

jJ�j � k

Z
B�

�jf�j� jf�j� dx �

Likewise on B� � fx � � � ju�j � hg we have

jJ�j � k

Z
B�

�jf�j� jf�j� dx �

Now� the measure of both sets� B��h� k� and B��h� k�� goes to zero as h 	 � for xed
k � 	� Hence J� � J� 	 	�

�iv� Combining the above estimates we get from �����Z
A��h�k�

ha�Du�� � a�Du���Du� �Du�idx � �h� �

where �h�	 	 as h	�� k xed� Since A��h� k� converges to fx � � � ju��u�j � kg we
conclude that Z

fju��u�j�kg

ha�Du��� a�Du���Du� �Du�idx � 	 �

Since this is true for all k � 	 we conclude by �H�� that Du� � Du� a�e� Taking into

account that u� and u� � T
��p
� ����L���� �use Corollary ��� and Lemma ���� we conclude

that u� � u� a�e� �

	� EXISTENCE

Theorem 	��� Under assumptions � � p � N and �H	��H�� there exists a unique

entropy solution of equation �	��� in T ��p
� ���� Moreover�

����� u �Mp����� jDuj �Mp����

where p� � N�p���
N�p and p� � N�p���

N�� � In case p � � � ���N� the solution belongs to

W ��q
loc ��� for every q � p�� and if � is bounded to W ��q

� ����

Proof� Step 	� Let us write the second member in the form

����� F �x� u� � F �x� 	� � ��x� u� �

��



Then f�x� � F �x� 	� � L��RN � and � is monotone nondecreasing in u with ��x� 	� � 	�
so that

��x� u�u � 	 �

We recall that � is continuous in u for a�e� x � � and measurable in x for every u �
R� Following the classical procedure� our rst step consists in approximating the second
member f with a sequence of smooth functions fn � C�

� ���� fn 	 f in L����� It will be
also useful to ask that

����� kfnk� � kfk�

for every n � �� We also approximate the monotone function � by bounded functions �n�
nondecreasing in u� For instance� we take

�n�x� s� � maxf�n�minfn� ��x� s�gg�

In this way j�n�x� s�j � j��x� s�j for every s � R and x � �� Finally� we take

����� �n�s� � �n�x� s� �
�

n
jsjp��s �

Then it is well�known� see �LL�� �Li�� and �Bw� for unbounded domains� that there exists

un � W ��p
� ��� such that

����� �div �a�Dun�� � �n�x� un� � fn

holds in the sense of distributions in �� We also point out that un � L���� � L�����

Multiplying ����� by convenient test functions and integrating one gets the following
uniform estimates

�

a

Z
fk�junj�k�ag

jDunj
p dx �

Z
fjunj�kg

jfnj dx � kfnk� � C� ������

Z
fjunj�kg

j�n�un�j dx �

Z
fjunj�kg

jfnj dx � kfnk� � C� ������

Z
fjunj�kg

jDunj
p dx �

Z
fjunj�kg

ha�Dun�Dunidx � kC� ������

We recall that� for the sake of simplicity� we are xing the ellipticity constant 	 � ��

Step �� Convergence� Using ����� we see that fD�Tkun�g is bounded in Lploc��� for
every k � 	� With ����� and Lemma ���� we also have that meas fjunj � kg is bounded
uniformly in n for every k � 	� Let us prove that un 	 u locally in measure� to begin
with� we observe that for t�  � 	 we have

fjun � umj � tg 
 fjunj � kg  fjumj � kg  fjTk�uk�� Tk�um�j � tg

��



so that

meas fjun � umj � tg � measfjunj � kg�

meas fjumj � kg�measfjTk�un� � Tk�um�j � tg �

Choosing k large enough the rst two terms in the second member are less that � Since
fDTkungn is bounded in Lp��� for all k � 	 and Tkun � W ��p

� ��� we can assume that
fTkung is a Cauchy sequence in Lq�� �BR� for any q � p� � pN��N � p� and any R � 	
and

Tkun 	 Tku in Lqloc��� and a�e �

Then

meas �fjTkun � Tkumj � tg � BR� � t�q
Z
��BR

jTkun � Tkumj
q dx � 

for all n�m � n��k� t�R�� This proves that fung is a Cauchy sequence in measure in BR�
hence that un 	 u locally in measure�

We now prove that Dun converges to some function v locally in measure �and therefore�
we can always assume that the convergence is a�e� after passing to a suitable subsequence��
To prove this we show that fDung is a Cauchy sequence in measure in any ball BR� Let
again t and  � 	� Then

�����
fjDun �Dumj � tg � BR 
 fjDunj � Ag  fjDumj � Ag  �fjun � umj � kg

� BR�  fjun � umj � k � jDunj � A � jDumj � A � jDun �Dumj � tg �

We rst choose A large enough in order to have

measfjDunj � Ag �  for all n � N

�this is possible by Lemma ����� If a is a continuous function independent of x we argue
as follows� then by �H�� there exists � � 	 such that j�j � A� j
j � A and j� � 
j � t
together imply

ha��� � a�
�� � � 
i � � �

This is a consequence of the continuity and strict monotonicity of a� Then� if we set

hn � fn � �n�un� �

we have �note that a�Dun� and a�Dum� belong to Lp
�

����

Z
fjun�umj�kg

ha�Dun�� a�Dum��Dun �Dumidx

�

Z
�

�hn � hm�Tk�un � um� dx � �C�k �

��



Then

����	�

meas fjun � umj � k� jDunj � A� jDumj � A� jDun �Dumj � tg

� measfjun � umj � k� �a�Dun�� a�Dum�� � �Dun �Dum� � �g

�
�

�

Z
fjun�umj�kg

ha�Dun�� a�Dum��Dun �Dumidx

�
�

�
�kC� �  �

if k is small enough� k � ����C��� Under the general assumption �H�� the argument is
technically more delicate� it can be seen in �BG�� or �BeW��

Since A and k have been already chosen� if n� large enough we have for n�m � n� the
estimate meas �fjun � umj � kg �BR� � � and then meas �fjDun �Dumjg �BR� � ��
This proves that fDungn converges locally in measure to some function v� hence also a�e�
�up to extraction of a subsequence� if necessary�� Finally� since fDTkungn is bounded
in Lp��� �for any k � 	�� it converges weakly to D�Tku� in L�

loc���� Then� we have

u � T ���
loc ��� and Du � v a�e�

Summing up� we have established the following facts�

un �W ��p
� ���� u � T ���

loc ���

un 	 u a�e and in locally measure

Dun 	 Du a�e and locally in measure

fD�Tkun�gn is bounded in Lp��� �for xed k��

We also have D�Tk�u�� � Lp��� and moreover u � T ��p
� ���� Indeed� we can construct

�n � C�
� ��� such that kD�n �D�Tkun�kLp � ��n and k�n � TkunkLp� � ��n� We then

have D�n 	 D�Tku� weakly in Lp��� and �n 	 Tku strongly in Lqloc��� for q � p�� From
�n we can construct �n �convex combinations of the �n�s� using Mazur�s lemma� so as to

have strong convergence of derivatives� We conclude that u � T ��p
� ���� See also Appendix

II�

Furthermore� using the convergence of un to u and Dun to Du� we can prove for u the
inequalities stated in Lemmas ��� and ����

Step �� In order to complete the proof of the existence of a solution we still have to show

i� that a�Du� � L�
loc����

ii� that ��x� u�x�� � L����� and nally that

iii� �div �a�Du�� � ��x� u� � f in D�����

��



and also that the entropy inequality holds� We rst remark that the sequence fa�Dun�gn
is bounded in Lqloc��� for all q � ���N��N � ���� Indeed�

ja�x�Dun�j � ��j�x� � jDunj
p���

with j � Lp
�

��� 
 Lqloc���� and� according to Lemma ����Dun is bounded inMN��N������ �

Lqloc��� �recall that this simply means that measfja�x�Dun�j � 	g � C 	�
N
N�� �� On

the other hand� according to Nemitskii�s theorem �K� the convergence of Dun to Du
in measure implies that a�x�Dun� converges in measure to a�x�Du�� It follows that
a�x�Du� � MN��N������ 
 Lqloc��� for all q � ���N��N � ���� We now use a conver�
gence result whose easy proof is left to the reader�

Lemma 	��� Let vn be a sequence of measurable functions on a measurable space � with
�nite measure� Assume that the sequence converges in measure to a function v and is
uniformly bounded in Lp��� for some p � �� Then vn 	 v strongly in L�����

Applying this result to a�x�Dun� we conclude that a�x�Du� � L�
loc��� and

a�x�Dun�	 a�x�Du� strongly in L�
loc��� �

Therefore�
div a�x�Dun�	 diva�x�Du� in D���� �

We also have
fn 	 f in L���� �

Let !�n�x� � �n�x� un�� The only remaining di�culty consists in proving that �i� !�n 	 w
in D����� �ii� w�x� � ��x� u�x�� a�e�� and �iii� ��x� u�x�� � L�����

We can easily establish local equi�integrability for the sequence f!�ng� Indeed� the rst
part of formula ����� gives

������

Z
fjunj�kg

j�n�x� un�j dx �
�

n

Z
fjunj�kg

junj
p�� dx � 

for k large enough� uniformly with respect to n� Together with assumption �H�� this implies
that the sequence !�n is uniformly equi�integrable� Hence� after passing to a subsequence
we can assume that

!�n 	 w weakly in L�
loc��� �

Note moreover that ���n�junj
p��un 	 	 in L�

loc���� since it converges a�e� and we have a
uniform estimate for the un in a Marcinkiewicz space of higher exponent�

The other facts are easier� That w�x� � ��x� u�x�� follows from the continuity of ��
Finally� by ����� f!�ngn is uniformly bounded in L����� hence we get ��x� u�x�� � L�����

Step �� To complete the proof it remains to show that u is an entropy solution� In order
to prove inequality ����� we take a function T � F bounded above by k� k � 	� and such

�	



that T ��s� � 	 for jsj � k� we also choose a smooth function � � C�� ��� and apply the
test function T �un � �� to equation ����� to get

������

Z
�

ha�Dun��D�T �un � ���idx �

Z
�

�fn � �n�x� un��T �un � �� dx �

We can write the rst member of ������ as

������

Z
ha�Dun��DuniT

��un � �� dx �

Z
ha�Dun��D�iT

��un � �� dx �

Since un 	 u and Dun 	 Du a�e�� we have by Fatou�s Lemma

Z
ha�Du��DuiT ��u� �� dx � lim inf

n��

Z
ha�Dun��DuniT

��un � �� dx�

The second term of ������ is estimated as follows� We know that

ha�Dun��D�iT
��un � ��	 ha�Du��D�iT ��u� ��

a�e as n	�� We also know that a�Dun� converges strongly in L�loc� hence we may assume
that it is dominated in L�loc���� Then

Z
ha�Dun��D�iT

��un � �� dx	

Z
ha�Du��D�iT ��u� �� dx�

The secondmember of ������ can be likewise split into two terms� The rst�
R
�
�n�x� un�T �un�

�� dx is estimated as follows� let us consider an increasing sequence fKmgm of compact
subsets of � such that mKm � �� Of course� for m large� say m � m�� the support of
� will be contained in Km� Then� using the monotonicity of �n we have

������

Z
Km

�n�x� un�T �un � �� dx �

Z
�

�n�x� un�T �un � �� dx�

On the other hand� we can write

Z
Km

fwT �u� ��� �n�x� un�T �un � ��g dx � I� � I��

where

I� �

Z
Km

�w � �n�x� un��T �u � �� dx

tends to 	 since �n�x� un�	 w weakly in L�loc���� and

I� �

Z
Km

�n�x� un�fT �u � �� � T �un � ��g dx

�




can be split into I �� � I ��� � where I
�
� is the integral on the set where junj � L� and I ��� is

the integral on junj � L� On the rst set we conclude that I �� is small �uniformly in n�
if L is large by ������� while for given L we can make I ��� small by letting n	� and
using the uniform bound jF �x� u�x��j � GL�x� � L��Km� given by �H��� Therefore�

������ lim
n��

Z
Km

�n�x� un�T �un � �� dx �

Z
Km

w T �u� �� dx�

Combining ������ and ������ we get

Z
Km

wT �u� �� dx � lim inf
n��

Z
�

�n�x� un�T �un � �� dx�

Since the second member is independent of m� passing to the limit m 	 � we get the
same inequality with Km replaced by �� Finally� passing to the limit in the last term of
������ is immediate and we have

Z
�

fn T �un � �� dx	

Z
�

f T �u� �� dx�

Using these estimates we obtain ����� in the limit when n	�� "

Important remark� Actually� it is possible to prove that equality holds in ����� or �����
by proving that for all k � 	

D�T �un��	 D�T �u�� in Lp��� �


� PROPERTIES OF THE SOLUTION� SEMIGROUP GENERATION

We gather in this section a number of properties of the solution of problem �����������
we have constructed which can be of use in the applications� We write the equation in the
form

����� �diva�x�Du� � ��x� u� � f�

where� as in Section �� f � F �x� 	� and ��x� u� � F �x� 	� � F �x� u�� Given f � L���� let
u � uf be the entropy solution of ����������� and let wf �x� � ��x� uf �x��� Then we have

Theorem 
��� Under the assumptions �H	���H�� if f� �f � L���� and �u�w� � �uf � wf ��

��u� �f � � �u �f � w �f � then
 �i� w and �w � L���� and

�����

Z
�

�w � �w��dx �

Z
�

�f � �f ��dx�

It follows that the map f �	 wf is an order�preserving contraction in L����� The map
f �	 uf from L���� to Mp� ��� is also order�preserving�

��



�ii� Assume that ��x� r� depends only on r and let j � R	 R� be a convex function with
j�	� � 	� Then

�����

Z
�

j�w�dx �

Z
�

j�f�dx�

In particular� the map f �	 wf is bounded from Lp��� � L���� into itself for every � �
p ���

The above results have an interpretation in terms of accretive operators� Indeed� given
the spatial domain � and the functions a and � as above� we define the �possibly multi�
valued� operator A in L���� by the rule� #f � A�w� if and only if w� f � L���� and there

exists u � T ��p� ��� such that

����� w�x� � ��x� u�x��

and u is the entropy solution of

����� �div �a�x�Du�� � f

with zero boundary data$� Then we have

Theorem 
��� The operator A is m�accretive in L�����

According to Crandall and Liggett�s Semigroup Generation Theorem �see �C�� such an
operator generates a semigroup of �order�preserving� contractions St in L���� which solves
in a generalized sense� usually called the mild sense� the evolution problem

�����

wt � �diva�x�Du� in �� �	���

u � 	 on ��� �	���

w�x� 	� � w� for x � ��

with w��� t� � Stu�����

It is however interesting to note that in order to generate a semigroup we can restrict
the operator to act on functions such that u is bounded� thus avoiding the problems
of integrability of Du� the major source of concern in the foregoing theory� Therefore�
we consider A� dened as follows� #f � A��w� i
 w� f � L���� and there exists u �

T ��p� ��� � L���� such that ����� holds and

������ �div �a�x�Du�� � f in D����

�no entropy condition needed�� Observe moreover that for � bounded T ��p� ����L���� �

W ��p
� ����L����� Clearly� A� is a restriction of A� By classical monotone arguments one

shows that A� is accretive in L����� as well as the range condition

����� Range�I � 	A�� � L���� � L����

��



for every 	 � 	� According to the semigroup theory ��B��� �BCP�� this operator generates

a semigroup of contractions St in L���� on D�A�� � fw � L���� � w�x� � R���x� ��g�
This solves ����� in the mild sense�

In this respect Theorem ��� amounts to say that A is the closure of A� in L����� This
fact completely characterizes the functional setting in the stationary problems�

We will skip further discussion of the evolution aspects since the extensive theory of mild
solutions falls out of the scope of this work� Let us only say that for particular choices
of a and � one proves that the mild solution is in fact a continuous weak solution� in the
lines of standard PDE theory� Most often found in the literature are cases when a and �
are power�like� i�e�

����� a�x�Du� � jDujpDu� ��x� s� � jsjr��s�

Then A is a realization of the sometimes called doubly�nonlinear Laplacian and we solve
the evolution problem

����� ut � �p�juj
m��u�� u�	� � u� � L����� u � 	 on ���

with m � ��r� Especially well�known cases are� apart from �i� the classical heat equation
�r � �� p � ��� �ii� the case r � �� p �� �� which gives the p�Laplacian equation� and �iii�
the case p � �� r �� �� which gives the so�called porous medium equation�

�� EXTENSIONS

���� Maximal monotone graphs�There are a number of interesting generalizations that
can be considered in the above existence and uniqueness results� One of the most common
variations of equation ����� found in the literature concerns the possibility of including
functions F �x� u� which are monotone but discontinuous in u� To simplify matters� we will
consider functions F of the uncoupled form

����� F �x� u� � f�x� � ��u� �

where� according to �H�� we assume that f � L����� We also assume that�

�H�� � is maximal monotone graph in R� with 	 � ��	��

Therefore� we allow the term ��u� to be multivalued� not necessarily dened in the whole
of R� The reader interested in the properties of maximal monotone graphs can consult the
monograph �Br�� This leads to the di
erential inclusion

����� �diva�x�Du� � ��u� � f�

But for the complications of taking care of the multiplicity of �� and replacing equations
by inclusions� nothing essential changes in the proofs of the uniqueness result �Theorem

��



���� and the existence result �Theorem ����� if we assume the form ����� with �H����H��
and the extra hypothesis �H��� We leave the details to the interested reader� Notice in
particular that a complete specication of the solution involves a pair �u�w� where w is an
integrable function such that w�x� � ��u�x�� for a�e� x � � and u is a solution of

����� �diva�x�Du� � f � w

in the sense of Section �� Both u and w are unique�

Actually� using the tools of �BC� we can deduce directly the results for F �x� u� � f�x��
��u� from the results for F �x� u� � f�x�� See also �BeW� for the case F �x� u� � f�x� �
��x� u� when � is maximal monotone in u with 	 � ��x� 	��

���� Existence for measures� Another interesting extension direction concerns the pos�
sibility of replacing the integrable functions of the second member by bounded measures�
We consider again an equation of uncoupled form� but this time we avoid the complications
of dealing with graphs and take the equation

����� �diva�x�Du� � ��u� � f�

Theorem ���� Let � � p � N � let the assumptions �H	��H�� hold and let f � Mb����
the space of bounded measures in �� Assume that � be a continuous and nondecreasing
real function with ��	� � 	 and assume moreover that Domain��� � R and

����� ���jxj�
N�p
p�� � � L�

loc�R
N � �

Then there exists a function u � T ��p
� ��� such that w � ��u� � L���� and u is a solution

of �div �a�Du�� � f � w in the sense of distributions in �� Moreover� u � Mp���� and
jDuj �Mp�����

Proof� The existence proof of Section � can be easily adapted to this case� The proof begins
by approximating the second member f � Mb��� with a sequence of smooth functions
fn � C�

� ���� fn 	 f in the weak� topology of Mb���� Then it stays litterally the same
from the beginnig to Step �� where a di
erent proof has to be given for the equi�integrability
of the sequence f�n�un�g� In doing this we need to assume the restrictions on � stated
above� It is clear that the term ���n�junjp��un still converges to 	 in L�

loc��� since un 	 u

a�e� and fjunj
p��g is bounded in MN��N�p�� The proof of local equi�integrability proceeds

as follows� we use the proof of local equi�integrability proceeds as follows� we use the
following facts� �i� j�nj � j�j� �ii�

Z
fjunj�kg

j��un�j dx �

Z
fjunj�kg

�

Z �

�

�	����un�x��
�t� dt� dx

�

Z �

�

�

Z
fjunj�kg

�	����un�x��
�t� dx� dt �

Z �

�

meas �fx � j��un�x��j � t � junj � kg� dt

�

Z �

�

�meas fx � un�x� � sup�k� ����t��g �meas fx � un�x� � inf��k� �����t��g� dt �

��



�Use the classical denition of ��� as a multivalued function�� �iii� By Lemma ��� we have

measfun � ����t�g � c �����t���
N
N��

�p����

�iv� By hypothesis �H�� Z �

�����t���
N

N�p
�p��� dt �� �

Indeed� if v�x� � jxj�
N�p
p�� one has

� �

Z
fv�t�g

��v�x�� dx �

Z �

�

meas fx � v�x� � sup�t�� �
���t��g dt �

�

Z �

��t��

measfx � jxj � �����t���
p��
N�p g dt �

hence Z �

��t��

����t��
N

N�p
�p��� dt �� �

We also have a similar result for meas fun � �����t�g� From all this we deduce that

Z
fjunj�kg

�n�un� dx 	 	

as k 	� uniformly respect to n� Finally� noting that �n��k� is bounded we then deduce
the local equi�integrability of �n�un�� We then have �up to extraction of a subsequence�

�n�un� 	 w weakly in L�
loc��� �

As in the rst case we then prove that w � ��u� a�e� and that w � L����� We have thus
completed the proof of Theorem ���� �

Remark� In this case we are not able to establish a property like ����� or ������ Conse�
quently we cannot prove uniqueness� Notice that the expressions ����� and ����� make no
sense when f is just a measure� not an integrable function�

���� For bounded domains or� more generally� when meas ��� � � the case p � N does
not o
er much di�culty�

Actually� in the case p � N � under assumptions �H����H�� there exists a unique solution

u �W ��p
� ��� of ����� �which is continuous� indeed u � C������ This case can be proved by

classical monotone arguments�

When p � N one can prove with the same arguments developed above that there exists
a unique u � T ��N

� ��� satisfying the entropy conditions�

��



The case meas ��� �� is a bit trickier� to be convinced one can look at the problem

��u� ��u� � f in RN

for N � � and N � � as studied in �BBC�� We will refrain here from entering into more
details�

���� Another extension direction consists in dealing with more general operators A� A
simple example is provided by operators of the form A�u� � �diva�x� u�Du��

APPENDIX I

The introduction of a special functional setting for our problem if p � � � ���N� is
motivated by the following result

Proposition� Let � be an open set in RN and let p � � � ���N�� Then there exists a
funtion f � L���� such that the problem

u �W ���
loc ���� u��p�u� � f in D�����

has no solution�

Proof� If a solution u exists and since p � � we have �p�u� �W
��� �

p�� ���� If this happens
then for every f � L���� we have

L���� 
W ���
� ��� �W��� �

p�� ����

By the Closed Graph Theorem and Duality this implies that

W������� �W
�� �

��p

� ��� 
 L�����

which can only hold if ����� p� � N � i�e� p � �� ���N�� �

APPENDIX II

We give here useful characterizations of the spaces T ��p
� ��� which played such a role in

the preceding theory�

Proposition� Let � � p � � and let � be an open subset in RN � The following state�
ments are equivalent for a measurable function u � �	 R


�i� u � T ��p
� ��� according to the de�nition of Section ��

�ii� u � T ��p��� and there exists a sequence �n � C�� ��� such that for any k � 	
�a� �n 	 u a�e� in ��
�b� D�Tk��n��	 D�Tk�u�� in Lp����

��



�iii� For any k � 	 there exists a sequence �n �W ��p
� ��� such that

�a� �n 	 Tk�u� a�e� in ��
�b� the sequence fD�ng is bounded in �Lp����N �

�iv� u � T ��p��� and for every k � 	 and every smooth cuto� function � � C�� �RN �

�a� �Tk�u� �W ��p
� ����

�b� if p � N we also need the condition Tk�u� � L�����

We recall that the space L���� is dened in Section ��

Proof� It is immediate that �i� � �iii�� �ii�� �i� is also clear taking �n � Tk��n�� To show
that �iii� � �iv� we need to prove that whenever v � L���� is an a�e� limit of a sequence

�n in W ��p
� ��� with gradient D�n bounded in Lp���N � then

Dv � Lp���N ����

�v �W ��p
� ��� for any � � C�� �������

v � L���� when � � p � N����

Notice rst that we can assume the sequence �n to be bounded in L���� by substituting
Tc��n� for �n� c � kvk�� Then we have �n 	 v in L�

loc���� and thus D�n 	 Dv as
distributions� SinceD�n is bounded in Lp���N then ��� holds� Moreover� for � � C�� ���

we have ��n 	 �v in Lp���� Since ��n is bounded in W ��p
� ��� ��� also holds� Finally� if

p � N the sequence �n is bounded in Lp
�

���� p� � Np��N�p� by the Sobolev embedding�

Therefore� v � Lp
�


 L����� and ��� holds�

Let us now prove that �iv� � �ii�� Assuming that �iv� holds we take k�  and R � 	�
We claim that there exists � � C�� ��� such that �with �R � � � fjxj � Rg�

��� kD�� � Tk�u��kLp��� � k� � Tk�u�kLp��R� � �

This will prove �ii�� Indeed� let �n�m � C�� ��� be the function corresponding to the choice
k � n�  � ��m� R � m in the above estimate� Then� for xed n�

D�n�m 	 DTn�u� in Lp���� and

k�n�m � Tn�u�kLp��R� 	 	

for any R � 	� as m	�� It follows that for any 	 � k � n

DTk��n	m�	 DTk�u� in Lp���� and

kTk��n�m � Tk�u�kLp��R� 	 	

for any R � 	 as m	�� Thus� for any n there exists �n � �n�m�n� � C�� ��� such that

kD�Tk��n� � Tk�u��kLp��� � kTk��n�� Tk�u�kLp��R� �
�

n

��



for any k � �� �� � � � After extracting a suitable subsequence �ii� holds�

To prove the claim let 	 � � � k and set v � Tk�u�� T
�u�� Consider also � � C�
� ����

	 � � � �� � � � for jxj � � and � � 	 for jxj � � and set �m�x� � ��x�m�� We have for
m � R

k�mv � Tk�u�kLp��R� � kT
�u�kLp��R� � �jfjxj � Rgj
�
p �

On the other hand�

kD��mv � Tk�u��kp � I� � I� � I��

with

I� � kDTk�u�kLp���fjxj�mg

I� � kDT
�u�kp

I� �
k

m
kD�k�jBj

�
p �

where B � fjuj � �g � fm � jxj � �mg� Since DTk�u� � Lp���N � I� goes to 	 as m	��
and I� 	 	 as � 	 	� If p � N we have jBj � jfjTk�u�j � �gj � � and for every � � 	�
I� 	 	 as m 	 �� We also have jBj � jf� � jxj � �gj�mN � When p � N � I� 	 	 as
m	� uniformly in � � 	� and when p � N � I� is bounded uniformly in m� ��

 From this analysis it follows that for p �� N we can choose � and m � 	 in such a way
that

kD��mv � Tk�u��kp � k�mv � Tk�u�kLp��R� � �

Since �mv � W ��p
� ���� the claim �%� holds� To show that it also holds for p � N we take

� � 	 and observe that

D��mTk�u��	 DTk�u� weakly in Lp���N

as m	�� Then we may nd w in the convex hull of f�mTk�u��m � Rg in W ��p
� ��� such

that

kD�w � Tk�u��kp � �

Since w � Tk�u� in fjxj � Rg� ��� still holds� �

APPENDIX III

We give an example of a function u � T ���
loc ���� �� and a Lipschitz�continuous and

bounded T � R	 R such that T �u� ��W ���
loc ���� ��� More precisely� we show that condition

����� is optimal�

��



Proposition� Let T � R	 R be a monotone Lipschitz�continuous and bounded function
that does not satisfy ������Then there exists u � T ���

� ���� �� such that T �u� ��W ���
loc ���� ���

Proof� After replacing T �r� by �T ��r� if necessary we may assume that there exists a real
sequence u� � 	 � u� � � � � � un � � � � such that un 	� and T �un��� � T �un� for any
n� Let kn be a sequence of integers such that the sum

P
kn�T �un���� T �un�� diverges�

and set an � ��n� Finally� dene

u�x� �
�X
n��

��an���an
�jxj��un � �un�� � un����kn � ����� �n��jxj���

where

��t� �

Z �

�

�X
i��

����i��i�i����s�ds�

We have u �W ���
loc ����� �� n f	g�� u���� � 	 and un � u�x� � un�� for an � jxj � an���

and in fact u goes from the value un at x � an to the value un�� at x � an�� by going up

and down in this range �kn � � times� It is clear that u � T ��p
� ���� �� for any p � �����

since the truncation eliminates all but a nite number of terms in the sum� On the other
hand� for T �u� all terms count� We have

d

dx
T �u��x� � T ��u�x��u��x� � ����i��T ��u�x��ju��x�j�

for i � ��kn������ �n��jxj� � i� �� n � 	� � � � � �kn� It follows that for every x� � �	� ��

Z x�

�x�

j�Tu���x�jdx � �

�X
n�n�

�knX
i��

����i �T �u��
un��un���un��������i���

un��un���un��������i���
�

�
�X

n�n�

kn�T �un��� � T �un�� ��� �

APPENDIX IV

We discuss here the question of uniqueness of solutions of ������ ������ which motivated
our introduction of the concept of entropy solution� in the light of an example given by J�
Serrin �S� of a solution of the linear equation

A�u� �
X �

�xi

�
aij�x�

�u

�xj

�
� 	�

with

�E� aij�x� � �ij � �a � ��
xixj
r�

� r � jxj�

�	



which is uniformly elliptic for a � 	� J�S� considers a solution of the form

u�x� � x�r
��� where � �

N

�
�

r
�
N

�
� ��� �

N � �

a
�

Assuming that a � � one has N � � � � � N � It is clear that u � C��RN � f	g� �

W ��p
loc �R

N � for p � N��� and u �� W
��N��
loc �RN �� The author also veries that u is a

weak solution of �E�� By an easy computation one can also see that u � T ��p
loc �R

N � for

p � p� � � � �N � ���� and u �� T ��p�
loc �RN ��

Let now � be the unit ball in RN and let

f�x� � �a � ���N � ��
x�
r�

� A�x���

We have f�x� � Lq��� for q � N � The function

v�x� � x� � u�x�

is a weak solution in C���� f	g� �W ������ of the problem

�P�

�
�A�v� � f in �

v � 	 on ���

But v �� T ���
� ��� and then v is not the entropy solution of �P��

This example shows that we cannot derive in general ����� from ������ even for bounded

and smooth �� at least if we only assume u � T ���
� ��� with a�x�Du� � L����� However�

the question of deriving ����� from ����� is still open for a solution of ����� in T ��p
� ����

According to the above existence and uniqueness theory� this question is equivalent to the
problem of uniqueness of a solution of ����� in the class T ��p

� ����

It is worth noting in the example that v�x� is a weak solution of the equation �A�u� � f

in the domain �� � fx � r � �� x� � 	g� Though v � C����� �W ���
loc ����� it is not an

entropy solution of problem �P� in ���

�
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