AN L'-THEORY OF
EXISTENCE AND UNIQUENESS
OF SOLUTIONS OF NONLINEAR

ELLIPTIC EQUATIONS

BY
PHILIPPE BENILAN
Lucio BOCCARDO

THIERRY GALLOUET

RoN GARIEPY
MICHEL PIERRE
AND

JUAN Luis VAZQUEZ

Typeset by ApS-TEX



ABSTRACT

In this paper we study the questions of existence and uniqueness of solutions for equa-
tions of the form —Au = F(z,u), posed in €2, an open subset of RY (bounded or un-
bounded), with Dirichlet boundary conditions. A is a nonlinear elliptic operator modeled
on the p-Laplacian operator A,(u) = div(|Du[P™2Du), with p > 1, and F(z,u) is a
Caratheodory function which is nonincreasing in u. Typical cases include F(x,u) = f(x)
or F(x) = f(x)— B(u), where /3 is an increasing function with $(0) = 0 (or even a maximal
monotone graph with 0 € 5(0)). We use an integrability assumption on F which in these
cases means that f € L'(Q).

The existence theory offers few difficulties when p > N. Here we consider the case
1 < p < N and establish existence of a weak solution u. For p > 2 —(1/N) and €2 bounded
the solution lies in the usual Sobolev space Wol’q(Q) with 1 < ¢<p.=N(p—-1)/(N —-1).
However, when 1 < p <2 — (1/N) we have p, <1 and it is necessary to introduce a new
space ’]Bl’p(Q), defined as an extension of Wol’p(Q) by means of a truncature method. Also
the question of decay at infinity creates the need for a suitable functional setting when (2
is not bounded. Let us recall that in our study € can be any open subset of RV,

The second main issue of the paper is uniqueness. Our solutions satisfy an additional
entropy condition. We prove that entropy solutions are unique.

In the case where F' = f(x) — f(u) we can take f to be a bounded measure; under
additional assumptions on [ we obtain existence of a solution.

AMS Subject Classification: 35J60, 35D05.

Keywords: Nonlinear elliptic equations, p-Laplacian operator, new functional spaces,
entropy solutions, existence and uniqueness of solutions.



INTRODUCTION

Consider for instance the model problem

—Ayu = F(z,u) on £
(1.2) u(z)=0 on 08,

where 1 < p < o0, Du = (Oyu,--- ,0nu) denotes the gradient of u, the expression Ap(u)
means div (|Du|P~2Du) and F is a continuous function which is nonincreasing in « and

such that F(z,0) = LY(Q) and F(z,c) € L} (Q) if ¢ # 0.

loc

Many authors have considered this problem, specially in the case p = 2, in the form

—Au+ f(u) = f,

cf. [BBC], [BS], [BG1], .... We are interested here in the case 1 < p < N. The case
p > N offers less difficulties and for bounded € can be found in [LL]. Indeed, the solution
u is bounded and the gradient Du belongs to LP(2), so that variational methods apply.
This is not the case when p < N, so that we have to use a different approach to obtain
existence and uniqueness.

There are two difficulties associated with the study of equation (1.1), even in a bounded
domain, which are not solved in former works. The first is to give a sense to the solutions
of an equation of the form —A,(u) = f € L'(Q) for p close to 1, precisely for p < py =
2 —(1/N). In fact, we cannot expect the solution to be in Wllo’cl(Q) This can be seen by
direct inspection of the fundamental solution, i.e. the solution of (1.1) when F' = a Dirac
mass, which takes the form

N —
(1.3) U@) = Clal ™, a=-—— 1p.
We see that [DU| € L? (RY) if p > N and also that |DU| € L}, (R™) if p > py. More

generally, the same conclusion holds for L' data, see Appendix I at the end of the paper (cf.
also the remarks in [BS] or [BGV]). Therefore, we cannot take the gradient of u appearing
in the p-Laplacian operator in the usual distribution sense. We solve this difficulty by
introducing a new space ’Tli’cl(Q) in which we can naturally give a sense to the gradient of
u which in general is not locally integrable. The idea consists in considering truncatures of
the solution u, Tj(u), and working instead of Du with the derivatives DTy (u), which turn
out to be locally integrable. Precise definitions are given in Section 2. Then the first term
in equation (1.1) makes sense when |Du|P~?Du € Lj, (). In order to take into account

condition (1.2) we seek the solution in a proper subspace of ’Tli’cl(Q), ’]Bl’p(Q). Of course,

when u € Wllo’cl(ﬂ), and this happens for the solutions of (1.1), (1.2) when p > 2 — (1/N),
the new derivative concept reduces to the usual one.

A second difficulty appears with the question of uniqueness of solutions. We obtain
existence and uniqueness of a special class of solutions of (1.1)-(1.2) that satisfy an ex-

tra condition that we call the entropy condition (formula (3.3) below). The use of such
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conditions is rather common in conservation laws, cf. [La], [Kr], but is novel to elliptic
equations.

Let us state next our precise framework. We will pose a slightly more general equation
(1.4) —div(a(z,Du)) = F(x,u) in D'(Q).

The following assumptions are made on 2, a and F":

(H1) € is an open set, not necessarily bounded, in R™, N > 2.

(H2) The function a : @ x RY +— RY is a Caratheodory function (continuous in ¢ for
a.e. ¥ and measurable in x for every ¢) and there exist p € (1, N) and A > 0 such
that

(a(x,8), &) = AlE]P

holds for every £ and a.e. z. There is no restriction in assuming that A = 1.

(H3) For every ¢ and n € RV, ¢ £ 7, and a.e. z € Q there holds

(a(:z;,.f) - a(xvn)v‘f - 77> > 07

where (,) means scalar product in RV,
(H4) There exists A € R such that
la(z, )] < A(j(x) + [P
holds for every ¢ € RN with j € L¥' (), p' = p/(p — 1).

(H5) F is a Caratheodory function, continuous and nonincreasing in u for fixed z, and

measurable in z for fixed Moreover, F(z,0) € L'(Q), and if

Ge(w) = sup {|F(z,u)l},
{lul<e)

then G. € L}, () for every ¢ > 0.

Let us briefly summarize the contents of the paper: after a section devoted to develop
the necessary functional setting we introduce the concept of entropy solution and derive
the main properties of such solutions (Section 3). In Section 4 we derive the basic a priori
estimates on the measure of their level sets. We are then ready to establish uniqueness
(Section 5) and existence (Section 6) of entropy solutions for the Dirichlet problem (1.4),
(1.2). We gather in Section 7 some properties of the solution and their relation to the
theory of accretive operators and the generation of semigroups. Extensions to more general
settings will be commented upon and partially worked out in Section 8. We treat in
particular the case where F(x,u) = f(x) — B(u), with f a bounded measure and 3 a
maximal monotone graph. We note that our paper contains new results even for linear



growth, i.e. p = 2, for equations of the form —diva(xz, Du) = F(x,u) posed in arbitrary
domains. Finally, four appendices contain technical results. The first one comments on the
need of a new functional setting when p < py. Appendix II gives different characterizations
of the basic space %l’p(Q). Appendix IIT is also related to spaces of truncated functions.
Finally, Appendix IV discusses the need of entropy conditions.

For reasons of concision and clarity of exposition we have chosen not to include the
study of the limit case p = N in the present work. The reader will easily check that most
of the theory developed below still applies though it has some particular features which
may deserve separate attention. In particular, the uniqueness theory is unchanged and
the estimates of Section 4 are easily adapted. The supercritical case p > N is easier since
solutions turn out to be continuous. We give some more precise details and results in
Section 8.

Let us mention some parallel developments. First, the works of P.L. Lions and F.
Murat [LM] (see also [M]) on the equation div (A(z)Du + ¢(u)) + Au = f with f € L1(Q),
where ¢ is locally Lipschitz-continuous with any growth at infinity; they prove existence
and uniqueness of a renormalized solution, a notion introduced in [DL] in the study of the
Boltzmann equations. The existence of a renormalized solution for f € H~1(Q) was proved
in [BGDM]. Entropy solutions and renormalized solutions are different approaches to the
definition of a suitable generalized solution which will make the problem well-posed. Let
us also mention the work of Dall’Aglio [D] who constructed solutions for equations of the
form —Ay(u) + g(x,u) = f with f € L'(Q), defined as limits of variational solutions, and
proved uniqueness of the limit solution thus obtained. This notion of solution is related
to the abstract development of [BC]. The works of Rakotoson [R1], [R2] and [R3] address
equations of the form —div a(x, u, Du)+g¢(z,u) = g where y is an L' function or a bounded
measure on {2; he also introduces a space of functions similar to our ’Tli’cp(Q) (while smaller)
and proves existence of generalized solutions; in [R3] he proves existence and uniqueness
of renormalized solutions when pu € L'(2). In all the aforementioned works the open set
is assumed bounded. Some of the difficulties below will be related to the consideration of
unbounded domains. Finally, the parabolic equation vy = Ap(u) has been treated amomg
others by DiBenedetto and Herrero [DBH1,2]. For small p they also deal with truncated
solutions. In concluding we would like to point out that the basic ideas of this paper,
including the introduction of T-spaces to account for the unusual derivatives, and the a
priori estimates of the distribution function of v and Du, were announced years ago (see

[B2] and the reference [1] in [BGDM)]).

2. FUNCTIONAL SPACES

Before we discuss the concept of solution we need to go into the functional setting in
some detail. First, some notation. As usual, for 1 < p < oo LP(Q) and WHP(Q) will
denote the standard Lebesgue and Sobolev spaces and W, ?(Q) is the closure of C§°(Q)
in WHP(Q). || - ||, denotes the LP-norm in 2. We shall also use the local spaces LT ()
and Wllo’f(Q). By Lo(§2) we denote the set of measurable functions u : € — R such that



the sets {|u| > e} have finite measure for every ¢ > 0. This expresses the fact that the
functions go to 0 as |x| — oo in measure. We have LP() C Lo(Q2) for every 1 < p < .
For a measurable set A C RY we use the notation meas (4) = |A| to denote its measure.

We begin by introducing the truncature operator. For a given constant k£ > 0 we define
the cut function 7, : R — R as
s if |s| <k
(2.1) Ti(s) = {

ksign(s) if [s] > k.

For a function v = u(x), « € Q, we define the truncated function Tpu = Ty (u) pointwise:
for every x € § the value of (Tju) at  is just Ti(u(z)). We now introduce the functional
spaces we will need in our theory:

i) Tl’l(Q) is defined as the set of measurable functions u : 2 — R such that for every

loc

k > 0 the truncated function Tj(u) belongs to Wllo’cl(Q)
ii) For p € (1,00) we define ’Tli’cp(ﬂ) as the subset of ’Tli’cl(Q) consisting of the
functions u such that D(Tx(u)) € LV (Q) for every k > 0. Likewise, T71P() is the

loc

subset of ’Tli’cl(Q) consisting of the u such that moreover DTy (u) € LP(Q2) for every k > 0.

iii) Finally, %1,19(9) will be the subset of 71?(Q) consisting of the functions that can
be approximated by smooth functions with compact support in {2 in the following sense:

a function u € T1P(Q) belongs to %1,19(9) if for every k > 0 there exists a sequence
én € C5°(§2) such that

D¢, — DTy (u) in  LP(Q),
bn — Tp(u) in L], ().

loc
This space will play an important role in what follows. Alternative characterizations of it
are given in Appendix II at the end of the paper.

Let us now devote some space to consider the properties of these spaces. To begin
with, it is clear that for every p € [1,00) we have the inclusions Wllo’f(Q) C Tli’cp(ﬂ) and
Wol’p(ﬂ) C 761’]9(9) and in these cases we have

DTy (u) = 1{ju)<kyDu,

where 14 denotes the characteristic function of a measurable set A € RY. It is also clear
that ’Tli’cp(ﬂ) NLE(Q2) = Wl’p(Q) N Lo (2). Moreover, we can easily convince ourselves

loc loc loc
. . . . . . 1.1 .
that the inclusions are strict, i.e. the new spaces are strict extensions. In fact, 7, ) (2) is

not even a vector space, as the following example in one space dimension shows: consider
in Q = (—1,1) the functions u(x) = xsin(1/z) and v(z) = 272, Then v and u 4 v belong
to Tl’l(Q), but u does not. However, it is true for instance that if u € Tl’l(Q) and

loc loc



v E Wllo’cl(Q) N LyP.(Q) then v+ v € ’Tli’cl(Q) Let us remind the reader that in defining
THP(Q) we did not impose the condition Ty (u) € LP(2). Of course, this condition follows
immediately when € has finite measure (since Tj(u) is bounded), but for unbounded 2 it

makes a real difference.

We want to give a sense to the derivative Du of a function u € Tli’cl(ﬂ), generalizing

the usual concept of weak derivative in Wllo’cl(Q), cf. [GT]. The following result paves the
way in this direction.

Lemma 2.1. Forevery u € ’Tli’cl(Q) there exists a unique measurable function v : Q — RN
such that

(2.2) DTy (u) = v1{je|<k) a.e.

Furthermore, u € Wl’l(Q) if and only if v € L}, (), and then v = Du in the usual weak

loc loc
sense.

Here unique is understood in the almost everywhere sense. The proof of this result is as
follows: We have seen that formula (2.2) is true for u € Wllo’cl(Q) with v = Du. Note also
that for k,e > 0 we have Tj(Ty4o(v)) = Ti(u). Therefore, we get a.e. in Qp = {|u| < k}
the a.e. equality DTyy.(u) = DTi(u). But, [~ Q2 = €, hence the assertion (2.2)
follows.

We are left with the proof that u € Wllo’cl(Q) if v € L], (). Indeed, in that case
DTy(u) — v in L}, (). We still have to see that u € Lj (). If this were not true there

would exist a closed ball B C €2 such that
tp = HTk(U)HLl(B) — 0

as k — oo. Normalize v, = Tk(u)/tr. Then vy — 0 a.e., |[vr|[z1(p) = 1 and |[Dvg|| 1) —
0. This is a contradiction to the compactness of the embedding W'(B) c L'(B). O

Thanks to this result we define the derivative Du of a function u € Tli’cl(ﬂ) as the unique
function v which satisfies (2.2). This notation will be used throughout in the sequel. We
recall that in general the derivative of a function u € Tli’cl(Q) N L (Q) need not be a
locally integrable function, and that this definition of derivative is not a definition in the

sense of distributions.

The following straightforward result will be useful.

Lemma 2.2. If u € 7,"?(Q) and 1 < p < N then DTy (u) € LP(Q) and Ty(u) € L (Q)
for p* = pN/(N — p). If Q is bounded then for every 1 < p < oo we have u € %l’p(ﬂ) iff
Ti(u) € Wol’p(Q) for every k > 0. Finally, for bounded Q u € Wol’p(Q) iff u € %l’p(Q)
and Du € LP(Q).

Observe that if 1 < p < N then %1,19(9) C Lo(Q). Indeed, since Ty(u) € LP"(Q) for

k>0, u — 0 in measure as |z| — oco. This will be used later on.
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It is sometimes useful to replace the truncation Tju introduced above by smoother
truncations: in this sense, it is worth noticing the following result.

Lemma 2.3. Ifu € Tli’cp(ﬂ) then T(u) € Wllo’f(RN) for every Lipschitz-continuous func-
tion T : R — R satisfying

(2.3) T'(s) =0 for |s| large enough.
Moreover, DT(u) = P(u)Du where P is a measurable function defined a.e. by P(u) =
T'(u). Finally, if u € %1,19(9) and T(0) =0 then T(u) € %l’p(Q).

The proof of this lemma is straightforward since T(u) = T(Tx(u)) for large enough k.
We must notice that the sole assumptions u € ’Tli’cl(Q) and T : R — R Lipschitz continuous
(resp. Lipschitz continuous and bounded) do not in general imply that T(u) € Tl’l(Q)

loc

(resp. Wllo’cl(RN)). See Appendix IIT for a counterexample.

3. ENTROPY SOLUTIONS

Definitions. Let us consider now the concept of solution for our kind of equations in the
new functional setting. Thus, given the equation

(3.1) —div (a(z, Du)) = f(x),

under the assumptions (H1)—(H4) and with f € L'(Q), by a solution we will understand
a function u € Tli’cl(Q) such that a(Du(z)) belongs to L}, (£2) and the equation is satisfied
in D'(Q), i.e.

(3.2) /Q<a(:1;,Du),Dq$> da :/quﬁd:z;,

for every test function ¢ € C§°(2). In this paper we will deal with special solutions of
the homogeneous Dirichlet problem (3.1)-(3.2). Thus, if in (3.2) we allow as test function
Ti(u — ¢), k > 0, we obtain

(3.3) /{|u_¢|<k}<a(:1;, Du),Du — D¢) dx = /Tk(u —¢)f dx.

Notice that both integrals in (3.3) are well defined. The second member offers no difficulty
since f € LY(RY). As to the first member we observe that

(3.4) (a(z, Du), Du — D) 1ju—g|<ky = —lalz, Du)||Do|1juj<xy,

where K = k + ||¢||oo. Since the second member in (3.4) is integrable in €, the integral in
the first member of (3.3) is well-defined.



It must be observed at this stage that (3.3) cannot be derived in general from (3.2).
We will briefly discuss this issue in Appendix IV. We will in fact see that we cannot even
derive the inequalities

(3.5) / (a(x,Du), Du — D¢) dx < /Tk(u —¢)fdx, k>0.
{lu—o|<k}

This family of inequalities is precisely the basis of our theory.

Indeed, we DEFINE an entropy solution of problem (3.1)-(3.2) as a function u €
%1,19(9) satisfying the family of inequalities (3.5) for every ¢ € D(2) and k > 0. This

will be referred to as the entropy condition.

As above the integrals in (3.5) are well defined. On the other hand, using the fact that
Du — D¢ = 0 a.e. on the set where |u — ¢| = k, it is clear that replacing the integration
set {|u — ¢| < k} in the first member of (3.3) by {|u — ¢| < k} does not change the

value of the integral, so the latter set can be used in (3.5) instead of {|u — ¢| < k}.
While a priori it is not clear, we will prove below that an entropy solution is always a
solution of (3.1) in the standard sense defined above. This will be done in Section 4 after

deriving convenient a priori estimates for the entropic solutions.

Properties. We are going to derive some properties of entropy solutions. Firstly, setting
¢ = 0 we obtain an immediate consequence of the definition

Lemma 3.1. Ifu € %1,19(9) is an entropy solution of (3.1)-(1.2) then for every k > 0

1
(3.0) i [ tate.Du.Dujde < [ Iflde =7l
{lu|<k}
Hence, under hypothesis (H2) we obtain the following bound in LP(2):

k
(3.7) IDTx ()l = 1Al

It is technically useful to extend the entropy condition to more general truncations than
Ty and more general test functions than ¢ € Cg°(RYN). To begin with, we introduce the
class F of functions T € C*(R:R)NL>®(R: R) satisfying:

T(0)=0, T'>0, T'(s)=0 forall slargeenough,
T(—s)=-T(s), and T"(s) <0 for s>0.

For T € F we write k(T) = inf{k : T(s) = T(—s) = ||T||s }. Then we have
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Lemma 3.2. The entropy condition (3.5) is equivalent to the statement that

(3.8) /(a(Du),DT(u — ¢))dx < /QfT(u — ¢)dx

holds for every test function ¢ € C§°(2) and every function T € F.

Proof. Suppose that (3.8) holds and let us prove (3.5). Take a k > 1. We may use an
approximation of the standard cut T} by an increasing sequence of functions S,, € F chosen
so that S),(s) =0 for |s| >k, Sl (s) =1 for |s| < k—(1/n)and S], < 1 everywhere.
Since as n — 0o Sp(u—¢) — Tip(u—¢) uniformly and S, (v —¢) — T} (u—¢) a.e., applying
(3.6) with T' = S,, and passing to the limit we obtain (3.5).

Conversely, if (3.5) holds consider the case where T' € F is just a combination of cut
functions,

T:Zakaj, a; > 0.

In that case we apply (3.5) to the T}, and add to obtain that (3.6) holds. In the general
case T € F we approximate in C''-norm by a sequence of functions of that type and pass
to the limit. [

Next we show that the entropy condition (3.5) holds for a much wider class of test
functions.

Lemma 3.3. If u is an entropy solution of (3.1)-(1.2). Then (3.5) holds for every test
function ¢ € %l’p(ﬂ) NL>(Q).

Proof. By definition there exists a sequence ¢,, € C§°(Q2) such that D¢, — D¢ in LP(Q)
and ¢, — ¢ in Lj (Q) and a.e. Replacing ¢, by R(é,) with R € C*(R) N L>=(R),

loc
R(s) = s for |s] < ||¢]|cc we may always assume that the ¢,’s are uniformly bounded in

2. We may also assume that there exists a function w € LP(2) such that |D¢,| < w a.e.
We have

Te(u — ¢n) — Ti(u — @)  ae
and | DTy (u—¢p)| < |DTk(u)| 4w, with K = k+sup ||¢n||co. It is not difficult to see that

DTy(u — ¢p) — DTp(u — ¢) weakly in  LP(Q).
Assuming now the definition of entropy solution we have
/(a(:z;,Du),DTk(u — ¢p))dx < /Tk(u — &n)fdz.

We may pass to the limit in both sides; the right-hand side is clear since f € L'(Q). As
for the left-hand side, observe that the integrand equals (a(z, DTk (u)), DTk (u — ¢,)) and
a(z, DTy (u)) € LY (Q). O
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Observe that for given a and k& > 0 the function T} .(s) = T,(s — Ti(s)) takes the

values
s —ksign(s) for k<|s|<s+a,

Tials) = a for |s|>k+a,
0 for |s|]<k.

Now, if v € %l’p(Q)ﬂLoo(Q) the expression T} (u—v) can be written in the form Tj (v —w)
with w = v + Ti(u —v) € %1,19(9) N L>(Q). Applying Lemma 3.3 we get

Corollary 3.4. If u is an entropy solution of (3.1)-(1.2) then

(3.9) / (a(x, Du), Du)dx < /ka,a(u) dr < a/ |f|dx,
{k<|u|<k+a} {lu|>k}

so that under hypothesis (H2)

(3.10) 1/ \DulPdz < 1/ fde. O
@ J{k<|u|<kta} A J{Julz k)

This LP-estimate for Du will play a fundamental role in the sequel.

4. A PRIORI ESTIMATES

As another preliminary to the existence and uniqueness theory we derive estimates for a
function u that satisfies the inequalities of previous section and for its gradient |Dul. The
estimates consist of controlling the measure of the level sets, 1.e. we work in Marcinkiewicz
spaces. We recall, c¢f. [BBC], that for 0 < ¢ < oo the Marcinkiewicz space M%(2) can
be defined as the set of measurable functions f : € — R such that the corresponding
distribution functions

(4.1) P¢(k) =meas{z € Q:|f(x)] >k}
satisfy an estimate of the form
(4.2) dp(k) < CETY, C < oc.

It is immediate that LY(Q) C M9(Q) C Lo(2) and that for bounded © we have M(Q) C
MIU(Q) if ¢>q. We begin with the estimate for u.

Lemma 4.1. Let 1 < p < N, let §2 be as above and let u € %l’p(ﬂ) be such that

(4.3) 1/ \DulP de < M
ke J{ul<ky

for every k > 0. Then u € MP(Q) with py = Njifp__pl). More precisely, there exists
C = C(N,p) > 0 such that

(4.4) meas {|u| > k} < C M5 kP

11



Proof. For k > 0 one has by Sobolev’s embedding
T (w)llp < (N )| DTk(u)llp < (N, p)(ME)P.
For 0 < ¢ <k we have {|u| > ¢} = {|Tk(u) > £|}. Hence

p*
Hi%(UNb*> < o1 (N, p) M/ N =) N/(N=p) =pN/(N—p),

e

meas {|u| > e} < (

Setting ¢ = k we obtain (4.4). O

Remark. Such estimates are not new for solutions of elliptic equations. They have been
proved by Talenti [Ta] for quasilinear equations using rearrangement theory. However, this
elementary proof is new.

We now proceed with the derivative estimates.

Lemma 4.2. Let 1 < p < N and assume that u € %1,19(9) satisfies (4.3) for every k.
Then for every h > 0

N(p—1)
N—1

(4.5) meas {|Du| > h} < C(N,p) M~T h™P> | py =
Proof. For k, A\ > 0 set

O(k,\) = meas{|Du|’ > A, |u| > k}.
. From Lemma 4.1 we have

(4.6) ®(k,0) < C(N,p)MN/N=pP)p=r

Using the fact that the function A — ®(k, \) is nonincreasing we get for k, A > 0

(4.7) ®(0,)) < %/Ooo ®(0,s)ds < ®(k,0) + /OA(CI)(O,S) — Bk, s))ds.

Now, observe that since
®(0,s) — ®(k,s) = meas {|u| < k, |Du|? > s},
we have thanks to (4.3)

(4.8) / (®(0,s) — ®(k,s))ds = / |Du|Pdx < Mk.
0 {|u|<k}
Going back to (4.7) and using (4.6) and (4.8) we arrive at
Mk
(4.9) B(0,)) < ——+C(N, p)MN/(N=pP) =

Minimization of (4.9) in k and setting A = h? give (4.5). O
As a corollary we have
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Corollary 4.3. Under assumptions (H1)-(H4), if u is an entropy solution of (3.1)-(1.2)
then a(z,Du) € LY (Q) + L>=(Q) and u is a solution of (3.1), i.e. (3.2) holds for every
¢ € Ce(Q).

Proof. Using Corollary 3.4 and Lemma 4.2 we obtain (4.6). Using (H4) and p < N it
follows that
meas {|a(z, Du)| > h} < CR~N/(N=D),

for some C' > 0 depending on N, p, A\, A and || f||;. Therefore, a(z, Du) € L'(2) N L>=(Q).

Let now ¢ € C5°(§2). Applying Lemma 3.3 with test function T} (u) — ¢ instead of ¢ we
get

/ (@(Du),Lujoy D+ Do)ds < [ Tu(u = Tutu) + o).
{lu=Thu+e¢|<k}

and then
/ (a(Du), Do)dx < /Tk(u — Th(u)+ @) fdx.
{lu=Thuto|<k}

Choosing k > ||¢||s at the limit A — oo we have

/(a(Du),Dq§>d:1; < /qﬁfd:z;.

Replacing ¢ by —¢ we get the converse inequality. Hence, equality holds. 0O

In this way we have shown that an entropy solution is indeed a solution in the standard
distribution sense. This result would follow in any case from the existence and uniqueness
of sections 6 and 5. Indeed, we will prove that entropy solutions are unique and then we
will construct a standard solution of the problem that is also an entropy solution.

5. UNIQUENESS
We settle here the question of uniqueness of entropy solutions in the spirit of Section 3.
Definition of solution. By a solution of (3.1)-(1.2) we understand a function u € 7, ()
such that F(a,u(z)) € L'(Q) and which is a solution of equation (3.1) with second member
f(z) = F(x,u(x)). The definition of entropy solution is similar to (3.5).
Our main result is

Theorem 5.1. Let uy and uy be two functions in %1,19(9) which are entropy solutions of
the equation

—div(a(z,Du)) = F(x,u)
under assumptions (H1)-(H5). Then uy = us.
Proof. (i) Let fi(z) = F(x,ui(z)), i = 1,2. We are assuming that f; € L'(Q). We

will write a(Du) instead of a(x, Du) for convenience. We write the entropy inequality

13



corresponding to solution wy with test function Thus and wug with test function Thuy
(use Lemma 3.3). Adding up both results we get

/ (a(Duy ), Duy — DThuz)dz+

{lur =Thu2|<k}

(5.1) / (a(Dusy ), Duy — DThuq)dx <
{lu2=Thui|<k}

/QflTk(ul ~ Th(us))de + /Q FoTi(us — Tp(u)) de .

(ii) The conclusion u; = w2 will be reached after passing to the limit h — oo in this
formula and disregarding some positive but uninteresting terms. We proceed by splitting
the integrals above into the contributions corresponding to different integration sets. Thus,
if we put

A ={z € Q:jug —ug| <k, |ug] < h, Juz| < h}
when restricted to Ay the first member of (5.1) gives the following main contribution that
we will keep:

IO = / <a(DU1) — a(Duz),Dul — DUQ>d$
Aog

The remaining first member integral is estimated as follows. Take the first term. On the
set

Ay :{l' cQ: |U1 —ThU2| < k,|UQ| Zh}

we have

/ (a(Duy ), Duy — DThuz)dx = / (a(Duy ), Duy)dz > 0,
A1 Al

while on the remaining set
Ay ={z € Q: fuy — Thua| <k, uz| < h,|ur| = A}

we get

[42<a(Du1),Du1 — DTyuy)dz :/

A (a(Duy ), Duy — Dusy)dx > —/ (a(Duy ), Dusg)dz.

A

In the same way we estimate the second integral in the sets A}, where |ui| > h, and A},
where |uq| < h and |uz| > h. All these sets and integrals depend of course on k and h.
Summing up we estimate the first member of (5.1) in the form I > Iy — I5, where

I = A2<a(Du1),Duz>dx —|—/Al2<a(Du2),Du1>d:1;.

Now, I3 goes to 0 as h — oo. Indeed, the first term can be estimated by

Ha(Dul)HLP'({h§|u1|§h—|—k}) HDWHLP({h—kSquISh})

< A(HjHLP'({|u1|Zh})) + HDulHip({hgwﬂng}) [Dusll e (th—k<|usl<n)s
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and this converges to 0 as h — oo for every k > 0 thanks to Corollary 3.4 and Lemma 4.1.
Likewise the second term.

(iii) The second member of (5.1) can be worked out by the same method. The integral on
By = {z € Q:|ui| < h, |uz| < h} gives

Ty = / (F(z,u1) — Fa,u))To(ur — up)dz < 0,
By
while on the set By = {x € Q: |uy| > h} the integral, Jy, is estimated by

unsa@<mrHﬁnw.

Likewise on By = {x € Q : |uz| > h} we have

Uﬂsa@<mrHﬁnw.

Now, the measure of both sets, Bi(h, k) and By(h, k), goes to zero as h — oo for fixed
k > 0. Hence J; + J3 — 0.

(iv) Combining the above estimates we get from (5.1)
/ (a(Duy) — a(Dusy), Duy — Dug)dx < e(h),
Ao(h,k)

where e(h) — 0 as h — oo, k fixed. Since Ag(h, k) converges to {x € Q : |ug —uz| < k} we
conclude that

(a(Duy) — a(Duy), Duy — Dug)dx < 0.
{lur —u2|<k}

Since this is true for all & > 0 we conclude by (H3) that Du; = Dus a.e. Taking into

account that u; and uy € %1,19(9) N Lo () (use Corollary 3.4 and Lemma 4.1) we conclude
that ©v1 = uqy a.e. 0O

6. EXISTENCE

Theorem 6.1. Under assumptions 1 < p < N and (H1)-(H5) there exists a unique
entropy solution of equation (1.4) in %l’p(Q). Moreover,

(6.1) u € MPL(Q), |Du|e MP(Q)
where p; = %__pl) and p; = %. In case p > 2 — (1/N) the solution belongs to

Wl’q(Q) for every ¢ < ps, and if ) is bounded to Wol’q(Q).

loc

Proof. Step 1. Let us write the second member in the form
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Then f(x) = F(x,0) € LY(RY) and /3 is monotone nondecreasing in u with 3(z,0) = 0,
so that
B, u)u > 0.

We recall that g is continuous in u for a.e. x € ) and measurable in z for every u €
R. Following the classical procedure, our first step consists in approximating the second
member f with a sequence of smooth functions f, € C§°(Q), f, — f in L1(Q). Tt will be
also useful to ask that

(6.3) [ Falle < A £l

for every n > 1. We also approximate the monotone function # by bounded functions 3,
nondecreasing in u. For instance, we take

6”(1;7 8) = max{—n, min{nv 6(1;7 8)}}
In this way |fn(x,s)| < |B(x, s)| for every s € R and = € Q. Finally, we take
1o,
(6.4) 1) = Bl s) + H1s 2,

Then it is well-known, see [LL], [Li], and [Bw] for unbounded domains, that there exists

U, € Wol’p(Q) such that
(6.5) ~div(a(Dun)) + 3n(sun) = fo
holds in the sense of distributions in 2. We also point out that u, € L'(Q) N L>(Q).

Multiplying (6.5) by convenient test functions and integrating one gets the following
uniform estimates

1
(6.6) ! / Duy P de < / Fulde < 1 fulls = C1.
@ J{k<|un|<k+a} {lun >k}
(6.7) [ hatwldes [ gl <lnli < cn
{lun|>k} {lun|>k}
(6.8) / | Dy |P dx < / (a(Duy, Duy)de < kCy .
{lun|<k} {lun|<k}

We recall that, for the sake of simplicity, we are fixing the ellipticity constant A = 1.

Step 2. Convergence. Using (6.8) we see that {D(Tru,)} is bounded in L (£) for
every k> 0. With (6.6) and Lemma 4.1, we also have that meas{|u,| > k} is bounded
uniformly in n for every k > 0. Let us prove that w, — u locally in measure; to begin
with, we observe that for ¢, ¢ > 0 we have

{lun —um| >t} C{Jun| >k} U {Jum| >k} U{|Th(ur) — Tilum)| >t}
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so that

meas {|up — up| >t} <meas{|u,| > k}+
meas {|up| > k} + meas {|Tk(un) — Th(um)| > t}.

Choosing k large enough the first two terms in the second member are less that . Since

{DTyun}n is bounded in LP(Q) for all k& > 0 and Tyu, € Wol’p(ﬂ) we can assume that
{Tku,} is a Cauchy sequence in L1(Q2 N Bgr) for any ¢ < p, = pN/(N — p) and any R > 0
and

Tiu, — Trhu in L} (Q)and a.e.

loc
Then

meas ({|Txup — Thum| >t} N Br) < t_q/ |Thun — Thum|tde <e
QNBr

for all n,m > ng(k,t, R). This proves that {u,} is a Cauchy sequence in measure in B,
hence that u,, — u locally in measure.

We now prove that Du,, converges to some function v locally in measure (and therefore,
we can always assume that the convergence is a.e. after passing to a suitable subsequence).
To prove this we show that {Du,} is a Cauchy sequence in measure in any ball Br. Let
again t and ¢ > 0. Then

{|Dup — Dup| >t} N Br C {|Duy| > A} U{|Dup| > A} U ({|un — um| >k}

6.9
(6.9) NBr)U {|up —um| <k, |Duy| < A, |Dum| < A, |Duy — Dy, | > t}.

We first choose A large enough in order to have
meas {|Du,| > A} <«¢ forall neN
(this is possible by Lemma 4.2). If a is a continuous function independent of © we argue
as follows: then by (H3) there exists p > 0 such that |{| < A, |n] < A and |£ —n| > ¢t
together imply
(a(¢) —a(n), & —n) = p.

This is a consequence of the continuity and strict monotonicity of a. Then, if we set
hp = frn — 7n(un)7
we have (note that a(Du,, ) and a(Du,, ) belong to LPI(Q))
/ (a(Duy ) — a(Duy, ), Duy — Duy,)dx
{lun—um|<k}
= /(hn — b )T (i, — gy ) dx < 4C1 K.
Q
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Then

meas {|u, — upm| <k, |Dun| < A, |Duy| < A, |Duy — Duyy,| >t}
< meas{|up — | <k, (a(Duy) —a(Dup,)) - (Dup — Dup,) > p}

(6.10) < l/ (a(Duy,) — a(Duy,), Duy — Duy,)dx
Fo S {Jun—um <k}
< 2akCy <.
7

if k is small enough, & < pe/(4Cy). Under the general assumption (H3) the argument is
technically more delicate; it can be seen in [BG2] or [BeW].

Since A and k have been already chosen, if ng large enough we have for n,m > ny the
estimate meas ({|uy, — U | > k} N Br) < e, and then meas ({|Du, — Duy,|} N Br) < 4e.
This proves that {Du, }, converges locally in measure to some function v, hence also a.e.
(up to extraction of a subsequence, if necessary). Finally, since {DTyuy,}, is bounded
in LP(Q) (for any k > 0), it converges weakly to D(Tru) in Lj, (2). Then, we have
ue TN Q) and Du=1v ae.

loc

Summing up, we have established the following facts:

un € Wy (),  weT Q)

loc

Uy — U a.e and in locally measure
Du,, — Du a.e and locally in measure
{D(Txun)}n is bounded in LP(Q) (for fixed k).

We also have D(Ty(u)) € LP() and moreover u € %l’p(Q). Indeed, we can construct
én € C§°(Q) such that ||[D¢, — D(Truy)||zr < 1/n and ||¢n — Thtn||ze- < 1/n. We then
have D¢,, — D(Tyu) weakly in LP(Q2) and ¢,, — Tpu strongly in L] (Q) for ¢ < p.. From
¢, we can construct ¢, (convex combinations of the ¢,’s, using Mazur’s lemma) so as to
have strong convergence of derivatives. We conclude that u € %l’p(Q). See also Appendix

I1.

Furthermore, using the convergence of u, to v and Du,, to Du, we can prove for u the
inequalities stated in Lemmas 4.1 and 4.2.

Step 3. In order to complete the proof of the existence of a solution we still have to show

i) that a(Du) € L}, (),

ii) that B(x,u(z)) € L'(), and finally that
i) —div(a(Du)) + p(x,u) = f in D'(Q),
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and also that the entropy inequality holds. We first remark that the sequence {a(Duy, )},
is bounded in Lj, () for all ¢ € (1, N/(N —1)). Indeed,

la(z, Dun)| < A(j(2) + [Dua [P

with j € LPI(Q) C L} (), and, according to Lemma 4.2, Du,, is bounded in MN/(N=1)(Q) ¢
L () (recall that this simply means that meas{|]a(z, Du,)| > A} < C/\_%). On
the other hand, according to Nemitskii’s theorem [K] the convergence of Du, to Du
in measure implies that a(x, Du,) converges in measure to a(x,Du). It follows that
a(z, Du) € MN/(N=-1(Q) C L (Q) for all ¢ € (1, N/(N —1)). We now use a conver-

gence result whose easy proof is left to the reader.

Lemma 6.1. Let v, be a sequence of measurable functions on a measurable space €2 with
finite measure. Assume that the sequence converges in measure to a function v and is
uniformly bounded in LP(Q)) for some p > 1. Then v, — v strongly in L'(Q).

Applying this result to a(z, Du,, ) we conclude that a(z, Du) € L} () and

loc
a(z, Du,) — a(z, Du) strongly in L7, .(Q).

Therefore,
diva(z, Duy,) — diva(z, Du) in D'(Q).

We also have

fo—f in LYQ).

Let Yy (x) = yn(x,uy). The only remaining difficulty consists in proving that (i) 3, — w
in D'(Q), (i) w(x) = Bz, u(z)) a.e., and (iii) B(z,u(x)) € L1(Q).

We can easily establish local equi-integrability for the sequence {7,}. Indeed, the first
part of formula (6.7) gives

1
(6.11) | et [ e parse
{Jun|>k} " J{|un >k}

for k large enough, uniformly with respect to n. Together with assumption (H5) this implies
that the sequence 7, is uniformly equi-integrable. Hence, after passing to a subsequence
we can assume that

A — W weakly in  Lj,.(Q).

loc

Note moreover that (1/n)]u,|?"?u, — 0in Lj, (2)) since it converges a.e. and we have a

uniform estimate for the u, in a Marcinkiewicz space of higher exponent.

The other facts are easier. That w(x) = f(x,u(x)) follows from the continuity of j.
Finally, by (6.7) {75 }n is uniformly bounded in L'(), hence we get B(z,u(z)) € L'(Q).

Step 4. To complete the proof it remains to show that u is an entropy solution. In order
to prove inequality (3.6) we take a function T' € F bounded above by k, k > 0, and such
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that T'(s) = 0 for |s| > k; we also choose a smooth function ¢ € C§°(Q) and apply the
test function T'(u, — ¢) to equation (6.4) to get

(6.12) / (@D DTy = 61z = [ (= ulis ) Tl = 6)dr

Q

We can write the first member of (6.12) as

(6.13) /(a(Dun), Du )T (uy, — ¢)da — /(a(Dun), DT (uy, — ¢)dx.

Since u,, — u and Du,, — Du a.e., we have by Fatou’s Lemma

/(a(Du), Du)T'(u — ¢)dx < lim inf/(a(Dun), Du)T'(uy, — ¢)dx.

n—oo

The second term of (6.13) is estimated as follows. We know that

(a(Duy), DO)T' (uy — ¢) — (a(Du), D)T" (u — ¢)

1

a.e as n — oco. We also know that a(Du,, ) converges strongly in L, _,

that it is dominated in L}OC(Q). Then

hence we may assuine

/(a(Dun), DT (up — ¢)dx — /(a(Du), DT (u — ¢)dx.

The second member of (6.12) can be likewise split into two terms. The first, [, yn (2, tn )T (tn—
@) dx is estimated as follows: let us consider an increasing sequence {K,, },, of compact
subsets of € such that U, K,,, = Q. Of course, for m large, say m > my, the support of

¢ will be contained in K,,. Then, using the monotonicity of v,, we have

(614 | e T = 0)de < [ ()Tl — 6)
K Q
On the other hand, we can write
| AwTw = 0) =) T(un — )} do = I+ I,
K

where

B [ =) T = 6) de

tends to 0 since v,(x,u, ) — w weakly in L] (), and

loc
B= [ uleun) (Tl = 0) = Ty = )} de
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can be split into I} + I}, where I} is the integral on the set where |u,| > L, and I} is
the integral on |u,| < L. On the first set we conclude that I} is small (uniformly in n)
if L islarge by (6.11), while for given L we can make IJ small by letting n — oo and
using the uniform bound |F(z,u(x))| < Gr(z) € LY(K,,) given by (H5). Therefore,

(6.15) lim Yolx,up)T(up — @) de = / wT(u—¢)de.

Ky K

Combining (6.14) and (6.15) we get

/ wT(u—¢)de < liminf/ Yolx, un)T(uy, — ¢)du.
K Q

n—oo

Since the second member is independent of m, passing to the limit m — oo we get the
same inequality with I, replaced by 2. Finally, passing to the limit in the last term of
(6.12) is immediate and we have

[ 50 T =610~ [ T00= 5

Using these estimates we obtain (3.6) in the limit when n — co.  #

Important remark. Actually, it is possible to prove that equality holds in (3.3) or (3.6)
by proving that for all & > 0

D(T(uy)) — D(T(u)) in L (Q).

7. PROPERTIES OF THE SOLUTION. SEMIGROUP GENERATION

We gather in this section a number of properties of the solution of problem (1.4)-(1.2)
we have constructed which can be of use in the applications. We write the equation in the
form

(7.1) —diva(x, Du) + p(x,u) = f,

where, as in Section 6, f = F(z,0) and 3(z,u) = F(z,0) — F(x,u). Given f € L'(Q) let
u = uy be the entropy solution of (7.1)-(1.2) and let w¢(z) = B(x,us(x)). Then we have

Theorem 7.1. Under the assumptions (H1)-(H5) if f.fe LY Q) and (u,w) = (uys,wy),
(ﬁ,f) = (uf,wf) then: (i) w and w € L'(Q) and

(7.2) o= ileds < [[7 - flear

It follows that the map f — wy is an order-preserving contraction in L'(Q). The map
f = uy from L'(Q) to MP1(Q) is also order-preserving.
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(ii) Assume that (x,r) depends only on r and let j : R — Ry be a convex function with
J(0)=0. Then

(7.3) [ itwas < [ it

In particular, the map f — w;y is bounded from LP(Q) N LY(Q) into itself for every 1 <
p < oo.

The above results have an interpretation in terms of accretive operators. Indeed, given

the spatial domain © and the functions a and 3 as above, we DEFINE the (possibly multi-
valued) operator A in L'(Q) by the rule: “f € A(w) if and only if w, f € L*(Q) and there
exists u € %l’p(ﬂ) such that

(7.4) w(z) = Bz, u(x))
and u is the entropy solution of
(7.5) —div(a(z,Du)) = f

with zero boundary data”. Then we have
Theorem 7.2. The operator A is m-accretive in L1(Q).

According to Crandall and Liggett’s Semigroup Generation Theorem (see [C]) such an
operator generates a semigroup of (order-preserving) contractions Sy in L'(2) which solves
in a generalized sense, usually called the mild sense, the evolution problem

w; = —diva(ax, Du) in  Qx(0,00)
(7.6) u =10 on 092 x (0,00)
w(z,0) = wy for x €.

with w(-,t) = Spug(-).

It i1s however interesting to note that in order to generate a semigroup we can restrict
the operator to act on functions such that u is bounded, thus avoiding the problems

of integrability of Du, the major source of concern in the foregoing theory. Therefore,
we consider Aq defined as follows: “f € Ag(w) iff w, f € L*(2) and there exists u €

7,7 () N L>(2) such that (7.4) holds and
(7.5) —div(a(z,Du)) =f in D'(Q)

(no entropy condition needed). Observe moreover that for € bounded %1,19(9) NL>®(Q) =
Wol’p(Q) N L>®(). Clearly, Ap is a restriction of A. By classical monotone arguments one
shows that Ap is accretive in L'(2), as well as the range condition

(7.7) Range(I + ANAgp) 2 Ll(Q) NL>(Q)
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for every A > 0. According to the semigroup theory ([B1], [BCP]) this operator generates

a semigroup of contractions Sy in L'(2) on D(Ay) = {w € L' (Q) : w(z) € R(B(x,-)}.
This solves (7.6) in the mild sense.

In this respect Theorem 7.2 amounts to say that A is the closure of Ay in L*>°(2). This
fact completely characterizes the functional setting in the stationary problems.

We will skip further discussion of the evolution aspects since the extensive theory of mild
solutions falls out of the scope of this work. Let us only say that for particular choices
of a and [ one proves that the mild solution is in fact a continuous weak solution, in the
lines of standard PDE theory. Most often found in the literature are cases when a and 3
are power-like, 1.e.

(7.8) a(z,Du) = |Dul’Du, B(x,s) = |s|" " s.

Then A is a realization of the sometimes called doubly-nonlinear Laplacian and we solve
the evolution problem

(7.9) up = Ap(Jul™ M), w(0)=ue € L'(Q), u=0 on 099,

with m = 1/r. Especially well-known cases are, apart from (i) the classical heat equation
(r =1, p=2), (ii) the case r = 1, p # 2, which gives the p-Laplacian equation, and (iii)
the case p =2, r # 1, which gives the so-called porous medium equation.

8. EXTENSIONS

8.1. Maximal monotone graphs. There are a number of interesting generalizations that
can be considered in the above existence and uniqueness results. One of the most common
variations of equation (1.4) found in the literature concerns the possibility of including
functions F(x,u) which are monotone but discontinuous in u. To simplify matters, we will
consider functions F' of the uncoupled form

(8.1) Fla,u) = f(x) — B(u),

where, according to (H5) we assume that f € L'(Q). We also assume that:

(H6) £ is maximal monotone graph in R? with 0 € 3(0).

Therefore, we allow the term f(u) to be multivalued, not necessarily defined in the whole

of R. The reader interested in the properties of maximal monotone graphs can consult the
monograph [Br]. This leads to the differential inclusion

(8.2) —diva(z, Du) 4+ p(u) > f.

But for the complications of taking care of the multiplicity of 3, and replacing equations
by inclusions, nothing essential changes in the proofs of the uniqueness result (Theorem
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5.1) and the existence result (Theorem 6.1), if we assume the form (8.2) with (H1)-(H4)
and the extra hypothesis (H6). We leave the details to the interested reader. Notice in
particular that a complete specification of the solution involves a pair (u, w) where w is an
integrable function such that w(x) € f(u(x)) for a.e. x €  and u is a solution of

(8.3) —diva(z,Du) = f —w
in the sense of Section 3. Both uw and w are unique.

Actually, using the tools of [BC| we can deduce directly the results for F(x,u) = f(x)—
f(u) from the results for F(x,u) = f(x). See also [BeW] for the case F(x,u) = f(x) —

f(x,u) when (8 is maximal monotone in u with 0 € 3(z,0).

8.2. Existence for measures. Another interesting extension direction concerns the pos-
sibility of replacing the integrable functions of the second member by bounded measures.
We consider again an equation of uncoupled form, but this time we avoid the complications
of dealing with graphs and take the equation

(8.4) —diva(x, Du) + p(u) = f.

Theorem 8.1. Let 1 < p < N, let the assumptions (H1)-(H4) hold and let f € My({2),
the space of bounded measures in §). Assume that 3 be a continuous and nondecreasing
real function with 3(0) = 0 and assume moreover that Domain(3) = R and

(8.5) B(+e|" 7 ) € L (RY).

Then there exists a function u € %l’p(ﬂ) such that w = B(u) € L'(Q) and u is a solution
of —div(a(Du)) = f — w in the sense of distributions in 2. Moreover, u € MP1 () and
|Du| € MP2(9).

Proof. The existence proof of Section 6 can be easily adapted to this case. The proof begins
by approximating the second member f € M;(§2) with a sequence of smooth functions
fn € C3P(Q), fn — f in the weak® topology of My(€2). Then it stays litterally the same
from the beginnig to Step 3, where a different proof has to be given for the equi-integrability
of the sequence {v,(uy)}. In doing this we need to assume the restrictions on 3 stated
above. It is clear that the term (1/n)|u,|P~?u, still converges to 0 in Lj, () since u, — u
a.e. and {|u, [P} is bounded in MYN/V=P) The proof of local equi-integrability proceeds
as follows: we use the proof of local equi-integrability proceeds as follows: we use the

following facts: (1) |4n] < |B]; (ii)

/ |8ty )| da _/ / [0,8(un(2))](t) dt) dx
{Jun|>k} {lun|>k}

/ /{I B! Lo, otun () (F) de) dt = / meas ({x : [B(un(x))| 2 1, |un| > k})dt

= / (meas {x : up(x) > sup(k, B7Ht))} + meas {z : up(z) <inf(—k, 371(—1))})dt.

0
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(Use the classical definition of 37! as a multivalued function). (iii) By Lemma 4.1 we have
meas {u, > ()} < c(ﬂ_l(t))—%(lﬂ—l)_
(iv) By hypothesis (H6)

/ﬂW%WW%W”ﬁ<w-

Indeed, if v(z) = |x|_% one has

00 > /{vzto} Bv(z))de = /0 meas {x : v(x) > sup(to, B~ (¢))} dt,
= [ meas (ool < (5707 F ),
B(to)

hence

B gt < 0.
B(to)

We also have a similar result for meas {u,, < 37!(—t)}. From all this we deduce that

/ Bn(un)de — 0
{lun|>k}

as k — oo uniformly respect to n. Finally, noting that 3,(4k) is bounded we then deduce
the local equi-integrability of 3,(u,). We then have (up to extraction of a subsequence)

Bn(un) — w weakly in L, .(Q).

As in the first case we then prove that w € §(u) a.e. and that w € L'(Q). We have thus
completed the proof of Theorem 8.1. [

Remark. In this case we are not able to establish a property like (3.3) or (3.6). Conse-
quently we cannot prove uniqueness. Notice that the expressions (3.3) and (3.6) make no
sense when f is just a measure, not an integrable function.

8.3. For bounded domains or, more generally, when meas () < oo the case p > N does
not offer much difficulty.

Actually, in the case p > N, under assumptions (H2)-(H4) there exists a unique solution
u € Wol’p(Q) of (1.4) (which is continuous, indeed u € Cy(£2)). This case can be proved by
classical monotone arguments.

When p = N one can prove with the same arguments developed above that there exists

a unique u € %I’N(Q) satisfying the entropy conditions.
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The case meas (§2) = oo is a bit trickier: to be convinced one can look at the problem
—Au+ pu)=f in RY

for N =1 and N = 2 as studied in [BBC]. We will refrain here from entering into more
details.

8.4. Another extension direction consists in dealing with more general operators A. A
simple example is provided by operators of the form A(u) = —diva(z,u, Du).

APPENDIX I

The introduction of a special functional setting for our problem if p < 2 — (1/N) is
motivated by the following result

Proposition. Let Q be an open set in RY and let p < 2 — (1/N). Then there exists a
funtion f € LY(Q) such that the problem

u € Wl’l(Q), u—Ap(u)=f in D(Q),

loc

has no solution.

Proof. If a solution u exists and since p < 2 we have A,(u) € W_l’plTl(Q). If this happens
then for every f € L'(§2) we have

LY(Q) c W' () + Wl (Q).
By the Closed Graph Theorem and Duality this implies that
WLE(Q) AW, () € L),

which can only hold if 1/(2 —p) > N,ie. p>2—(1/N). O

APPENDIX II

We give here useful characterizations of the spaces %1,19(9) which played such a role in
the preceding theory.

Proposition. Let 1 < p < oo and let Q be an open subset in RY. The following state-
ments are equivalent for a measurable function u : ) — R

(i) u € T,"P(Q) according to the definition of Section 2.
(ii) u € T1P(Q) and there exists a sequence (, € C°(Q) such that for any k > 0
(a) (n —u ae in £,

(b) D(Tk(¢n)) = D(Th(u)) in  LP(Q2).
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(iii) For any k > 0 there exists a sequence ¢,, € Wol’p(Q) such that
(a) ¢ — Ti(u) ae in €,
(b) the sequence {D¢,} is boundedin (LP(Q))N.

(iv) u € T1P(Q) and for every k > 0 and every smooth cutoff function ¢ € C°(RY)
(a) CTi(u) € Wy (),
(b) if p < N we also need the condition Ti(u) € Lo(2).

We recall that the space Ly(2) is defined in Section 2.

Proof. 1t is immediate that (i) = (iil). (ii) = (i) is also clear taking ¢, = Tx((y). To show
that (iii) = (iv) we need to prove that whenever v € L>(2) is an a.e. limit of a sequence

¢p In Wol’p(Q) with gradient D¢,, bounded in L?()Y, then

(@) Dv e LP ()",
(%) (v € Wol’p(Q) for any (€ C5°(Q),
(7) v € Ly(Q) when 1< p<N.

Notice first that we can assume the sequence ¢, to be bounded in L*°(2) by substituting
T.(¢n) for ¢, ¢ = ||v]|o. Then we have ¢, — v in L, (), and thus D¢, — Duv as
distributions. Since D@, is bounded in LP(Q)" then («) holds. Moreover, for ( € C§°(Q)
we have (¢, — (v in LP(Q). Since (¢, is bounded in Wol’p(Q) () also holds. Finally, if
p < N the sequence ¢,, is bounded in L?" (), p* = Np/(N —p) by the Sobolev embedding.
Therefore, v € LP" C Ly(£2), and (=) holds.

Let us now prove that (iv) = (ii). Assuming that (iv) holds we take k,e¢ and R > 0.
We claim that there exists ¢ € C§°(Q2) such that (with Qr = QN {|]z| < R})

(%) 1D(C = Ti(u)llzr ) + 1€ = Th(w)l[ o (2r) < ¢

This will prove (ii). Indeed, let (., € C5°(€2) be the function corresponding to the choice
k=n,e=1/m, R=m in the above estimate. Then, for fixed n,

D(ym — DTp(u) in  LP(Q), and
[Gn,m = Tn(w)l|Lr(2p) — 0
for any R > 0, as m — oo. It follows that for any 0 < £ < n
DTy (Chom) — DT(u) in  LP(Q), and
1Tk (Cnm = Ti(w)llLr () — 0
for any R > 0 as m — oo. Thus, for any n there exists ¢, = (p m(n) € C5°(£2) such that

1
ID(Tk(Gn) = Tu(w))lLr () + 1 Te(Cn) = Tilw)llrion) =
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for any k = 1,2,... After extracting a suitable subsequence (ii) holds.

To prove the claim let 0 < 6 < k and set v = Ti(u) — Ts(u). Consider also p € C5°(Q),
0<p<1,p=1for|z] <1and p=0for |x| > 2 and set (,(x) = p(x/m). We have for
m >R

1Cmv = Tk(w)|[ Lr(2r) = I Ts(w)|lLr(0r) < ||z < R}|?.

On the other hand,
| D(Cmv — Th(w))|lp < I + I + I3,

with

I = || DTw(uw)|| e (20 {j2|>m}
I = || DTs(u)][p

k 1
Iy = —||Dp|||B|7,
m

where B = {|u] > §} N {m < |z| < 2m}. Since DT}(u) € LP(Q), I} goes to 0 as m — oo,
and Iy — 0 as 6 — 0. If p < N we have |B| < [{|Tk(u)| > ¢} < oo and for every 6 > 0,
I; — 0 as m — oo. We also have |B| < [{1 < |z| < 2}|.m"™. When p > N, I3 — 0 as
m — oo uniformly in 6 > 0, and when p = N, I3 is bounded uniformly in m, 6.

o From this analysis it follows that for p # N we can choose 6 and m > 0 in such a way
that

[1D(Cmo = Ti(w))llp + [Cmv = Th(w)l| Lo (2r) <&

Since (v € Wol’p(Q), the claim (*) holds. To show that it also holds for p = N we take
6 = 0 and observe that

D((mTr(u)) — DTi(u) weakly in LP(Q)N

as m — 00. Then we may find w in the convex hull of {(;;,Tx(u);m > R} in Wol’p(Q) such
that

[D(w — Ti(u))l, <e.

Since w = Ti(u) in {|z| < R}, (*) still holds. O

APPENDIX III

We give an example of a function u € Tli’cl(—l,l) and a Lipschitz-continuous and

bounded T': R — R such that T'(u) ¢ Wllo’cl(—l, 1). More precisely, we show that condition
(2.3) is optimal.
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Proposition. Let T : R — R be a monotone Lipschitz-continuous and bounded function
that does not satisty (2.3). Then there exists u € %1’1(—1, 1) such that T(u) ¢ wh 1( 1,1).

loc

Proof. After replacing T'(r) by —T'(—r) if necessary we may assume that there exists a real
sequence ug = 0 < uy < -+ < uy, < ... such that u,, — oo and T(upy1) > T(u,) for any
n. Let k, be a sequence of integers such that the sum > kp(T(upt1) — T(uy)) diverges,
and set a, = 27", Finally, define

= 3 Tawsoant (Dt + (st = wa)p( 2k, + 1)(2 = 27+ 2])),

/ 1)1 i,ig1)(5)ds.

We have u € Wllocoo([ L1\ {0}), u(£1) =0 and u,, < u(x) < upqq for a, < |2| < apgq,
and in fact u goes from the value u,, at = = a, to the value u,11 at * = a,41 by going up
and down in this range 2k, + 1 times. It is clear that u € ’]Bl’p(—l, 1) for any p € [1,00)
since the truncation eliminates all but a finite number of terms in the sum. On the other

hand, for T'(u) all terms count. We have

where

dciT( )w) = T'(u(2))u' (2) = (=) T (u(@))u'(2)].

for i < (2kp41)(2—=2"T2|) <i+1,n=0,...,2k,. It follows that for every z; € (0,1)

z1 > : i UpF+(Upy1—uy)(14+(—1 92
/ (Tu)'(0)]de 22 3 3 (=) [T(u)ir s T G002 >

-1 n=ny 1=0

4 Z kn(T(tung1) — T(uy)) = 0. O

n=mni;

APPENDIX IV

We discuss here the question of uniqueness of solutions of (1.4), (1.2), which motivated
our introduction of the concept of entropy solution, in the light of an example given by J.
Serrin [S] of a solution of the linear equation

ou
Zaxl < 8:1;]> =0,

with




which is uniformly elliptic for @ > 0. J.S. considers a solution of the form

N -1

a

N N
u(r) = x1r~®, where oz:§_|_\/(§_1)2_|_

Assuming that @ > 1 one has N — 1 < a < N. It is clear that v € C°(RY — {0}) N
WEP(RN) for p < N/a, and u ¢ Wl’N/a(RN). The author also verifies that u is a

loc loc
weak solution of (E). By an easy computation one can also see that u € Tli’p(RN) for

p<pa=14+(N-1)/a anduQTl’p“(RN).

loc

Let now  be the unit ball in RY and let
Mo
(@) = (o= ¥ = 1) = AGa).
We have f(x) € L) for ¢ < N. The function
v(x) =1 — ulx)
is a weak solution in C>°(Q2 — {0}) N W11(Q) of the problem

f in

P
(P) v=0>0 on of).

—N—
|

o

—~
<

e
Il

But v ¢ %1’2(9) and then v is not the entropy solution of (P).

This example shows that we cannot derive in general (3.5) from (3.2), even for bounded
and smooth Q, at least if we only assume u € 761’1(9) with a(z, Du) € L'(Q). However,
the question of deriving (3.5) from (3.2) is still open for a solution of (3.1) in %l’p(Q).
According to the above existence and uniqueness theory, this question is equivalent to the
problem of uniqueness of a solution of (3.1) in the class ’]Bl’p(Q).

It is worth noting in the example that v(x) is a weak solution of the equation —A(u) = f

in the domain Q; = {x : r < 1,23 > 0}. Though v € C*(Q21) N Wllo’cl(Ql), it i1s not an
entropy solution of problem (P) in ;.
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