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Abstract

In this paper we give summability results for the gradients of solutions of nonlinear
parabolic equations whose model is

u' — div (|Vu|? 2Vu) = p on Qx (0,7), (P)

with homogeneous Cauchy-Dirichlet boundary conditions, where p > 1 and p is a
bounded measure on 2x (0, 7). We also study how the summability of the gradient
improves if the measure g is a function in L™(Q x (0,7)), with m “small”.

Moreover we give a new proof of the existence of a solution for problem (P).
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1 Introduction and statement of results

Let Q be a bounded domain in RV, N > 2. For T > 0, let us denote by Q
the cylinder © x (0,7), and by T' the lateral surface 992 x (0,7). We will

consider the following nonlinear parabolic Cauchy-Dirichlet problem:

u — div(a(z,t,u,Vu))=p inQ,

{ u(z,0) =0 in Q, (1.1)
u(z,t) =0 on I

Here u belongs to M(Q), the space of bounded Borel measures on @, and the

function a(z,t,0,£) : 2 x (0,7) x R x R’ — RV is a Carathéodory function

(i.e., it is continuous with respect to o and ¢ for almost every (z,1) € @,

and measurable with respect to (z,t) for every ¢ € R and ¢ € RV) which

satisfies the following classical Leray-lions assumptions:

(]’(mvtvav f) : f > O‘|£|p 3 (]2)
|a(z,t,0,6)] < Bz, 1)+ o~ + 167, (1.3)
[a(x,t,0,6) —a(x,t,0,8)]-(E—€&)>0, (1.4)

for a.e. (z,t) € Q, forevery o € R, €, & € RV, € # ¢, where p is an exponent
such that
p>9 (1.5)
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(see Remarks 1.7 below for some comments about this bound on p), o and
B are positive real numbers, and n € L7 (Q), where p’ = p%] is the Holder
conjugate exponent of p.

Definition 1.1 We will say that a function u in L'(0,7; W;'(Q)) is a weak
solution of (1.1) if a(z,t,u, Vu) € (L'(Q))V and

dy
—/ u pdmdt—l—/a(m,t,u,Vu)-V@dmdt: / edu, (1.6)
Jg Ot Jg JQ

for every ¢ € C(Q) which is zero in a neighborhood of T'U (2 x {T'}).

The first existence theorem for the elliptic problems corresponding to
(1.1) is due to G. Stampacchia (see [25]) in the case of linear equations.
Existence results have been proved in [2] for semilinear Dirichlet problems
and in [7], [8], [15] (see also [4]) for nonlinear Dirichlet problems. In the
parabolic case, existence theorems have been given by the authors in [7],
[13]. The main aim of this paper (as in [5] for the case p = 2) is to precise
the summability with respect to space and time of the gradients of solutions
of (1.1) which are obtained, as in [7] or [13], by approximating p with regular
data. More precisely, we will show that every such solution u belongs to the
space 17(0,T; Wy (), where r and ¢ are two real numbers which are linked
by a suitable relation, as stated in the Theorem 1.2 below. Moreover we study
(see Theorems 1.8 and 1.9) how the summability of the gradient improves if
the measure u is replaced by a function f which belongs to L™(Q), with m
“small”.

Theorem 1.2 Assume that hypotheses (1.2) (1.5) hold, and that n € M(Q).
Then (1.1) has at least a solution u belonging to L (0,T; Wy(Q)) for every
pair (q,r) such that

N(p 1
N
N(p 2 N
p-2+r Ny (1.8)
r q



Remark 1.3 As far as the bound on ¢ is concerned, let us remark that

N(p—1) .
TP p< N
.{N@U } N1 P
ming ——=.p
N 1

l p ifp>N.

Remark 1.4 If p = 2, the result of Theorem 1.2 has been obtained in the
linear case by Baras and Pierre in [1], and by Casas in [10], using duality
methods, and in the quasilinear case by the authors in [5]; in these cases, the
relation (1.8) becomes

N 2 N
1<g< ——, 1<r<?2, -+ —>N+1.
N —1 roq

Remark 1.5 let us notice that if we require ¢ = r, then the bounds on ¢
and r become

- N
q<7p N+’
which is the same condition obtained in [7]. Observe that p — NLH is smaller

than both %:11) and p.

Remark 1.6 The bound g < Nlifp;]) is the same obtained in [7] for the

Wy /(Q)-regularity of solutions of the stationary problems associated to (1.1)

in the case p < N. If g tends to lefp__s)

, then r tends to p — 1.

Remark 1.7 If 2 — ﬁ < p < 2, it is possible to prove a result similar to

Theorem 1.2. However, in this case, the bounds on ¢ become

N
1<g< .
SISIN T (N+1)p

The proof of such a result can be done exactly as in the proof of Theorem
1.2, keeping in mind that r must not be smaller than 1. In the case 1 <
p<2-— ﬁ one can still find a solution of problem (1.1) using the notion of
entropy solution (see [22]), but in this case the gradient of the solution may

not belong to (L' (Q))N.



In order to obtain the equality in (1.8) one has to impose, as in [9] and
[13], a stronger assumption on the datum u; more precisely, we will require
that u is a function on @ belonging to the space L'(0,7T; L'log L' (Q)). The
space I'log I'(Q) is defined as the set of all measurable functions v on Q
such that

/Q |v] Tog(1 + |v|) dz < 400

This is a Banach space under the norm

) |v] |v]
[l g1 (@) mf{)\ > 0 such that /Q 5y log(1 + T)(]T < ]}.

The following result holds.

Theorem 1.8 Assume that hypotheses (1.2) (1.5) hold, and that the datum
w = fisafunctionin L'(0,T; L' log I.'(R2)). Then (1.1) has at least a solution
u which belongs to L™(0,T; W, (Q)) for every pair (q,r) such that

N(p—1
1<q<¥])ﬁp<N7 1<qg<p ifp>N,
1<r<p,
N(p—2 N
r q

Finally, we study the regularity of solutions of problem (1.1) if the datum
w is a function f belonging to L™(Q), with m > 1.

Theorem 1.9 Assume that hypotheses (1.2) (1.5) hold, and that the datum
w = fis a function in L™ (Q), with

1<m<m. (1.9)

Then (1.1) has at least a solution u which belongs to L9(0,T; Wy *(Q)), with

g given by
[N(p—1) + plm
- ] 1.10
q NE2 m (1.10)

Moreover, u belongs to L°((Q)), with o given by
[N(p—1) +plm

o= : (1.11)
N+p—mp




Remark 1.10 For the sake of simplicity, we limit ourselves to the case of
(L9(Q))N summability for Vu. However, the result of the previous theorem
can be extended in order to find the summability of the gradient with respect
to time and space as in theorems 1.2 and 1.8: see Remark 2.5 for the precise
statement.

Remark 1.11 If m tends to 1, then ¢ tends to p — NLer which is the bound
on g obtained in Theorem 1.2 if r = g (see also Remark 1.5). If m tends to
%7 then g tends to p, and o tends to p % Observe that p % is the
embedding exponent for functions in L°(0, T; L2(Q))NLP(0, T; W, *(9)) (see
[11], Proposition 3.1, and (2.3)), and that % is its Holder conjugate
exponent. The result of Theorem 1.9 has been obtained in [6] in the case
p = 2 by means of duality arguments. The result of Theorem 1.9 improves
those obtained in [9] and [13]. Other related results, concerning the regularity
of the solutions with respect to the regularity of initial datum (which for us

is zero) have been obtained in [21] and in [23].

The proof of the results will be achieved in two steps. First of all, in
Section 2, some a priori estimates for solutions with more regular data will
be proved. In Section 3, we will approximate the datum u with a sequence
{f.} of regular functions, and consider the solutions u, of problem (1.1) with
data f,. We will then prove that wu, converges to a solution u of (1.1). The
main tool of the proof will be an almost everywhere convergence result for
the gradients of the approximating solutions u,,; we will give a new proof of
this result.

In the next sections, we will use the following functions of one real vari-

able, defined for & > 0:

Ti(s) = max{—k,min{k,s}}, ow(s)=Ti(s— Ti(s)). (1.12)

2 A priori estimates

This section is devoted to the proof of some results which form the core of
the regularity theorems stated in the previous section. We begin by recalling

the well-known Gagliardo-Nirenberg embedding theorem.



Lemma 2.1 Let v be a function in W (Q) N L2(Q), with ¢ > 1, p > 1.
Then there exists a positive constant (', depending on N, g and p, such that

< C ||V’ =0 2.1
||7)||fﬂ(Q) — || UH(L‘?(Q))N ||7)||LP(Q) bl ( )
for every § and ~ satisfving

1 1 16
0<0<1, 1<v<+oo, —9()+. (2.2)

Proof. See [20], Lecture TI. ]

An immediate consequence of the previous lemma is the following em-

bedding result:
o q
/ |v] <(Y||7)||N OTTe) A)|§77)| , (2.3)

which holds for every function v in L9(0,7; W, ?(Q)) N L=(0,T; LP(Q)), with
g>1,p>1and o= g2 +p (see [11], Propostion 3.1).

Lemma 2.2 Assume that hypotheses (1.2) (1.5) hold, and that yu = f be-
longs to I”'(Q). Then every solution u of problem (1.1) satisfies the following
estimate

1ol o gy < €15 (2.4)

for every pair (q,r) of exponents satisfying the hypotheses of Theorem 1.2,
where ¢; is a constant (depending also on a, meas(Q), N, p, q, ) which
depends on f only through its norm in L'(Q).

Proof. We recall that if f belongs to 7' (Q), then a solution u of (1.1)
belongs to L2(0,T; Wy P(€)). Thus, it is possible to use i (u) (see (1.12) for
the definition of ) as test function in (1.1): like in [7], using the fact that
lok(s)| < 1, one obtains the estimates

10 e vy < € (25)

/ |IVul? <e¢, forevery k € N, (2.6)
JB,



where By = {(z,t) € Q : k < |u(z,t)| < k 4+ 1} (here we denote by ¢ any
constant depending on a, meas(Q), N, p, ¢, r and ||f||r1(Q)’ whose value

may be different from line to line). Let A be a real number such that A > 1.
From (2.6) one then obtains,

/ VulP i / |V ul?
Jo (V4 ul) = (1 4 Jul)?

(2.7)

il 1

<I§)(]+k)/\/ |V7/|p<cz ]—I-k) =c(A).

If 1 < g < p, for almost every t € (0,7T) we can write, using the Holder
inequality:

1wt ieas = [ TS

bl

(1 + Ju(x, 7‘)|) ! da

—q

T
<[ T s wieana]

We raise to the power r/q and integrate over t. If 1 < r < p, using the

Holder inequality with respect to time and (2.7), we obtain

T
YVu(t)||" dt
ARG
r (p—q)7
T VulP P Pq
< [/ A d] [/ (]+|ru|)qu7~] dt
Jo (T4 Ju])? - ) (2.8)

IA

i U T e ae] " ]

T Ar L;T
<e [1 + (/ ()72, dt) ] .
J0 f,p*q(Q)

Ag

Applying Lemma 2.1 with p =1 and v = 2 and recalling (2.5), we obtain,

for almost every ¢ in [0, 7],

bl

luI e < CVu(®)]] o) Ilu/(f)ll‘,jfm <c|[Vu@)]’

Ir—a(Q) (1(%2)) (re@)™



where 0 is such that

éwq—9<lk)+]]9. (2.9)
Raising to the power 7 and integrating on (0,7'), we obtain
T - T )
/0 (Ol s, i< /0 (IO I—T (2.10)
Now we assume that
o (2.11)
fp—r
Thus, (2.8) and (2.10) imply
T . T . B
[ Ivuolr, i< [1 + (/0 IO dt) ] .

Since % < 1, one easily obtains an a priori estimate on the norm of Vu in

70, 7 (T ()).
Putting together (2.9) and (2.11), we obtain
Npg+ pg— Ngr 4+ Nr —qgr — Ng g_P—"
Ngq ’ A
The conditions on the various parameters we have used above are the follow-

ng:

A=

1<g<p, 1<r<p, (2.12)
A1, (2.13)
A
s, (2.14)
p—q
0<h<1. (2.15)
Inequalities (2.13) (2.15) are equivalent to
N(p—2 N
M + — > N + 1 ,
r q
I <qg<p, r<p, (2.16)
-N N
Pot S,
r q




Since the two curves (in the varaibles ¢ and r)

N(p—2 N - N N
M_I_izj\[_l_]7 p _I_iz]
r q r q

bl

intersect for ¢ = Nlif’:]) and r = p — 1, conditions (2.12) and (2.16), together

with standard embedding theorems between Lebesgue spaces (we recall that
Q is bounded), imply the desired a priori estimate in L7(0,T; Wy?(Q)) for
every g and r such that

N(p—1)

Nip—2)+p N
ST E TR T S N4,
T +— >N+

,p}, IT<r<p,
r q

1 <g< min {
Thus we only have to deal with the case r = p, which, by (1.8), corresponds
to1 < g < §. In order to obtain the desired estimates in this case, we observe

that if 1 < ¢ < Z, then it is possible to choose A = % > 1. With this choice
of A, choosing r = p and using (2.5) and (2.7), one obtains reasoning as

before:
/T||V ()7 df</T[/ [Vl (JH/(1+| |)d]pqqdf<
u(t t ————dx ul|) dz it <c
Jo (ra@p™ T Jo L/a (] + |u|)A Jao -
thus concluding the proof. [

Lemma 2.3 Assume that hypotheses (1.2) (1.5) hold, and that yu = f be-
longs to I”'(Q). Then every solution u of problem (1.1) satisfies the following

estimate

I

for every pair (q,r) of exponents satisfying the hypotheses of Theorem 1.8,

< Cy, (2]7)

L7(0,T;W, Q) —

where ¢; is a constant (depending also on a, meas(Q), N, p, q, r) which

depends on f only through its norm in the space L'(0,T; L' log L' (Q)).

Proof. The key estimate for the proof is inequality (2.7) for A = 1, that is

|V ul?
/ <e, (2.18)
Jo 1+ |ul




where ¢ depends on f through its norm in the space L'(0,7T; L' log L'(Q)).
Estimate (2.18) was proved in [13], Lemma 2.2. From (2.18) and (2.5) (which
still holds since ' Tog I.'(€2) is continuosly embedded in L'(2)), using Lemma
2.1 as in the proof of the previous result, one obtains the desired estimate.

Lemma 2.4 [et m be as in the statement of Theorem 1.9. Under the same
hypotheses of Lemma 2.2, every solution u of problem (1.1) with datum
1 = f belonging to I”'(Q) satisfies the following estimate

||“/||rzq(0,T;VVO1’q(Q)) S Cq 9 (2]9)
for every g satisfying the hypotheses of Theorem 1.9, where ¢, is a constant

(depending also on a, meas(Q), N, p, g) which depends on f only through
its norm in the space L™(Q).

Proof. [Let A be a real number, with 0 < XA < 1, let ¢ in (0,7), and choose
v =¢(u) = ((14|ul)' — 1)sgn (u) X0, as test function in (1.1). Using
(1.2), we obtain

/ O(u(t))dz + (1 — N a // ]T"?'lp dx df<// F| 1(w)| d d

where we have defined

B(s) = /0 é(o) do

Observing that there exist two positive constant ¢y and d such that ®(s) >
exls|?r — dy, we get, after taking the supremum for ¢ in (0,7),

|Vul?
Ya(l ) ./Q TEamE

q” H (oTr2 Q)

e

< dymeas (Q) + (| F1] . o (/Q (1+ |u,|)<”)m’> (2.20)

<etellfllmg, (/Q(l F )

10



(N+2-2)

Let ¢ < p, and define ¢ = v 0. By inequality (2.3) with p =2 — A, we

obtain
( )g

[l <l [ 19",
Jo 1> (0,1312-3Q)) Jo

Moreover, by the Holder inequality,

Vul|? xg
[rour = [V oy
/Q 'Q(

1 Jul) 7 (2.21)

(L a2) (o)
—_ N :
Jo (14 |ul)? Jq
Putting the estimates together, and using (2.20), we get
Aq 17%
[ < ([ 0+ 1))
JQ JQ
q I+ q/
(1=2)m’ ) ) N’ T o
(ot el (04 1" =)) .

Choose now A and ¢ such that

A N4+2 -
i:(]f)\)m/:u (=),
p—q N
that is,
C(N42p-q) N1 +plm
N4+p—q q N4+2—m

(see (1.10)), which then yield

[N(p—1) + p]m
N+p—mp

(see (1.11)). With this choice of A and ¢, one has that A belongs to (0,1) if

and only if p > g and ¢ > p — NLH (which is true by the bound on m, see

Remark 1.11). Thus, we obtain

q
7

g _4q
P Nm! + pm.

[ <ese ([ ) "

11




This inequality yields a bound on the norm of u in L7(Q) if and only if
1 — % 4+ 2 4 pfn, < 1. This is true if and only if m < 1 + %7 which is

Nm/'
(N+2)pN <1+ % for every p > 1. Thus, from (2.20) we get

(N+2)p-N
a bound on the term
/ |Vau|?
Jo (1 Tl
which then yields, by (2.21), a bound on the norm of u in L9(0,T; W, (Q)).
]

satisfied, since

Remark 2.5 As stated in the Introduction, we quote here the result giving
the 17(0,7; Wy ?(Q)) a priori estimates for the solutions in the case of data
in L™(@),1 <m < %. In this case the conditions on ¢ and r are
given by:

| < q<min{NNm(p1)7?(%?2)(”7/1)773} 7

2p(m — 1)+ N(N — m)

1<r<p,

N(p—2)+mp N[+ (p—1)(m —1)]
r q

=N+2—m.

3 Almost everywhere convergence and proof
of the results

In this section, we will prove the existence and regularity results stated in
the introduction. In order to do this, assume that ¢ € M(Q), and let {f,}
be a sequence of L7(Q) functions such that

Hf”‘”ﬂ(Q) <e, fu — 1 in the weak* topology of measures.

let u, be a solution of

u, —div(a(z,t,u,, Vu,)) = f. inQ,
Uy (2,0) =0 in 0, (3.1)
un(z,1) =10 on I

12



Such a solution exists by well-known results (see, for instance, [19]), and
belongs to L2(0,T; Wy () N C°([0,T]; L2(Q)). Since {f,} is bounded in
I'(Q), then, by Lemma 2.2, {u,} is bounded in L7 (0, T; W, ?(Q)) for every ¢
and r as in the statement of Theorem 1.2. Therefore there exist a subsequence
(still denoted by {u,}) and a function u such that

u, — u  weakly in L7(0,T} W}] Q).

Moreover, since from the equation one obtains that {u’} is bounded in
L0, T; W="1(Q)), using compactness arguments (see [24]) it is easy to see
that

u, — u strongly in L'(Q). (3.2)

On the other hand, choosing Ty(u,) as test function in (3.1), one easily
obtains that there exists a positive constant ¢, independent on &, such that

/Q NTw(un) < ek VE>0. (3.3)

From (3.2), (3.3) and the continuity and boundedness of Ti(s), it follows that

the same subsequence {u,} satisfies

Ti(u,) — Ti(u) weakly in LP(0,T; W, "(Q)),
Te(u,) — Ti(u) strongly in LP(Q).

for every k > 0.

Since the problem is nonlinear, the weak convergence of u,, in the space
I7(0,T; Wy ?(Q)) is not enough in order to prove that u is a solution of
problem (1.1). To do this, we will prove the almost everywhere convergence
of the gradients for a subsequence of the approximating solutions {u, }, and
this is the goal of Theorem 3.3 below. The result of almost everywhere
convergence of the gradients is usually the main tool in the proof of existence
of solutions for nonlinear equations with ' or measure data (see [7], [15], [4]
for elliptic problems).

We begin by introducing a time-regularization of functions v belonging

to LP(0,T; Wy P(Q)) N CO([0,T); L2(Q)) (see [16]): given v > 0, we define
1
v, (7,t) =v / v(x,s) e’ 71 ds (3.4)

13



where ¥(x,s) is the zero extension of v for s & [0,7]. From now on, the
letter v will be only used with this meaning. We recall that v, converges to
v strongly in I2(0,T; W, () as v tends to infinity, and that ””””rv(g) <

||1)||TP(Q) for every p € [1, +0c]; moreover,

(v,) =v(v—uv,), (3.5)

in the sense of distributions (see [16] for the proof of these properties). Ob-

serve that, due to the regularity of v — v,, we also have

(), ¢) = v / (v -w)p  Yee IP(0,T; W Q)N I7(Q).  (3.6)
JQ
Here and in the following, (-, -) denotes the duality pairing between the spaces
L2 (0, T; W9 (€0)) and 12(0,T; W, ().
If n, v and k are positive integers and ¢ is a positive real number, we will
denote by w(n,v, k, &) any quantity such that

lim Timsup limsup limsup |w(n,v, k&) =0.
e—0t k—+4o00 v—+00 n—+o0o0
Sometimes we will also use a subset of parameters: for instance, we will
denote by w”"*(n) a quantity such that, for any fixed v, k, and &,
lim  |w”¥(n)] = 0.
n—+oo
If the quantities that we are taking into account do not depend on some

parameters, we will omit the dependence of w from them. For example,
w(n, k) is a quantity that depends only on n and k, and such that

lim limsup |w(n, k)| =0.
k—+co noyteo
In the rest of this section the order in which we intend to pass to the limit
in the various parameters will always be the same: first n, then respectively
v, k and e.
We begin with the following result, which is a modified version of a result
that has been proved in [14], Lemma 3.2 (see also [17], Proposition 3).

14



Lemma 3.1 Let {v,} be a sequence in [7(0,T; W, "(Q)) N C°([0, T]; L2(Q))
such that v,(-,0) = 0, and v/ € L”(0,T; W7 (Q)); suppose that there
exists v in L'(0,T; W, (Q)) such that, for every k > 0, Ty(v,) converges
strongly to Ty(v) in LP(Q). Then, for every choice of ¢, k and v,

(v To(vn — (Th(v)),)) > w”’k’s(n) ) (3.7)

Proof. We have

(Vs Te(vn — Ti(v),)) = (v, — (Te(v),)', Te(v — Ti(v),))
(3.8)
+(Te(v),), Te(vn — Ti(v),)) -

For the first term, defining ®.(s) = [5 T.(¢) do and recalling that v,(z,0) =

0, we can write

(v, — (Te(v),), Te(ve — Ti(v),)) = /Q S (v, — Tp(v) )(T)dx >0, (3.9)
since @, is positive. On the other hand, (3.5) and (3.6) imply
((Te(v),)' Te(vn — T(v),))
=v /Q (Ty(v) — Ti(v) ] Te(vn — Ti(v),) (3.10)

= /Q [Th(v) — Tr(v) ] Te(v — Ti(v),) + wy,k,a(n) 7

since, for n — +o0, T.(v, — Ty(v),) converges to To(v — Ty(v),) *weakly in

15



L>(£2). We have

/Q [Tk(v) — Tul(0),] To(v — Tx(v),)

= [0 —Ti(v) ) To(v — Ti(v),)

J{wl<ky

+ [k = Te(v) ) Te(v — Tr(v),)

J{uv>k}
+ [ R T - Ta(0),)
. {7}(7]9}

and all three terms of the right hand side are positive since the integrand

functions are positive, s T.(s) being positive (for the last two integrals recall

that |Ty(v),| < k). Thus, from (3.10) one obtains
((Te(0),)'s Te(vn — Ti(v),)) > w5 (n). (3.11)
Putting together (3.8), (3.9) and (3.11), one obtains (3.7). .
The following result is well known. We give the proof for completeness.

Lemma 3.2 Let O be an open bounded subset of RN, N > 1, and let {v,}
be a sequence of measurable functions on O such that v, converges to some
function v almost everywhere in O. Then, for almost every h in RY,

X {fom|>ht = X{jo|>h} strongly in L°(O), for every 1 < p < 4+00.
Here x5 denotes the characteristic function of a set K C O.

Proof. Since x4, |>n < 1, the only thing we have to prove in order to apply
the Lebesgue dominated convergence theorem is that Xy, |>s} converges to
X {jo|>n} almost everywhere in O. Choose h such that

meas ({|v]| =h})=0.

This is true for every h > 0 except a countable set. TLet y in O be such
that v,(y) converges to v(y). If |v(y)| > h, then |v,(y)| > h for every n
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large enough, and so both Xy}, >} and Xy, are one. If |v(y)| < h, then
|vn(y)| < h for every n large enough, and so both Xy}, and X{,>n) are
zero. The only set that may give problems is the set where |v(y)| = h, but
with our choice of h it has measure zero. [

The result we are going to prove is the following.

Theorem 3.3 Let {u,} be a sequence of solutions of (3.1) which converges
to some u weakly in L9(0,T; W, (Q)) for some g > 1. Then, up to subse-
quences,

Vu, = Vu almost everywhere in ().

Proof. We follow the method used in [4] for elliptic equations. By the
monotonicity of a(x,t,,-), the result will be proved if, up to subsequences
still denoted by u, (for simplicity of notation, we will omit the dependence

of a on = and 1),

[a(tn, Vu,) — a(u,, Vu)] - V(u, —u) =0 almost everywhere in Q,
(3.12)
since in [18], Lemme 3.3, it is proved that, under our assumptions on the
function a(z,t,0,€), the convergence (3.12) implies the result. Furthermore,

(3.12) will be true for some subsequence if we show that

lim /Q {la(tn, Vu,) — a(tn, Vu)| - V(u, — u)}g =0, (3.13)

n—+o0o

for some 8 > 0. To do this, we will prove that
0< / {la(vn, Vu,) — a(u,, Vu)] - V(u, — 7/,)}9 <w(n,v, k,e). (3.14)
Jo

Since u belongs to 1'(Q), the following estimate holds

meas ({(z,1) € Q : |u(x,t)| > k}) = w(k), (3.15)

17



We can write

/Q {[a(ttn, Vun) — a(tn, Vu)] - V(u, — u)}?
- ./{IHIZ’“} {[a(tn, Vu,) — a(tin, V)] - V(u, — u)}
+ -/{Iﬂr|<k} {[a(tin, Vu,) — a(tin, V)] - V(u, —u)}

= Ink + ']n,k -

Since {u,} is bounded in L(0,T; Wy () for some ¢ < p, we can choose
§ <1 <1, so that, using the Holder inequality and (1.3), we obtain

fp
fp

sl e ([ 0% + 1] + 190 +unl17) T (meas ({fu(a, 1) > b))~

<c¢(meas ({|u(z,1)] > k}))F% )

and so I, = w(n, k) by (3.15). On the other hand

T = {[a(ttn, Vun) — a(tn, VTi(u))] - V(1 — Th(u))}’
J{ul <k} (3.16)

< /Q {[a(vn, Vu,) — a(u,, VTi(w))] - V(u, — Tk(u))}g ,

since the integrand is positive. Now we assume that ¢ > 0 satisfies

M X, Ty (), |>e} = X{u—Tk(u), >} TOT every v and k in N,
n—+o00 v v
) . (3.17)
M X (ju-Ty(u), [} = X{Ju-Ty(w)|>e} Tor every kin N,

v—+4o00

and the limit is meant in 1.°(Q), for every p > 1. By Lemma 3.2, almost every
e satisfies (3.17). From now on, we will assume that & tends to 0 satisfying

(3.17). We split the last integral of (3.16) on the sets
{(x,1) € Q : |u, — Ty(u), | <e}, {(z,t) € Q : |u, — Ty(u), | > e},
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and we define
U, x = [a(tn, Vu,) — a(tiy,, VTi(uw))] - V(u, — Te(u)).

Then we have seen that

/Q {[a(vn, Vu,) — a(u,, Vu)| - V(u, — u)}g

0 3.1
- /Q \D”Jf X{|tn—Ti (), |<e} (3.18)

+ /Q ‘T’Z,,k X{ltm—Ty(u), |>e} T w(n, k)

Since {\T/Z”k} is bounded in L’%?(Q)7 and since X{ju_ 7, (u)|>} converges to zero
almost everywhere in @) as k tends to infinity, we have, by (3.17),

./Q W3 b Xlun—Ti(a), [52} = @7 (n, 0, k).

Thus, (3.18) becomes

/Q {[a(vn, Vu,) — a(u,, Vu)| - V(u, — u)}g

B ./Q Uk X fun—Ti(u), <o} + @ (0,0, F).

Using the Holder inequality (with exponents 15 and 1%9), the last integral is
smaller than

0
(meas (Q))'~° </Q U,k X{|unTk(71,)U|§6}) )

so that (3.14) will be proved if we can show that

/Q q}n,k X{|71,n—7"k(71,)”|§5} - w(n, v, k7 5) . (3] Q)
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Recalling the definition of W, ;, we can write

= /Qa,(un, V) - V(g — Te()) X{jun—Ty(u), <} (3.20)

- /Q a(ttp, V() - V(1 — Tp(1)) X {7y (), 1< -

By the properties of w,,, and since |Tx(u),| < k, we can easily deal with the
latter integral:

/Q Aty V(1)) NV (1 — Tr(10)) X (T3 (), <2}
= /C?a(Ta+k(7t)aVTk(7t))'V(Ts+k(") = T(1)) X{ju-Ta(w), <o}
_I_wu,k,s(n) (32])

= /Q a(u, VT(u)) - V(u— Ti(u)) X{Ju=T (u), |<s} T w”’k’s(n)

— wy,k,s(n) 7
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since a(u, VTi(u)) - V(u — Tp(u)) = 0. On the other hand,

/Q (i, Vi) - V(thn — Tp(10)) X {jun—T (), <=}
= ‘/Q atn, Vg ) - V(1 — Tr(w),) X{jun—Te(w), |<e}
+ ‘/Q Aty Vi) - V(Ti(1), — Te(10)) X{jun—Ty (u),|<e} (3:22)
= ‘/Q altin, Vi, ) - V(g — Tr(w),) X, Te(w), 1<}

—I—wk’s(n, v).

Indeed, by hypothesis (1.3) and by the Holder inequality, we have

‘/Qa(“m V) - V(Ty(w), — Te(1)) Xjun Ty (w), 1<e}

< Nl Tesa)s V(1)) gy 19 TC00), = Tl v

— P (n,v),
since |a(Texr(1n), VTerr(u,))| is bounded in U’I(Q) by (3.3), and Ty(u),

converges to Ty(u) strongly in L2(0,T; Wy (). Thus (3.20), (3.21) and
(3.22) imply

/ (pn,k X{|71,"7Tk(u)y|ga}
e (3.23)
= /Q a(tn, Vug) - V(ty — Te(),) X{jun—Te(u), |<e} + wk’a(n, v).

Now we use the equation solved by wu,. Taking T.(u, — Ty(u),) as test func-
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tion in (3.1), we obtain

(un, To(un — Te(u),)) + /Q a(tin, V) - VT (u, — Ty(u),)

= / Jo Te(tty, — Ti(u),)
JQ
By Lemma 3.1, whose hypotheses are satisfied by u,,, we have
(1, ot — Tal0),)) 2 w4 (n)

while, by the properties of f,,

/Q Jo Te(ty, — Ti(u),) < e Hf””rﬂ(@) < ce.

Thus
/ a(tn, V) - VTo(u, — Ti(u),) <w(n,v, k,e),
/Q

which, by (3.23), implies (3.19), and therefore (3.14). ]

Proof of Theorem 1.2. We start from the weak form of the approximating
problems (3.1), that is

o
_ /Q una + /Q a(tn, Vu,) -V = /Q fu, (3.24)

for every ¢ as in Definition 1.1. Since u, converges to u strongly in L'(Q),
the first integral passes easily to the limit. The last integral tends to [, ¢ du
by the hypotheses on the sequence {f,}. Now, by the a priori estimates, by
(1.3), by the almost everywhere convergence result proved in Theorem 3.3,
and by the continuity of a(x,t,-,-), one has, using Vitali’s theorem,

a(tn, Vu,) = a(u, Vu) strongly in (L'(Q))V.

Thus, it is possible to pass to the limit in (3.24), obtaining (1.6). The proof
of Theorem 1.2 is completed. [

Proof of Theorems 1.8 and 1.9. let {f,} be a sequence of functions in
I7'(Q), that converges to f strongly in L'(0,7; L' log L'(Q)) (or in L™(Q),
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if we are in the case of Theorem 1.9); take, for instance, f, = T,(f). The
result is easily obtained combining the proof of Theorem 1.2 with the a priori
estimate proved in Lemma 2.3 (or Lemma 2.4). ]

Remark 3.4 In this paper we do not deal with uniqueness of solutions. If
the operator is linear, then uniqueness is proved in [10] using duality meth-
ods. If the operator is strongly monotone, a positive answer to the problem
of uniqueness has been given in [12], where it is proved that the solution ob-
tained by approximation (as those obtained in the present paper) is unique
if u is a function in L'(Q) and the approximating sequence {f,} is weakly
convergent in L'(Q). Tf the differential operator is monotone, then it is nec-
essary to give a different definition of the solution in order to prove that it
is unique: see [22] for uniqueness of entropy solutions, and [3] for uniqueness
of renormalized solutions.
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