Finite volumes and nonlinear diffusion equations.
R. Eymard!, T. Gallouét?, D. Hilhorst® and Y. Nait Slimane*

Abstract.

In this paper we prove the convergence of a finite volume scheme to the solution of a Stefan problem, namely the
nonlinear diffusion equation uy — Ap(u) = v, together with a homogeneous Neumann boundary condition and an
initial condition. This is done by means of a priori estimates in L and use of Kolmogorov’s theorem on relative

compactness of subsets of L2

1 Introduction.

In this paper we prove the convergence of explicit and implicit finite volume schemes for the numerical

solution of the Stefan-type problem

up(z,t) — Ap(u(z,t)) = v(z,t), forall (z,t) € Q xRY, (1)

together with the homogeneous Neumann boundary condition

a‘;g‘) (z,1) =0, forall (z,t) € 9Q x RZ, (2)

and the initial condition

u(z,0) = up(x), forall z e Q. (3)

We suppose that the following hypotheses are satisfied:

(i)  ©Qis a bounded open subset of IRY, with smooth boundary 99,

(ii) ¢ € C(IR) is a non decreasing locally Lipschitz continuous function,
(i) wug € L (),

(iv) ve L*®(Q2x (0,T)), forall T >0.

(4)

Remark 1.1 The cases of the Stefan problem and of the porous medium equations are both contained
in the hypothesis ({.ii). For example, every function o, which is constant in an interval and linearly

increasing outside that interval, satisfies the hypothesis (4.1i).

Equation (1) is a degenerate parabolic equation. Therefore it is useful to give a definition of a weak
solution u to Problem (1, 2, 3).

Definition 1.1 A measurable function u is a weak solution of (1, 2, 3} if
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ue L*°(Qx (0,7)), foralT >0,

/ /ﬂ(u(m,t)wt(;ﬁ,t)—l—go(u(;t,t))Ai/)(x,t)—|—'U(;t,t)1/)(a:,t)) de dt + (5)
]uo(r)w(m, 0)dz =0, forallT >0, forallye Ap,

o

where Ay = {v € C>1(Q x [0,77), on

=000 00 x[0,T], and ¥(.,T) = 0}.

The convergence of numerical schemes to the weak solution of Problem (1, 2, 3) has been proved by
several authors:

(i) A finite difference scheme has been used by [9] to show the existence of a solution to the Stefan
problem. Similar finite difference schemes were used by [2] and [12]. These authors show the convergence
of the scheme.

(ii) Convergence proofs for finite element schemes have been proposed by [13], [15], [6] and [1].

(iii) The framework of semigroup theory has been used by [4] to prove the convergence of a time implicit
scheme, and by [3] for the study of a ”co-volume method”, which is a special case of a finite volume
method.

Finite volume schemes have first been developed by engineers in order to study complex coupled physical
phenomena where the conservation of extensive quantities (such as masses, energy, impulsion...) must
be carefully respected by the approximate solution. Another advantage of such schemes is that a large
variety of meshes can be used. The basic idea is the following : one integrates the partial differential
equations in each control volume and then approximates the fluxes across the volume boundaries. In this
paper we prove the convergence of an explicit and an implicit finite volume scheme to the weak solution

of Problem (1, 2, 3). Note that the function u satisfies the conservation law

/ﬂu(w,t)dr:/ﬂuo(l‘)dl‘-l-/ot/ﬂ'v(l’at)drdt’ (6)

for all t € [0,T]. The approximate solution computed by the finite volume method exactly satisfies a
discrete analog of equality (6).

A proof of convergence for a stationary diffusive-convective problem is given by [8]. As far as we know,
this article gives the first convergence proof in the case that a finite volume scheme on a general mesh is
used for the space discretization of a degenerate parabolic equation. Our method is based on rather simple
a priori estimates which are discrete versions of continuous estimates. It could certainly be extended to
a large class of linear and semilinear parabolic equations.

We present the proofs in the case of the explicit scheme and show in several remarks how they can be
extended to the case of the implicit scheme (which is easier to study). As in [6], a functional convergence
property, which is proved here in a general setting, is being used. For the sake of completeness we recall
in the appendix the proof of uniqueness of the weak solution of Problem (1, 2, 3) for the precise case that

we consider.



2 Finite volume scheme for a nonlinear parabolic equation.

In this section, we construct approximate solutions to Problem (1, 2, 3). To this purpose, we introduce a
time discretization and a finite volume space discretization. Let 7 be a mesh of Q. The elements of T will
be called control volumes in what follows. For any (p,q) € 72 with p # ¢, we denote by e,, = pNg their
common interface, which is supposed to be included in a hyperplane of IRY, which does not intersect
neither p nor ¢. Then m(epq) denotes the measure of e,, for the Lebesgue measure of the hyperplane,
and n,, denotes the unit vector normal to e,,, oriented from p to ¢q. The set of pairs of adjacent control
volumes is denoted by € = {(p,q) € T%,p # q,m(epq) # 0}, and forallp e T, N(p) = {¢ € T, (p,q) € £}
denotes the set of neighbors of p. We assume that there exist A > 0 and z, € p, for all p € 7, such that:

(i) d(p) <h, forallpeT,
(7)

Ly — Tp

(i)

oy~ 2] =mn,,, for all (p,q) €&,
where d(p) denotes the diameter of control volume p and m(p) its measure in IRY. We denote by
m(epq)

dpq

dpq = |24 — zp| the euclidian distance between z, and z,, and we then set T, =

Remark 2.1 For any domain Q with smooth boundary 02, it is possible to build meshes which satisfy
the previous hypotheses. For example, let us consider, for any h > 0,

X, = {(2"\}%,2%,...%),]?1,162,...1471\7 € Z}YNQ; Xy is a finite subset of Q. For all z € X, we
define:

pe={y€Qly—z[< min y-—ef} (8)
We then note that, for h small enough, T = {pg,x € Xp} verifies the hypotheses (7).

Remark 2.2 Another ezample of a mesh which satisfies the hypotheses (7) is the following. If N = 2
and if T is the dual mesh of a P! triangular finite element mesh, Tp,, is an element of the rigidity matriz
of an elliptic problem [3].

However, in the general case, T cannot be seen as such a dual mesh.

The functions ug, v and ¢ satisfying the hypotheses (4), the explicit finite volume scheme is then defined
by the following equations, in which k& > 0 denotes the time step.

(1) The initial condition for the scheme is

ug = #p) /p ug(z)dz, forallp e T. (9)

(i) The source term is taken into account by defining values v, such that

L /(”+1)k/ (2,t)dzdt, for all T, for all (10)
v = — v(z,t)dzdt, for all p e T, for all n € IN. 10
P km(p) nk P

(iii) The explicit finite volume scheme is defined by



W oyt
mp)L——2 — 3 1, (30;1 _ 30;) = m(p)v}, forallpeT, forallnelN, (11)
9€N(p)
where we set @) = @(uy), for allp € 7 and n € IN. Equation (11) formally corresponds to integrating the
equation (1) on the element p x (nk, (n+ 1)k) and defining a suitable approximation of the flux function
across Jp.

Scheme (11) allows to build an approximate solution, ur x : Q x R* — IR by

ut g(z,t) = uy, for all z € p, for all t € [nk, (n+ 1)k). (12)
We define in the same way the approximate p7 i of ¢(u) by o7 k(2,t) = @(ur k(z,t)), for all (z,t) €
QxIR*.
Remark 2.3 The implicit finite volume scheme is defined by

un+1 _ un
m(p)% - Z Tpq (@ZH - W;H_l) =m(p)v,, forallpeT, forallnecIN. (13)
9€N(p)

The proof of the existence of'ug"'l, for any n € IN, can be obtained using the following fired point method:

UZH’O =u,, forallpeT, (14)
and
,un+1,m+1 —un
m(p) B S T () — () = e forall pe T, for all m e N,

(15)
Equation (15) gives a contraction property, which leads first to prove that for allp € T, («p(u?"‘l’m))mem
converges. Then we deduce that (ugﬂ’m)mem converges as well.

We shall see, in remarks, that all results obtained for the explicit scheme are also true for the implicit
scheme. The function uy  is then defined by ur p(z,t) = uZH, for all z € p, for allt € [nk,(n+ 1)k).

The mathematical problem is to study, under hypotheses (4) and (7), the convergence of ur x to the
weak solution of Problem (1, 2, 3), when A — 0 and k& — 0.

3 A priori estimates

3.1 Maximum principle.

Lemma 3.1 Under the hypotheses (4) and (7), let T'> 0, U = |Jug||= () + T||v]|L(ax(0,1)),
p(a) — o(b)

B = sup . Assume that the condition
_U<a<b<y G —b
ke ™0 ipeT (16)
Tpq
9€N(p)

is satisfied. Then the function ur y defined by (9), (10), (11) and (12) verifies



lur kllLoe@x(0,)) < U an

Proor.
Let 7> 0. Let p € T, n € IN. The scheme (11) can be written as:

k Yg— ¢
n+l _  .n _ q P
Up = U (1 m(p) Z Tpq ut — un) +

9€N(p) a P
(18)
k Y9 =P\ n o 1on
m(p) Z (qu u? )uq kv,
g€N(p) a

Therefore, under condition (16), 'u;+1 is then an affine combination of ug, ¢ € 7, with all coefficients
positive, and their sum equal to 1. Hence the following inequality can be deduced:
Jup 1 < sup [ug |+ kllol = (ax 0.7))- (19)
q

Using (19), forn = 0, ...[T/k], where we denote by [z] = me}t&({n <z} andp €T, gives [uy| < |luol|Loo(n)+
ne
T'l|v]| Lo (2x(0,1)), Which leads to inequality (17).

Remark 3.1 Under more reqularity hypotheses on the mesh, there exists a value C' > 0 which does not
depend on h such that the condition (16) is satisfied by any k < ChZ.

Remark 3.2 In view of (17) we deduce that there exists a function u € L= (Qx (0,T)) and a subsequence
of (ur i) which we denote again by (ur ) such that (ur ) converges to u for the weak star topology of
L (2 x (0,7)).

Remark 3.3 Estimate (17) is also true for the implicit scheme, because the fired point method guarantees

(19), without any condition on k.

3.2 Space translates of approximate solutions.

We first define the following hypotheses and notations.

(i) T is a given real value with 7' > 0,
(i) U = luol|lpe(a) + T||'v||wa(n><(o,T));
(i) B=  sup #la) = ¢(b) ),
_U<a<b<y G —b
(iv)  «is a given real value with 0 < a < 1, (20)
(v) k< T is agiven real value with k£ < (1 — 0)%, forall p e 7T,
B Y Th
9€N(p)
(vi) uy, is given by the definitions (9), (10) and (11) for all p € 7 and n € IN. )

Lemma 3.2 Under the hypotheses (4), (7) and (20), there exists a positive function Fy, which only
depends on Q, T, ¢, ug, v and a such that



[T/k]

STk YD Thgleh —¢p)* < Fu

n=0 (pq)€€

PROOF OF LEMMA 3.2.

(21)

We first remark that the condition (20.v) is stronger than (16). Therefore, the result of lemma 3.1 holds,
ie. |uy| <U,forallpeT,n=0,..[T/k]. Let us multiply the equation (11) by kuy, and sum the result

over n = 0,..[T/k] and p € T. We obtain

[T/k]

2 D mlp) (g — g yup

n=0peT

[T/k] [T/k]
2k Z To (05— op )up = Dok mip)o
n=0 p€eT geN(p n=0 peT

Next we consider the first term on the left-hand-side of (22). We have

1 1
un)Z _ §(Un+1 . n)Z.

n ny, n 1 n
(U LR )U u+1)2_§(p P P

P p/7p §(p

In view of (11) we deduce from Cauchy-Schwarz inequality that

(U;L-H _ u;)2 < k2(1 + a) {(L Z TPQ(SOZ _ 90;))2 n (UZ)Z]

Using again Cauchy-Schwarz inequality gives

WH-wr <4 gra| ¥ 5[ T T(ey — ) |+ 20

m(p) g€N(p) g€N(p)

Using (20.v) we obtain

(wp+' = up)? < (1-a?) 2 EIS m(er-ep) ]+ 12%2(.0;;)2.

m(p) q€N(p)
Relations (23) and (26) lead to
[T/k]
> S ml) it =g > 5 S ) (Wl - ()
n=0peT peT

o [T/K]

2B EkZ[E ”q(“"q *"Z)Z]
n ﬁ/kaT gEN(p)

ML S i)

n=0 peT

We now handle the second term on the left-hand-side of (22). We first remark that

| (e(o) = gl > g5(eld) = ¢(©), for all e.d € [-U,U)

(25)

(26)

(27)

(28)



Indeed let us assume, for instance, that ¢ < d (the other case is similar); then, one has ¢(s) > h(s), for
all s € [¢, d], where h(s) = ¢(c) for s € [e,d — 1] and h(s) = ¢(c)+ (s —d+1)B for s € [d — I, d], where [
is defined by {B = ¢(d) — ¢(c), and therefore

[ ot = e@nds 2 [ h6) - pleds = 5(6ld) — ple) = 5pe@ — o (29
which then yields (28).

Let ¢ € C(IR) be defined by ¢(z) = zp(x) — / o(y)dy, where zo € IR is an arbitrary given real value.

Then the following equality holds.

8(u) = o) = wr e — o) = [ (olo) = ). (30
We have therefore, using (28), (30) and the equality Z Z Tpq(o(ug) — o(uy)) =0,
PET 9N (p)
[T/k] 1 [T/k]
=3 kY Y Tu(er )z g5 2 kY. D Tlel —4p) (31)
n=0 p€T q€N(p) n=0 peT q€N(p)

Since k < T we deduce from (17) that the right-hand-side of equation (22) satisfies

[r/%
|

]
Sk mp)vrul] < 2Tm(QU ]| Lo ax (0,1))- (32)
n=0 peT

Relations k < T', (22), (27), (31) and (32) lead to

o [T/k]
« n n 1+«
2B Yok D Thelep — o)< QTm(Q)H'UHLw(Qx(o,T))(U + ||'U||Lw(nx(o,T))T)
n=0 peT geN(p) (33)

1 2
+5m(@) (Jluolle)

which concludes the proof of the lemma. Next we deduce the following result.

Lemma 3.3 Under the hypotheses (4), (7) and (20), there exists a positive function Fy, which only
depends on Q, T, ¢, ug, v and a such that

[ (erale €0~ prate, ) dudt < I€I(E]+ 20 (34
Q&X(O,T)
for all ¢ € RY, where Qe={zeQe+& 2] CQ}.

PrROOF OF LEMMA 3.3.
Let ¢ e RY. Forall z € Q¢ and for all (p,q) € £, we denote by E(z, p, ¢) the function whose value is 1 if

1. the segment [z + £, 2] intersects p, ¢ and ep,,

2. the value c,q defined by cpq = i -1y, verifies cpq > 0,

€l



else E(x,p,q) = 0. For almost every z € Q, we denote by p(z) the element p of 7 such that « € p. For
almost every z € Q¢, and ¢ € (nk, (n+ 1)k), we have

307,/6(13 +€at) - '307’7;@(;13,15) = @Z(zﬁ—&) - 30;(1') = Z E(l‘,p, Q)(SDZ - 501731) (35)
(p,9)€€

Using Cauchy-Schwarz inequality, we get

(e — on)?
(SOT,k(x + ga t) - SOT,k(]:: t))2 < Z E(I,p, ‘I)Cpqdpq Z E(;E,p, q)% (36)
(p,q)€E (p,9)€€ paTpd
For all (p, ¢q) € &, the property cpqdyq = é—| - (24 — zp) holds. Therefore we have Z E(z,p,q)cpgdpg =
(p,9)€€
é—| (@p(z+e) — Tp(z)). We then deduce
Z E(z,p, q)cpgdpg < [€] + 2h. (37)
(p,q)€€
Using (36) and (37), we get
[T/k] (Son _ S071)2
/ (7 k(@ +&,1) — o7 k(2 1) dadt < Y k(€] +2h) Y %/ E(z,p,q)dz  (38)
Qex(0,T) n=0 (p,q)EE €ralpq e

The value fﬂg E(z,p, q)dz is the measure of a set of points of Q which are located inside a cylinder, whose
basis is epq and generator vector is —¢. Thus fﬂg E(z,p, q)de < m(epq)cpqlé|, because ¢pq is the cosine of

the angle between ¢ and n,,. Then we finally get

[T/k]
/ﬂ © T)(@T,k(a: +&,1) — o7 k(2 1) dadt < |€|(1€] + 2h) Z k Z Tho(92 — 77, (39)
& X (U,

n=0 (pq)€€

which, using (21), gives (34).

Remark 3.4 This lemma gives an estimate for the translates of o7 1 in space. The following paragraph

gives an estimate for the translates in time.

Remark 3.5 Estimate (21) also holds for the implicit scheme, without any condition on k. One mul-
tiplies (13) by u;"*'l: the last term on the right-hand-side of (23) appears with the opposite sign, which
considerably simplifies the previous proof. Therefore estimate (34) can also be proved for the implicit

scheme.

3.3 Time translates.

We now study the translate in time of function @7 .

Lemma 3.4 Under the hypotheses (4), (7) and (20), there exists a positive function Fa, which only
depends on Q, T, ¢, ug, v and « such that



/ (SOTyk(IJt + T) - SOT,k(Jjat))2d$dt S TFZa
Qx(0,T-71)
for all T € (0,T).

PROOF OF LEMMA 3.4.

Let 7 € (0,7) and t € (0,7 — 7). Since ¢ is locally Lipschitz continuous with constant B, one has

T—7
/ (o7 k(z,t+7) — @7 k(1)) dxdt < B/ A(t)dt,
Qx(0,T-71) 0

where, for almost every t € (0,7 — 1),

At) = / (o1 k(z,t+7) — o7 p(2,0) (ur p(z, t + 7) — ur (2, t))de.

Using the definition (12), setting ng = [t/k] and ny = [(t + 7)/k], we get

Alt) =Y mp)() — @) (upt — up),

peT

which also reads

A =Y e —epe) D m) gt —up).
peT nEN,
t<(nt+1)k<t+r

We now use the scheme (11), and we get

A= X K o) (X Taleg - o) +me)y).

n€IN,
t<(n+1)k<t+r PET 4EN(p)

We now gather by edges and we get

A= 3 k(X Talep - e -+ — @) + (et — )

n€NN,
t<(n41)k<t 47 (r.a)€€ PET

We can then use the inequality 2ab < a? + b2. We get

A(t) < %Ao(t) + %Al(t) + Ay () + As(t),

with

Ao(t) = Z k Z Toq(9g° — ¢p °)?,

n€N,
t<(nt1)k<ttr (r.a)€E

Ai(t) = Z k Z Tpq(e _50p ) )

n€N,
t<(nt1)k<t+r (p.a)€E

Aa(t) = Y kD Thler —ep)
t<(niiNk’g¢+,. (p,q)€E

m(p)v; )

(40)

(41)

(44)

(45)



and

As) = Y kY (¢ — ey )m(p)vp. (51)
nel, pET
t<(nt1)k<t+r

We introduce the function x such that y(true) = 1 and x/(false) = 0. We have, for all# € IR* and n € IN,
xt<(n+Dk<t+7)=x((n+1)k—71<t<(n+1)k). Therefore

[T/k]

T—T (no+1)k
/ dt<ZkZqu _¢p)/ i S xlln+ k-1 <t < (n+1)k)dt.  (52)

ng=0 pq EE nelN

The property

(no+1)k ng—n)k+7
/ S xl(n+ k-1 <t < (n+1)k)dt = Z/ x(0<t<r)ydt=r  (53)
nok nelN nelN (no—n—1)k+7
gives, using (21) and (52),
T—7
0
We get exactly in the same way
T—7
0
We now turn to the study of fOT_T Az (t)dt. We have
T—7 T/k T—7
/ t)dt < Zk > Thlep —¢p)? / x((n+ )k —7<t < (n+1)k)dt. (56)
0 =0 (p.q)e€ 0
Because fOT_T xX((n+Dk—7<t< (n+1)k)dt =min(T — 7, (n+ 1)k) —max(0,(n+ 1)k —7) < 7, we get
T—71
0
We have in the same way
T—71 [T/k] -7
/ Hdt < > kY m(p QBUV/ x((n+ 1)k —7<t< (n+1)k)dt < 2T'm(Q)BUV. (58)
0 n=0 peT

Using Equations (54)-(58), we conclude (40).

Remark 3.6 Estimate ({0) is again true for the implicit scheme, without any condition on k.

10



3.4 Relative compactness in L*(Q2 x (0,7"))

In this section, we show how estimates (17), (34) and (40) can be used to derive a strong convergence
property in L?(Q x (0,7)).

Lemma 3.5 Let (fin)men be a sequence of functions of L%(Q x (0,T)) which verifies

1. there exists My > 0 such that for all m € IN, || fin||Lex(0,7)) < M1,

2. there exists My > 0 such that for allm € N and 7 € (0,7, fﬂx(o T_T)(fm (z,t4+7)—fin (z,1))2dzdt <
TMQ,

3. there exist M3 > 0 and a sequence of real positive values (Am)menw with lim hp, = 0 such that
m— 00

for all m € IN, fﬂgX(O,T)(fm(m + &,t) = fm(z, 1)) 2dzdt < |E|(|E] + hm) M3, for all € € RY | where
Q={reQ[z+¢2]C}

Then there exists a subsequence of (fin)memw which converges for the strong topology of L%(Q2 x (0,T)) to
an element of L2(0,T; H()).

PrROOF OF LEMMA 3.5.

We first extend the definition of f,,, for m € IN, by the value 0 outside of Q x (0,7). Using the
measurability of the boundary 9Q of Q, we get that, for all ¢ € RY, m(Q\ Q) < |¢|m(0Q). Therefore
we get, for m € IN, [, ooy (fm (2 4+&,1) = fn (2, ) 2dadt < [E](([€] +hm) Mz +T'm(0Q) M7). We also get,
for all r € (-T,T), fﬂX(O,T)(fm(:E’t—i_ ) — fm(2,1))?dzedt < 7(Ms + m(Q)ME). Therefore the sequence
(fm)me satisfies the hypotheses of Kolmogorov’s theorem. Thus there exists a subsequence of (fi, )menN

which converges for the strong topology of L%(Q2 x (0,7Y)).

Let f be the limit of such a subsequence. It satisfies, for all ¢ € RY, fQ&X(OVT)(f(m—FE’,t)—f(m,t))2dmdt <
|€]? M3 because the sequence (hy,)menN converges to zero as m — oo. Therefore, for all € > 0, de-
noting Q. = {z € Q, B(x,e) C Q}, we get that f e L*(0,7; H'(Q.)), with ||f|lr20, ;51 (2.y) <
V/NMs +m(Q)TMZ. Therefore f € L?(0,T; H(Q)), with ||f||2(0,m;81(0)) < VNMs +m(Q)TMZ.

4 A functional convergence property.
We now show a property which is necessary in the next section.

Theorem 4.1 Let U > 0 be a given constant, and ¢ € C([—U,U]) a non decreasing function. Let
N € IN*, and let E be a bounded open subset of R™. For any n € IN, let u,, € L*®(E) such that

(i) =U < up, <U ace., foralln e IN;

(ii) there exists u € L= (E), such that (u,)neN converges to u for the weak star topology of L°°(E);
(i11) there exists a function ® € L'(E) such that (¢(un))ne converges to ® for the topology of L(E).
Then ®(z) = p(u(z)), for a.e. z € E.

PROOF OF THEOREM 4.1.
First we extend the definition of ¢ by ¢(v) = ¢(=U) + v+ U for all v < =U and ¢(v) = o(U) +v—-U
for all v > U, and denote again by ¢ this extension of ¢ which now maps IR into IR, is continuous and

non decreasing as well.

11



Next we define a4 : IR — IR by a_(t) = inf{v € R, ¢(v) = t}, and ay(t) = sup{v € R, p(v) = t}, for
all t € IR.
Note that the functions a4 are strictly increasing and that

(1) a— is continuous from the left and therefore lower semi-continuous, that is

a_(t) <liminfa_(z), (59)

=t

(i) a4 is continuous from the right and therefore upper semi-continuous, that is

ay(t) > lililjllp ay(z). (60)
Thus, for a.e. € F
o= (®(2)) < liminfo_ (p(un(2))) < limsupa (p(un (2))) < as(@(2)). (61)

We multiply the inequalities (61) by a non negative function ¢ € L!(E) and integrate over E. Because Fa-
tou’s lemma can be applied to the sequence of L' positive functions ar_ (p(un())) () —a—(e(=U))¥(.),

we get

/Ea_(q)(:p))w(m)d:vgliminf/E a_ (go(un(a:)))w(a:)dx. (62)

n—00

and in the same way, we get

limsup/Ea+ (go(un(.r)))l/)(x)dmg/ ay (Q(z))yY(z)de. (63)

n—00 E

By the definition of the functions a_ and a4, the following inequalities hold.

o (p(un(@))) < un(@) < ay (plun(@))), (64)
which, combined with (62), (63) and the convergence of (up)new to u for the weak star topology of
L*°(E), implies that

/Ea_(<1>(m))1/)(m)dmS/Eu(m)d)(;ﬁ)d;ﬁg/ at (®(2))yv(z)de. (65)

E
Thus a_(®(z)) < u(x) < ap(P®(x)) for a.e. & € E, which implies that ®(z) = ¢(u(x)) for a.e. z € E.
That completes the proof of Theorem 4.1.

5 Convergence
We now prove the following result.

Theorem 5.1 Suppose that the hypotheses (4) are satisfied and let T > 0,

U = |Jug||zee(qy + T||v]| Lo (2x(0,7)) and B = sup M Let o €]0, 1] be a given real value.
-U<s<y<U r—y

Let (T, km)mew be a sequence of meshes and time steps such that there exists a sequence of positive real

values (hpm)mew with

- for all m € IN, hypotheses (7) are satisfied with T = Ty, and h = hyy;
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- the sequence (hpm)mew converges to zero;
- for all m € IN, ky,, satisfies the condition (20.v) for T = Tp, and k = kp,
For all m € IN, let u,, = ur i be given by (9), (10}, (11) and (12), for T =Ty, and k = ky,

Then the sequence (Um)melN converges to the unique weak solution u of Problem (1, 2, 3) in the following
sense.

(i) (um)mew converges to u for the weak star topology of L™ (Q x (0,T)),

(11) (¢(um))mew converges to p(u) € L%(0,T; H1(Q)) for the strong topology of L*(Q x (0,T)).

PROOF OF THEOREM 5.1.

We first remark that by (20.v) the sequence (km)mew converges to zero. Because of the lemmas 3.1, 3.5
and theorem 4.1, we can extract from the sequence (u,)men a subsequence (ups(m))me such that there
exists a function u € L*®(Q x (0,7)) with

(i) (urr(m))memw converges to u for the weak star topology of L*(Q2 x (0,77)),

(ii) (#(urr(m)))mem converges to o(u) for the strong topology of L*( x (0,T)).

Next we show that u is a weak solution of Problem (1, 2, 3).

Let m € IN. We use the notations 7 = ’TM(m), h= hM(m) and k = kM(m). Let T'> 0 and ¢ € Ar. We
multiply (11) by kv¢(zp, nk), and sum the result on n = 0,...[T/k] and p € 7. We obtain

Tim + Tom = T3m, (66)
with
[T/k]
T = Z Zm ”+1 — up )(zp, nk), (67)
n=0peT
[T/k]
Tom ==Y kY Y. Tou(¥h — 5 )bl k), (68)
n=0 p€T geN(p)
and
[T/k]
Tsm = > kY t(zy,nk)m (69)
n=0 peT
We first consider 17,,. We have that
[T/k]
Tim= 3 S m(p)u (v, (0= DE) = by, nk))  +
n=1peT (70)
> m(p) (alT P ay, [1/K]K) - uli (., 0)).
pET

T < Uy

Tl|v||lLex(o,r)). Since 0 < T'— [T'/k]k < k, there exists a positive function Cyy, which only de-
pends on ¢, T and Q such that |¢(zp, [T/k]k)] < Ciyk. This leads to the convergence of Ti,, to

Let us suppose k < T (it is necessarily true for m large enough). We remark that up
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T
—/ /u(m, 1) (x, t)dxdt— [ uo(x)yi(z,0)dx, as m — oo, in view of the convergence of (ups(m))men for
0 Ja Q
the weak star topology of L* (2 x (0,7')), and of the convergence of Zu21/)(xp, 0)x(. € p) to ug(.)¥(.,0)

peT
for the topology of L!(Q).
We now study T5,,. This term can be rewritten as
T/k
n oy U(xp, nk) — Y(zg, nk)
T2m - 75 Z k Z ePQ)(soq - (PP) £ d . . (71)
n=0 (p,q)€€ -
It is useful to introduce the following expression.
[T/k] (n+1)k
-3 / | tur k(e ) A o, b))
T/k

= Zkpr/A z,nk)) (72)

n=0 peT P
(1A

:—Zk Z ©p —S'OZ)/ Vip(y, nk).npedy.

=0 (p,g)e€

Because of the convergence of (¢(urr(m)))me for the topology of L*(Q x (0,7)) to @(u), the term T3,

converges to / / (z,1))A¢(z,t)) de dt as m — co. The term Tay, + T4, can be written as

T/k
Tom + 1o, = Ek > mlepg)(ep — )Ry, (73)
n=0 (p,q)€€
with
qu_ / Vip(y, nk).npqdy — Y(zg,nk) =~ ¥(zp.m )- (74)
m(epq) dpq

In view of the regularity properties of ¢ and of hypotheses (7.1) and (7.iv), there exists a positive function
Cy, which only depends on 4, such that [R} [ < Cyh. Then, using the estimate (34), we conclude that
Tom + T4, — 0 as m — oco. The property 75, — fOT Jo (2, t)v(z, t)dedt as m — oo results from
convergences in L*(Q x (0,7)).

Therefore u is the unique weak solution of Problem (1, 2, 3) and the full sequences (um)men and

(¢(tm))mem converge.

Remark 5.1 In the linear case (p(.) = ., i.e. in the case of the heat equation), the estimates on space
and time translates of p(ut i) are not necessary in order to only obtain a weak star convergence of ur
to the unique solution of (5).

Remark 5.2 This convergence proof is quite similar in the case of the implicit scheme, with the additional

condition that (km)mew converges to zero, since condition (20.v) does not have to be satisfied.
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Appendix : Uniqueness of the solution.

The uniqueness of the weak solution to variants of Problem (1, 2, 3) has been proved by several authors.
For precise references we refer to [11]. Also rather similar proofs have been given in [5] and [7]. The

uniqueness of the weak solution to Problem (1, 2, 3) immediately results from the following property.

Theorem 5.2 Suppose that Hypothesis (4) is satisfied. Let uy and uy be two solutions of Problem (1, 2,

3), with initial conditions ug1 and ugs and source terms vy and vy respectively. Then for all T > 0,

/OT/Q|u1(m,t)—uQ(m,t)|d;rdt§T/ﬂ|u01(a:)—u02(m)|dr—|—/0T/ﬂ(T—t) vy (2,1) — va(z,)|dedt. (75)

Before proving Theorem 5.2, we first show the following auxiliary result.

Lemma 5.1 Suppose that Hypothesis (4) is satisfied. Let T > 0, w € CP(Q x (0,T)) such that lw| < 1,
and g € C*(Q x (0,T)) such that there exists r € R with 0 < r < g(z,1), for all (z,1) € Q x (0,T).

Then there erists a unique function ¢ € C*H(Q x [0,717]) such that

Ye(z,t) + g(z, ) A (x,t) = w(a, 1), for all (z,t) € Q@ x (0,7), (76)
oY

a—n(aj,t)) =0, forall(x,t)e0Qx(0,T), (77)

Y(z, T) =0, forallzeQ. (78)

Moreover the function ¢ satisfies

[¢(z,t)| < T —t, foral(z,t)eQx(0,T), (79)

and

/OT/Qg(x,t) (Aw(m,t))zd:pdt§4T/0T/Q(Vw(x,t))2da;dt. (80)

PROOF OF LEMMA 5.1.

It will be useful in the following to point out that the right-hand-side of (80) does not depend on g. Since
the function g is bounded away from zero, equations (76, 77, 78) define a boundary value problem for
a usual heat equation in which the time variable is reversed. Since 0, ¢ and w are sufficiently smooth,
this problem has a unique solution ¢ € Ap [10]. Since |w| < 1, the functions T'— ¢ and —(T —t) are
respectively upper and lower solutions of Problem (76, 78, 77). Hence we get (79).

In order to show (80), we multiply (76) by A(z,t), integrate by parts on Q x (0, 7). This gives
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%/ﬂ(Vi{;(ﬂ:,O))2d.7: - %/ (Vi/)(m,r))2d:v T /OT/Qg(a:,t)(Aw(m,t))2d:vdt:

'r 2 (81)
— / Vuw(z,t)Vi(z,t)dzdt.
0 Ja
Since V¢(.,T) = 0, letting 7 = T  in (81) leads to

%/Q(W(x’o))zdﬂﬁL/OT/ﬂg(r,t) (A1/)(I,t))2da:dt:

(82)
—/ /Vw(m,t)vw(x,t)da:dt.
o Ja
Integrate (81) with respect to 7 € (0,7 leads to
I 2 T
5/0 /Q(V”tp(:vﬂ')) dedr < 5/%(V1/) dx +
2

T ' dzd 83
| stan(avtn) aa + (83)

|[Vw(z,t)Vip(z, t)|dadt.

~
:o\:\

)

%/OT/Q(Vw(m,T))zdmdrgQT/OT/Q|Vw($,t)v¢($,t)|d‘$dt- (84)

Using Cauchy-Schwarz inequality, we get

UOT/Q|Vw(x,t)w(x,t)|dxdtrg / / Ve t) edt

Using (82) and (83), we get

[ [ (Suton) auit "
Using (84) and (85), we get
[/OT/Q|Vw(m,t)V1/;(m,t)|d;rdtr < 4T/0T/ﬂ|Vw(a:,t)V1/z(:p,t)|dmdt. y
/T/(Vw(:n,t))zd:pdt. )
Therefore C
Ve Ve dedi < a7 [ [ (Vo) dedt (87)
/A TAEER)

Using (82) and (87), we finally get (80).
PrOOF OF THEOREM (5.2).

Let u; and us be two solutions of Problem (5), with initial conditions ug; and ugs and source terms v,

and vy respectively. We set ug = u; — usg, vqg = v1 — v2 and ugq = ug; — ugz. We also define, for all
(z,1) € QxRY, q(z,t) = Qp(uil(h(l:;,g — 52(?1‘2,(:)’ ) if uy(z,t) # ua(x,1), else ¢(x,t) = 0. For all T'€ IR}
and for all ¢ € Arp, we deduce from (5) that
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/T/ﬂ{ud(x,t)<1/;t(x,t)+q(x,t)A1/)(x,t))+vd(m,t)1/;(x,t) de dt  +
/u()d(x)t/)(r,O)dx =0.

Q

(88)

Let w € CP(Q x (0,T)), such that |w| < 1. Since ¢ is locally Lipschitz continuous, we can define its
Lipschitz constant, say By, on [-M, M], where M = max(||u1|[L(ax(0,1)), |[u2||L=(ax(0,ry)) so that
0<q< By ae.

Let n € IN*. Using mollifiers, one can find a function g1, € C°(2x (0, 7)) such that ||g1,—q||L2(x(0,1)) <
% and 0 < g1, < Bps. Let ¢, = g1 + % We get

1
E<q(]3 t)<BM—|—— for all (z,t) € Q x (0,7), (89)
and
, (e , 2
Qx(0,T) Qn(‘t:t) Qx(0,T) (‘l:t) 5 (90)
/ (qin(z ) q(z,t)) drdt)’
2x(0,T) gn(z,t)
which shows that
. 2
Qx(0,T) QH(xat) n n
It leads to
1= —0 as n— (92)
\/q_n L2(Qx(0,T)) as n oQ.

Let ¢, € Ap be given by lemma 5.1, with ¢ = ¢,. Substituting ¢ by ¢, in (88), using (76) and (79) give

|/./wmt (,0) + (0(,1) = 4a 2, 1) A (2,0) ) o] <

(93)
/ /|vd z,t)] —t)d:bdt—i—T/ |uga(z)|de.
Using Cauchy-Schwarz inequality, we get
2
/ /|ud (&, 1)||(a(2,t) — gn (2, 1)) A, t)|dxdt} < 4M2.
(94)

// q(z,1) in‘t dxdt//qnltAi/)n(xt))d;pdt

We deduce from (80) and (92) that the rlght hand side of (94) tends to zero as n — oo. Hence the left
hand side of (94) also tends to zero as n — co. Therefore letting n — oo in (93), we get

|/0T /ﬂud(x,t)w(m,t)dxdﬂg /OT/Q|vd(:p,t)|(T—t)dxdt—|— )

T/Q|u0d(:v)|dm.

17



Inequality (95) holds for any function w € C°(Q x (0,7T)), with |w| < 1. We take as functions w the
elements of a sequence (Wm)mew, such that for all m € IN w,,, € C°(Q x (0,7)) and |wy| < 1, and the
sequence (W )memw converges to sign(uq(.,.)) for the topology of L1(Q x (0,7)). Letting m — oo yields

/OT/Q|ud(a:,t)|drdt§ /OT/Q|vd(;r,t)|(T—t) de dt—|—T/ﬂ|u0d(;r)|dm, (96)

which concludes the proof of Theorem 5.2.
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