Error estimates for the approximate solutions of a nonlinear hy-
perbolic equation given by finite volume schemes
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Abstract. This paper is devoted to the study of an error estimate of the finite volume approximation to the
solution « € L= (IR™ x IR) of the equation u; + div(vf(u)) = 0, where v is a vector function depending on time
and space. A “p1/*» error estimate for an initial value in BV(]RN) is shown for a large variety of finite volume
monotoneous flux schemes, with an explicit or implicit time discretization. For this purpose, the error estimate is
given for the general setting of approximate entropy solutions, where the error is expressed in terms of measures
in RY and R¥ x IR. The study of the implicit schemes involves the study of the existence and uniqueness of the
approximate solution. The cases where an “p1/2 error estimate can be achieved are also discussed.

1 Introduction and main result

1.1 Presentation of the problem

We consider here the following nonlinear hyperbolic equation in N space dimensions (N > 1), with initial
condition:

ui(e,t) + div(v(z, t) f(u(z,1))) = 0,Ye € RV, ¥Vt € Ry, (1)
u(z,0) = up(x), Vo € RY, (2)

where u; denotes the time derivative of u (¢ € IR,), and div the divergence of w w.r.t. the space variable
(which belongs to IRN). One denotes by || the euclidean norm of # in IR™, and by « -y the usual scalar
product of z and y in RY.

The following hypotheses are made on the data (see Remark 1.4 for some comments on these hypotheses):

(1) up € L°(RY), U, Uy €R, Upy < uo < Uy ace.,
(i) v eC RY xRy, RY), divv(x,t) =0,¥(z,t) e R x Ry,
IV <oost. vz, )| <V, Y(z,t) e RY x Ry,

(iii)  f e CHR,IR).
For any pair of real numbers a, b, we denote by aTbh the maximum of @ and b, and by aLb the minimum
of a and b.
Recall that problem (1)-(2) has a unique entropy solution [19]. Defining the Kruzkov entropy pairs, for
all k € R, as (|- —«|, f(-Tk) — f(-Lk)), this solution is the unique solution to the following problem:

(3)

u € L (IRY x]0, ocf),
/IF{NXIE{+ [|u(x,t) — klpi(®, 1) + (f(u(x,t)'l’/f) - f(u(l‘,t)J_Kj))V(l‘,t) V(z,t)|dedt + )
/ N|uo(x) — klp(xz,0)dz > 0, Y& € IR, Yo € C(IRY x R4, IR,),

where Vo denotes the gradient of the function ¢ with respect to the space variable (which belongs to
RY).
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1.2 Definition of the schemes

Let 7 be a mesh such that the common interface of any two elements (which are called control volumes
in the following) of 7 is included in a hyperplane of IRY. This last assumption is not necessary and
is introduced to simplify the formulation. We assume that there exist A > 0, o > 0 such that, for any
peT:

ah™ < m(p),
m(dp) < AN (5)
o(p) <

where m(p) denotes the N-dimensional Lebesgue measure of p, m(dp) denotes the (N — 1)-dimensional
Lebesgue measure of dp (9p is the boundary of p) and é(p) denotes the diameter of p.
Let F' € C(IR?,TR) be such that:

(%) F(ay,as) is nondecreasing w.r.t. a; and nonincreasing w.r.t. as, for ay, as € [Un, U],
(4%) F(ay,as) is Lipschitz continuous with respect to a; and as in [Us,, Un], (6)
(#it)  F(a,a) = f(a), for all a € [Un, Upr].

Remark 1.1 F is the numerical flux defining the scheme. The first assumption on /' will ensure some
stability properties of the schemes defined below. In particular, in the case of the “explicit scheme” (see
(10)), it yields the monotonicity of the scheme under a CFL condition (namely, condition (9) with £ = 0).
The third condition is essential since it ensures the consistency of the fluxes (cf. [11]). This framework
includes the generalized 1D Godunov scheme obtained with a one-dimensional Godunov scheme for each
edge (see e.g., for the explicit scheme, [6], [7], [24]):

_ | sup{f(a),az <a< a1} ifas <ay
Flay,az) = { inf{f(a),a; <a<az}ifa < as, (7)

and many other schemes. Tt is possible to replace the assumptions (6) on F' by some slightly more general
assumptions, in particular to include the case of some “Lax-Friedrichs type” scheme (see Remark 1.2

below).

Let k > 0 be the time step. The discrete unknowns are uy, n € N, peT.
The set {ug, p € T}, is given by the initial condition:
ug = L/uo(ab)dab,Vp eT. (8)
m(p) Jp
The equations satisfied by the discrete unknowns uy, n € IN*, p € T are obtained by discretising equa-
tion (1). Let us first describe the “explicit scheme” associated to the function F' satisfying asumption (6).
The time step k is chosen such that:

ah
S — 9
V(F1 + F) )
where £ € (0,1) is a given real value and Fy > 0, Fy > 0 are the Lipschitz constants of F' w.r.t. the first

and second variables on the interval [Up,, Ups] (recall that U, < ug < Upy ae.).
Let us consider the following explicit numerical scheme:

k<(1-¢)

un+1 —un
m(p)L—— 4 Y (v, Plup,ug) = o), F(uj, ) =0,¥peT, ¥neN, (10)
9eN(p)

where:



(i) N(p) denotes the set of neighbours of the control volume p; for ¢ € N(p), we denote by o, , the
common interface between p and ¢, and by n, , the unit normal vector to o, , oriented from p to q.

—~~
[
=

~—
<

3
[

1 (n-l—l)k
= %/nk /U [(v('y,t) ~np7q)—|—0] dydt and

1 [tk 1 pn+D)k
vy, = E/ / [(v(fy,t) ~nq7p)—|—0] dvydt = _E/ / [(v('y,t) ‘1, ,)L0|dydt.
nk %q,p nk Tp.q

The approximate solution, denoted by w7 1, is defined from RY x IR to IR by:

3
[

ur p(x,t) =uy,, ifz €p, t € [nk,(n+k[peT,necN. (11)

The following implicit numerical scheme (for which condition (9) is not necessary) will also be studied:

un+1 —un
m(p) Lt Y7 (o, Flagt g ) =, P ) =0, ¥p €T, Vn N, (12)
4€N(p)

The implicit approximate solution u7 , is defined now from RY x IR4 to IR by:

ur p(z,t) = ug‘l'l, ifeep telnk,(n+1)klpeT, neN. (13)

1.3 Main results

Under assumptions (3), let u be the solution of (1)-(2). Assuming (5), (6), let ur  be the solution of
(10) (explicit scheme), (8), (11), with the condition (9), or ur j be the solution of (12) (implicit scheme),
(8), (13). Our aim is to give an estimate of the error between v and u7 .

In the case of a cartesian grid, the convergence and error analysis reduces to a one-dimensional discretiza-
tion problem for which results were proven some time ago, see e.g. [20], [8], [22]. In the case of general
triangulations, more recent work allowed several convergence results and error estimates for time-explicit
finite volume schemes, see e.g. [7], [3], [6], [24]: following Szepessy’s work on the convergence of the
streamline diffusion method [23], most of these works use DiPerna’s uniqueness theorem [10] (or an adap-
tation of it [14],[13]), and the error estimates generalize the work by Kuznetsov [20]. In [7], [24], error
estimates of order h¥ are given for a conservation law of the form u; + divF(u) = 0 where F' is a vector
valued function; in [7], the numerical flux is assumed to satisfy an estimate (see (2.16) in [7]) which does
not seem easy to prove for any numerical scheme, and which we do not require here; in fact, we prove
directly that any monotonic scheme defined by (10) and (12) satisfies a ”weak BV estimate” (see lemmas
2.2, 3.1 and 3.2 below) which we believe to be the key estimate for obtaining the error estimate.

In both [7] and [24], an ”inverse” CFL condition of the type C < % is required, in particular because of
the use of DiPerna’s uniqueness theorem. We shall not need this restrictive condition here since we make
use of an adaptation of Di Perna’s theorem which was proven in [14].

Note that the originality of the present work also lies in the fact that the nonlinearity which we consider
is of the form v(x, ) f(u). This kind of flux is often encountered in porous medium modelling, where the
hyperbolic equation may then be coupled with an elliptic or parabolic equation (see e.g. [12], [25], [26],
[16]). Tt adds an extra difficulty to the case F'(u) because of the dependency on x and ¢. Note that the
method which we present here for a nonlinearity of the form v(x,%)f(u) also yields the results in the case
of a nonlinearity of the form F(x,%, u), see the recent work [2].

Last but not least, we give here an error estimate for a time implicit scheme (which is, to our knowledge,
the first result for implicit schemes) which adds the extra difficulties of proving the existence of the
approximate solution and proving a strong time BV estimate (see Lemma 3.2) in order to show that the
error for the implicit scheme may still be, at least in particular cases, of order hi even if the time step k
behaves as V.

Let us now state our main results precisely: In the case of the explicit scheme, we prove, in the following
sections, the following theorem.



Theorem 1.1 Assume (3), (5), (6) and condition (9). Let u be the unique entropy weak solution of
(1)-(2) and ur y be given by (11), (10), (8). Assume ug € BV(IRN). Then, for any compact set E C
RY x IRy, there exists C., depending only on E, v, f, F, ug, o and &, such that the following inequality
holds :

/ luz i (z,t) — u(z, t)|dedt < C.h7. (14)
E

In Theorem 1.1, ug is assumed to belong to BV(IRN) (recall that ug € BV(IRN) if sup{ [ uo(x)dive(z)de,
¢ € C®(RY, IRN), lo(2)] < 1, Ve € RV} < o). This assumption allows us to obtain an hT estimate in
(14). T ug ¢ BV(IRN), one can also give an error estimate which depends on the functions (r, K') and
go(r, K) defined in (115) and (128).

In some cases, it is possible to obtain h%, instead of h%, in Theorem 1.1. This is the case, for instance,
when the mesh, 7, is composed of rectangles (N = 2) and when v does not depend on (x,1), since, in
this case, one obtains a “BV estimate” on ur ;. In this case, the right hand sides of estimates (21) and

Cu . . .
(22), proven below, are changed from ﬁ to Cy, so that the right hand side of (68) becomes Ch instead
of Cv/h, which in turn yields Ch? in (14) instead of Ch7. Tt 18, however, still an open problem whether
it 1s possible to obtain an error estimate with h%, instead of h%, in Theorem 1.1 (under the hypotheses of
Theorem 1.1), even in the case where v does not depend on (#,1) (see [4] for an attempt in this direction).

Remark 1.2 Theorem 1.1 remains true with some slightly more general assumptions on F', instead of
(6), in order to allow F' to depend on 7 and k. Indeed, in (10), one can replace F'(uy,u}) (and F'(uy, uy))
by Fyp o(uy,uy, T, k) (and Fy ,(uy,uy, 7T, k)) One assumes that, for all p1,ps € ’T (having a common
interface), the functlon Fp, po(a1,a2,7, k) is nondecreasing w.r.t. a; and nonincreasing w.r.t. as, and
Lipschitz continuous w.r.t. a; and as, uniformly w.r.t. p1 and p» and that F,, ,,(a,a,7,k) = f(a), for
a,a1,as € [Up,Upr]. Then Theorem 1.1 remains true. Note that Condition (9) and C. in the estimate
(14) of Theorem 1.1 depend on the Lipschitz constant of Fj,, ,, on [Us,, Usr].
An interesting form for Fj, ,, is Fp, p,(a1, a0, 7, k) = cp, po (T, k) f(a1) + (1 — ¢py po (T, k) flaz) +
Dy, p.(7,k) (a1 —as), with some ¢p, (7, k) € [0,1] and D,, p,(7, k) > 0. In order to obtain the desired
properties on Fy, ,,, it suffices to take max{|f/(s)|, s € [Um,Unl} < Dp, p.(T, k) < D (for all p1,p2),
with some D € IR. The Lipschitz constant of F},, ,, on [Us,, Uss] is then given by D.
For instance, a “Lax-Friedrichs type” scheme consists, roughly speaking, in taking D, ,,(7, k) of order
“%”. The desired properties on Fy, ,, are satisfied, provided that % < ', with some ' depending on
max{|f'(s)|, s € [Un, Un]}. Note, however, that the condition £ < (' is not sufficient to give a real “BE”
estimate, since the coefficient, C,, in (14) depends on D. Taking, for example, k of order “h?” leads to
an estimate “C.h%” which do not goes to 0 as h goes to 0 (indeed, it is known, in this case, that the
approximate solution does not converge towards the exact solution). One obtains a real “pi” estimate,
in the case of this “Lax-Friedrichs type” scheme, by taking Cy < % < Ch.

In the case of the implicit scheme, we shall prove the following theorem:

Theorem 1.2 Assume (3), (5) and (6). Let u be the unique entropy weak solution of (1)-(2). Assume
that ug € BV(IRN) and that v does not depend on t. Then, there exists a unique solution {u ,n € 1IN,
p €T} to(12), (8) and (13) such that uy € [Up,Un] for allp € T and n € IN. Furthermore for any
compact set E C RY x IRy there exists Co, depending only on E, v, f, F, uy and «, such that the
following inequality holds :

/ lur i (z,t) — u(z, t)|dedt < Co(k + h7)3, (15)
E



Remark 1.3 Note that, in Theorem 1.2, there is no restriction on k (this is usual for an implicit scheme),
and one obtains an “AT” error estimate for “large” values of k, namely if k£ < hZ. In Theorem 1.2,if v
depends on ¢, one can also give an error estimate, indeed one obtains:

1.1

k
/ lur g (2, t) — u(z,t)|dedt < Ce(hT +h2)z,
E 2

. . 1 . . .
which gives an “h%” error estimate if & is of order “A”.

Remark 1.4 About hypotheses (3), note that the existence of V < 00 s.t. |v(x, )| <V in part (ii) of (3)
1s cructal. It ensures the property of “propagation in finite time” which is needed for the uniqueness of the
solution of (4), and for the stability (under a “CFL” condition)} of the, explicit in time, numerical scheme.
Hypothesis divv(x,t) = 0, in part (ii) of (3), is not necessary to obtain Theorem 1.1 and Theorem 1.2,
but is natural in many “appications” and avoids many technical complications. Note, in particular, that,
for instance, if divv # 0, the L°°-bound on the solution of ({) and the L™ estimate (in Lemma 2.1 and
Proposition 3.1) on the approzimate solution depends on v and T.

2 Stability results for the explicit scheme

2.1 L stability

Lemma 2.1 Under Assumptions (3), (5), (6) and Condition (9), let ur y be given by (11), (10), (8);
then:
Un <uy, <Up,Vn €N, VpeT, (16)

and
lur kll oo (r™ xR 4) < %0l Lo ry- (17)

ProoOF of Lemma 2.1:

Note that (17) is a straightforward consequence of (16), which will be proved by induction. For n = 0,
since Up, < ug < Upy ace., (16) follows from (8).

Let n € IN, assume that U, < uy < Uy for all p € 7. Using the fact that divv = 0, which may be

n n —_ 3 .
expressed as E (v 4 — vy p) = 0, we can rewrite (10) as:

4€N(p)
wttl —y

mip) 4 3 (o (P ) = F(ug) = o, (Pl uf) = ) = 0. (18)
Set, for uy # uy:

e PO IO PO ) ) "
P q Up — Uy

and 7', = 0 if uy = uy.
The monotonicity properties of the function /' yields: 0 < 7', < Vm(op ¢)(F1 + F2). Using (18), we can

write:

k k
n+1 _ n n n n
Up = (1 ~ ) Z Tp,q)up + m(p) Z Tp,g %> (20)
qEN(p) qEN(p)

which gives, under condition (9), inf er ug < u;}"'l < sup,er uy, for all p € 7. This concludes the proof
of (16), which, in turn, yields (17). n

Remark 2.1 Note that, in fact, the stability result (17) holds even if € = 0 in (9). However, we shall
need & > 0 for the following “weak BV’ estimate.



2.2 A “weak BV” estimate

Lemma 2.2 Assume (3), (5), (6) and condition (9), let ury be given by (11), (10}, (8); let T > 0,
R > 0 and Ny = max{n € N,n < T/k}, Np = {0,...,Nr}, Tp = {p € T,p C B(0,R)}, and
& ={p,q) €T* q € N(p),0p,y C B(0,R) and u > u}. Then there exists Cy, € IR, depending only
onv, F,uy, a, &, R, T such that, for h < R:

%T:k S i max  (F(de)— f(d)+  max p(F(d,c)—f(c)))—i—

up<c<d<up 2
n=0 (p,g)€}

G, o U@ = Fle.d)+ o (/) = F (e, )| (21)

and

okl n+1 n Cw
ST  mp)uptt — | < NG (22)

n=0peTr

ProoOF of Lemma 2.2:

In this proof, we shall denote by C; (i € IN) various real functions depending only on v, F', ug, «, &, R,
T.

We multiply (18) by ku?, and we sum the result over p € T, n € INp. This yields:

p’
Bi+ By =0, (23)
with:
Np
By =YY m(pup(uptt — ul), (24)
n=0peTr
and

Bo=3 k> N (vpa(F ) = Fuup — o, (Fluf, ) = F))e ). (25)

n=0 peTrqeN(p)
Let us define Bz by:

=3k X [ o ()~ ) - P - £ ) -
n=0 (p,g)e€x (26)

o (wn (P ) = FQ)) = (F () = F())) ]
The expression |Bs — Bs| can be reduced to a sum of terms which are each bounded by C1A"V ™!, thanks
to (17). Each of these terms correspond to the boundary of a control volume which is included in
B(0,R+ k) \ B(0, R — h), the measure of which is less than Czh. Therefore, the number of such terms
is lower than C3h/(ah) (indeed c3 = (). We can then deduce that:
|Bs — Bo| < (4. (27)

Denoting by ® a primitive of the function (-f'(-)), an integration by parts yields, for all (a,b) € IR*:

B~ 0(@) = [ 2 (2o = BAB) = Fla.b) = alfla) = Flab) = [ (fo) = Plabyde. (25



Using (28), the term Bz may be decomposed as:

Bs = B4 — Bs, (29)
where:
Np u;‘ u;‘
By = Zk Z (vqu / (f(z) — F(ug, ug))dx + v;p/ (f(z) — F(ug, ug))dx), (30)
n=0 (p,q)e€} up i
and
Nr
By=3k Y (h,—vp) (@) — o). (31)

n=0 (p,q)€€Z

The term Bjs is again reduced to a sum of terms corresponding to control volumes included in B(0, R +

h)\ B(0, R — h), thanks to divv = 0; therefore, as for (27), there exists Cs such that:
Bs < Cs. (32)

Let us now turn to an estimate of By. For this purpose, let a,b € IR, define C(a,b) = {(c,d) € [aLb,aTh]?
(d —¢)(b—a) > 0}. Thanks to the monotonicity properties of F', the following inequality holds, for any
(¢, d) € C(a,b):

[ @ - Famydez [ () - Flamarz [ (1) - Fedde 0 (59)

We now use the following technical lemma, the proof of which is given after completion of the present
proof:

Lemma 2.3 Let g : IR — IR be a monotonic, Lipschitz continuous function, with a Lipschitz constant

G > 0. Then:

[ (0() = st > 5o (atd) = 9(e), Veud €T (34)

From Lemma 2.3, we can notice that:

[ G = Feayds > [(Fen) = Pled)ds = 50 = Fe.d)), (35)
and
[ ) = Feayds > [(Flad)= Ple.dde > () = Fle,d)) (36)

Multiplying (35) (resp. (36)) by Fa/(F1+F%) (resp. F1/(F1+F3)), taking the maximumfor (e, d) € C(a, b),
and adding both equations yields:

[ ) = Plabdn > 5o

7E:Eﬂmﬁgmﬁ@—Fm®)+ max U@-F@@U.(m)

(¢,d)€C(a,b)

We can then deduce, from (37):



1 Nt

Bz 2(F1—|—F2)Zk 2 [

n=0 (p,q)EE}

vy, (uggr?gac)l(gu;(F(d’ ¢) — F(d))* + uggr?gac)l(gu;(F(d’ c)— f(c))Z) + (38)
Vi (ugsTsafSu;(f(d) =~ Fled)y+ uggglgafgu;(f(c) — Fle, d))z)] '

This gives a bound on Ba, since (with Cg = Cy + C5):

By > By — Cs. (39)

Let us now turn to B;. We have:

By = _%f: > m(p)(uptt —ul)? + % > m(p) (u;,VT“)2 — % > m(p) (u2)2~ (40)

n=0p€eTr pE€TR PETR

Using (18) and the Cauchy-Schwarz inequality yields the following inequality:

(un+1 _ un)Z S

P P

k2 2 2

o7 2 Gyt h) 3 [ (P ) = s) o, (Pl ) = s)) | (4D
7EN(p) 7EN(p)

Using the CFL condition (9) in (41) gives:

n n 1_€ n n o ,n n 2 n n o ,n n 2
m(p)(up-l-l _ up)2 < kFl R qe%%p) [Up,q (F(up,uq) Sy )) + vy, (F(uq suy ) — flup )) ] (42)

Summing equation (42) over p € 7g and over n € INp, and reordering the summation leads to:

_ZZ n+1 u;)z_ 2F1-|- Z Z [

n=0p€eTr n 0 (pgresn
oo ((F g ) = S () + (F (g, ) = Fuf)? ) +
o ((F(ap) = P ) + (F(ag) = Plug, ap))?)] + €,
where C7 accounts for the edges o, ,, where p € Tg and ¢ € N(p),q € Tr (these are included in
B(0, R+ h)\ B(0, R — h)).

Note that the right hand side of (43) is bounded by (1 — )B4 + C7 (from (38)). Using (23), (39) and
(40) gives:

2(F1€+F_2)Zk 2 [ %(u max  (F(d,) = f(d))* +  max p(F(d,c)—f(c))z)Jr

nle<<d<ur ur<c<d<ur
=0 (pjeey dsesds iss
n _ 2 _ 2 44
3, g U = Fle.d) + | max (f(0) = F(e.d)?)] < (49
1 2
B m(p) Ug) +Cs+Cr=0Cs



Applying the Cauchy-Schwarz inequality to the left hand side of (21) and (44) yields:

Np
Sk 30 [ el e (PO = )+ i (F(d ) = f(e)) +
n=0 (p,q)€fp
Yap (u;‘SI?Sac)l(Su;(f(d) —Fled)+ u;‘SI?Sac)l(<u" () = Fe, d)))] (45)
Nrp 1
< C9(Zk Z (v;}’q—l—v;p)) )
n=0 (p,q)EE}

Noting that card (€2) < Cioh~, and vyt vy, < Cy1hN=1 for all (p,q) € £, one obtains (21) from
(45).
Then (22) is directly obtained from (21), because (18) leads to:

mp)lap ™ —wpl <k S (vp (g, ul) = Fla)|+ f | P ug) = F)]) (46)

4EN(p)

This completes the proof of Lemma 2.2. [

It remains to prove Lemma 2.3.

We assume, for instance, that ¢ is nondecreasing and ¢ < d (the other cases are similar). Then, one has
g(s) > h(s), for all s € [¢,d], where h(s) = g(c) for s € [e,d —{] and h(s) = g(c) + (s — d + )G for
s €[d—1,d], with IG = ¢g(d) — g(c¢), and therefore:

/ (9(s) —g(c))ds > / (h(s) —g(c))ds = é(g(d) —9(c)) = 5=(9(d) — g(c))?, (47)

this complete the proof of Lemma 2.3. ]

3 Existence of the solution and stability results for the implicit
scheme

This section is devoted to the implicit scheme (given by (12)).

We first prove the existence and uniqueness of the solution {uy,n € IN,p € T} of (8), (12) and that
uy € [Unm,Uny] for all p € 7 and n € IN. We then give a “weak space BV” estimate (this is equivalent
to the estimate (21) for the explicit scheme) and a “(strong) time BV” estimate (estimate (58) below).
This last estimate requires that v does not depend on ¢ (and it leads to the term “k” in the right hand
side of (15) in Theorem 1.2). In the case where v depends on ¢, an estimate error is given in Remark 1.3
and follows from an easy adaptation of the proofs given in this paper.

3.1 Existence, uniqueness and L™ stability

The following proposition gives an existence and uniqueness result of the solution to (8), (12). For this
proposition, v can depend on ¢ and one does not need to assume ug € BV(IRN).

Proposition 3.1 Assume (3), (5), (6), then there exists a unique solution {uj,n € IN,p € T} C
[Unm, Unr] to (8), (12).

PrOOF of Proposition 3.1 One proves Proposition 3.1 by induction. Indeed, (ug, p € T) is uniquely
defined by (8) and one has ug € [Um, Unm], for all p € T, since Uy, < up < Upr a.e.. Assuming that, for
some n € IN, the set {uy;, p € 7 } is given and that u), € [Uy,, Un], for all p € 7, existence and uniqueness
of {up™ p € T} such that u+! € [U,,, Up] solution of (12) must be shown.



L. Uniqueness of {upt!, p € T} such that ul*! € [U,,, Ups] solves of (12).
Let n € IN, and let (up, p € 7) and (wp, p € T), satisfying:

n
up—up

m(p) ——— + S n, Flup,ug) — v, Fug,up))=0,¥p €T, (48)
4EN(p)
and
w, — u?
m(p) =" D (v, Flwp,wy) =y, Flwg,w,)) =0, VpeT, (49)
4EN(p)

then, substracting (49) from (48), for all p € 7

m(p)

& (up - wp) + Z Ug,q(F(upauq) - F(wp,uq)) + Z Ug,q(F(wpauq) - F(wp,wq))
7EN(p) 7EN(p) (50)
- Z (Ug,p(F(Uq,Up) — F(wg,up)) — Z (Ug,p(F(wqaup) — F(wg,wy)) =0
4€N(p) 4€N(p)

thanks to the monotonicity properties of F', (50) leads to

m p n n
Oy w3 Pt g) = Pl w3 o 1 g, ) = Fluy, )
7EN(p) 7EN(p) (51)
< Z v g [ (wp, ug) = Fwp, wy)| + Z vy o[ F (g, up) = Fwg, up)l.
4EN(p) 4EN(p)

Let ¢ : RY — IR} be defined by ¢(x) = exp(—~|z|), for some positive 7 which will be specified in the
sequel. For p € 7T, let ¢, be the mean value of ¢ on p. Since ¢ is integrable over RY (and thanks to
(5)), one has ZpET pp < 0o. Therefore the series ZpET gop(zqu(p) vp | F (wp, ug) — F(wp, wy)]) and
ZpET ©p quN(p)(vZHF(uq, up) — F(wg, up)|) are convergent (thanks to (5), and the boundedness of v
on RY and F on [U,,, Un]?).

Multiplying (51) by ¢, and summing for p € 7 yelds five convergent series which can be reordered in
order to give:

m(p) n
Z 2 lup — wplepp < Z Z Up,q|F(wpauq)_F(wpawq)”@p_@ﬂ

PeT PET geN(p) (52)

+ Z Z vgyp|F(uq’up)_F(wq’up)ngp_SpqL

PET geN(p)

from which one deduces

Zap|up_wp|§2bp|up_wp|a (53)
peET peET

where, forall pe 7, a, = ﬂkﬂlgop and b, = quN(p)(vquFl + vy, F2)lep — ¢4l

Then, one takes y small enough in order to have a, > b,, for all p € 7. Indeed it suffices to take v such

that inf @(y) > C sup |Ve(y)|, forall z € RY, with C' = M@. One concludes, from (53),
YyEB(x,h) y€B(z,2h)
up = wp, forall pe 7. [

2. Existence of {upt!, p € T} such that ul ™! € [Uy,, Ups] solves of (12).
Recall that n and (uj,)pe7 are known.
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We use again the sets 7, = {p € 7, p C B, }, for r € IN*, and assume that r is large enough in order

n

to have 7, # 0. If p € 7 \ 7,, one sets uz(,r) = u,. In step 1 below, one proves that there exists
(uz(,r))peq; C [Um, Upr] which solves

Up = — U n r r n r r
mp) =L Y (v, Flu u?) = o), P u) =0, ¥p € . (54)
Then, in step 2, one proves that passing to the limit as » — oo (up to a subsequence) leads to a solution
to (12) {ug‘l'lp € 7} such that u;}"'l € [Um, Unm]-

Step 1. Let U, = (uz(,r), p € 7;) be a solution of (54), and let U* = (uy, p € 7). The vectors U, and
U? may be viewed as vectors of IR?, with d = card(7Z;). Equations (54) give,

r k n r r n r r n
uy) m(p) > (g Flu) u) = vf, Flu u)) = up, Vp € Ty (55)
4EN(p)

This can be written on the form

U, — Go(U,) = U, (56)

where G, is a continuous map from IR into IR¢. Since uy € [Um, Un], for allp € T, and uz(,r) € [Um, Unml,

for all p € T\7,, it is easy to show (using div(v) = 0) that if U, satisfies (56), then one has uz(,r) € [Um, Unml,
for all p € 7,. Then, if C, is a ball of IR? of center 0 and of large enough radiuse, equation (56) has
no solution on the boundary of C,, and one can define the topological degree of the mapping Id — G,
on the set C, associated to U, that is d(Id — G, C,, U) (see, for instance, [9] for a presentation of the
degree). Furthermore, if A € [0, 1], the same argument allows us to define d(Id — AG,,C,,U?), and the

property of invariance of the degree asserts that d(Id — AG,,C,, U") does not depend on A. Then, one

r

has d(Id — G,,C,,U?) = d(Id,C,,U), and, since U? € C,, d(Id,C.,U?) = 1. One can conclude that

d(Id — Gy,C.,UM) # 0, and this proves that there exists a solution to (56), U, € C,. Note that the
components on U, are necessarily in [Up,, Up].

Step 2. For r € IN, let (uz(,r), p € T) be the solution of (54) given by the preceding step. Since {uz(,r),
r € IN} is included in [Uy,, Upr], for all p € T, one can find (using a “diagonal process”) a sequence (ry,
[ € IN), with r; — 00, as | — oo, such that (u;t, I € IN) is convergent (in [Upn, Up]) for all p € 7. One
sets u;}"'l = limy—c uy. Passing to the limit in (54) (this is possible because for all p € 7, this equation
is satisfied for all / € IN large enough) shows that (up*!, p € T) is solution to (12).

Indeed, using the uniqueness of the solution of (12), one can show that uz(,r) — u;}"'l

peT.
This completes the proof of Proposition 3.1. ]

, as r — oo, for all

3.2 “Weak space BV” estimate

One gives here the same estimate as for the explicit scheme (estimate (21)). This estimate does not make
use of ug € BV(IRN) and v can depend on .

Lemma 3.1 Assume (3), (5) and (6). Let {uy,n € IN,p € T} such that u;}"'l € [Unm,Unm] be the
solution of (12), (8) (existence and uniqueness of such a solution is given by Proposition 3.1). Let
T>0, R>0and Npr = max{n € N,n < T/k}, Np ={0,...,Nr}, Tr ={p € 7T,p C B(0,R)} and
En=1(p,q) € T3,9 € N(p), and uy > uy}. Then there exists Cy € IR, depending only on v, F', ug, a,
R, T such that, for h < R:

11



Sk Y [ oma L (FO-F@)+ e (FUd.0— )+

nt1 nt1 w1 ntl
U <e<d<u U <e<d<u
n=0 (pg)eertt BSTRes BSTRes

o? ( max (f(d) — F(c,d))+ max (fle) = F(c, d)))] (57)

oF uptt<e<d<uytt uptt<e<d<uptt
Cy

S\/E'

Proor

We multiply (12) by kug“, and sum the result over p € Tg and n € INp. We can then follow, step by
step, the proof of Lemma 2.2, until equation (40), in which the first term of right-hand-side appears with
the opposite sign. We can then directly deduce an inequality similar to (44), which suffices to conclude
the proof. [

3.3 “Time BV” estimate
For the following estimate one uses the fact that uy € BV(IRN) and that v does not depend on .

Lemma 3.2 Assume (3), (5) and (6). Assume that uy € BV(IRN) and that v does not depend on t.
Let {uy,n € IN,p € T} such that uy € [Unm, Un] be the solution of (12), (8) (existence and uniqueness of
such a solution is given by Proposition 3.1). Then, there exists Cy, depending only on v, f, F' and uy,
such that

m
Z%u?“—uﬁgcb,VnE]N. (58)
peT

Proor
Since v does not depend on ¢, one may set v, y = vy ., for p €7 and ¢ € N(p).
For n € IN, one sets

|un+1 _ un|
A, = Z m(p)%,
peT

and

B, = Z| Z Up,q F(UZW?) — Ygp F(UZL,UZ)I

PET ¢eN(p)

Since ug € BV(IRN) (and dive = 0), there exists Cj such that By < (3. Indeed, C} depends only
on |uglpv, V, the Lipschitz constant of F' on [U,,, Uy] and o (with |uglpy = sup{[ uo(x)dive(z)dz,
p € C2(RY,RY); |p(e)] < 1, Vo e RV}).

From (12), one deduces that B,41 < A,, for all n € IN. Then, in order to prove Lemma 3.2, one has
only to prove that 4, < B, for all n € IN (and to conclude by induction).

Let n € IN, in order to prove that A, < By, recall that the implicit scheme (12) writes

un+1 o

u
m(p)% + Z (vpyq F(up+1, uq+1) — Vg p F(uq+1, up+1)) =0. (59)
4€N(p)

From (59), one deduces, for all p € 7,

12



n-l—l u?
m(p ) R + Z Vg (F(ul ™ ul ) — Full, ulth)
7€N(p)

+ Z Up,q ( u ug‘l'l)—F(up,uq)) — Z Vg p (F(UgH,uzﬂ)—F(ug,ugH))

7€N(p) 7€N(p)
- Z Yq,p ( (up, up ) — F(uq,up))

7€N(p)
== 2wl P )+ Y vy Flupup).

gEN(P) gEN(p)

Using the monotonicity properties of F', one obtains for all p € T,

=] R

m(p)T-i- Z Up.g |F( ) F(up’uq )|
4€N(p)

+ D v PG ) = g, )
4€N(p) (60)
<I- Z v F(up, ud) + > vy Ful,up)]

4EN(p) gEN(p)
+ > g [F(upup™) = Fup, )|+ > vy [Fluf ™ up®h) = Fug, upth)].
4EN(p) gEN(p)

In order to deal with convergent series, let us proceed as in the proof of proposition 3.1. For 0 < v < 1,
let ¢, : RY — IR} be defined by ¢ (z) = exp(—7|z|).

For p € 7, let ¢, , be the mean value of ¢, on p. As in Proposition 3.1, since ¢, is integrable over RY,
ZpET ¢~ p < 0o. Therefore, multiplying (60) by ¢~ , (for a fixed ¥) and summing over p € 7 yields six
convergent series which can be reordered to give

|un+1 —u?

|

Zm(P)%SDW,p

peT

< Z|_ Z Up,qF(“Zaug)‘i‘ Z vgp F(uy Uy p)|30w7
P€ET  geN(p) 4€N(p)

‘|‘Z Z Yp,q |F(UZ+1aUg+1) - F(Upaun+1)||80wp Pvyql
PET geN(p)

+Z Z Vq,p |F ga ;;H—l)_F( qa p)||§0'yp SD’%‘]|'
PET geN(p)

For p € T, let 2, € P be such that ¢, = ¢y (2p). Let p € T and ¢ € N'(p). Then there exists s € (0, 1)
such that ¢, ; — @y, = Vo, (2, + s(xg — ) - (2g — ). Using [V, (2)] = yexp(—7|z|), this yields
l¢v,¢ = Pv,pl < 20y exp(2hy )y p < 2hy exp(2h)py p.

Then, using the assumptions (3) and (6), there exists some a only depending on &, V| h, o, F} and F»
such that

funtt — |
S (), (1= 7a)
peT
< Z| - Z vp, F'(uy, ug) + Z vgp F(uy, up)leyp < Bn.
PET  qEN(p) 7EN(p)

Passing to the limit in the latter inequality as v — 0 yields A, < B,,. This completes the proof of Lemma
3.2.
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4 Entropy inequalities for the approximate solution

4.1 Discrete entropy inequalities

In the case of the explicit scheme, following the 1D terminology (see e.g. [15]), the following lemma
asserts that the scheme (10) satisfies a discrete entropy condition.

Lemma 4.1 Assume (3), (5), (6) and condition (9), let ur i be given by (11), (10), (8); then, for all
k €IR, pe T and n € IN, the following inequality holds:

|u$"’1 — K| — |u$ — K|
m(p) - + S0 [ o (P Tw g To) = P L, L)) -
4EN(r) (61)

o (PO To unTr) = F(ug L, up L)) | <0,

ProoF

From relation (10), we express u;}"'l

as a function of uy and uy, ¢ € N(p),

n n k n n n n n n

W =l 4 ) S (v, Fup,up) —vp, F(uy, ul)). (62)
7EN(p)

The right hand side is nondecreasing with respect to uy, o € S(p). Tt is also nondecreasing with respect

to uy, thanks to the CFL condition (9), and the Lipschitz continuity of F.

Therefore, for all & € IR, using divv = 0, we have:

k
ug'i'l—l—/f Suy Tr+ —= Z (vgp Flug Tr,uy Tr) — vy

) o F(uy Th ug Tr)). (63)
7EN(p)

and

k
UZ-HJ_K? > uy Lk + T E (vgp Flug Lr,uy Le) — vy o F(uy L, ug Lk)). (64)
m(p :
7EN(p)

The difference between (63) and (64) leads directly to (61). Note that using divv = 0 leads to:

|u$"’1 — K| — |u$ — K|

3 [ vqu(F(ung,ung) — f(ulTR) = F(ul Lk, ul Lk) +f(ugm))— (65)
7€N(p)

o (PO T, Tw) = flup Tr) = Fug L, up Le) + f(u Lw)) | < 0.

For the implicit scheme, one obtains the same kind of dicrete entropy inequalities.

Lemma 4.2 Assume (3), (5) and (6). Let {u}, n € IN, p € T} C [Up, Unr] be the solution of (12), (8)

p’
(existence and uniqueness of such a solution is given by Proposition 3.1). Then, for allk € R, p € T

and n € IN, the following inequality holds:

|u;+1 — k| = |up — & . - - - -
m(p) k + Z [Upyq (F(up Tﬁ’uq T“) - F(up J—'l’f’uq J—“))_
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ProOF of lemma 4.2

For all p € T and n € IN, Equation (12) gives u;}"'l as an 1mplicit function of wy; and ug‘l'l, for all
q € N(p). The monotonicity properties of this implicit function, and the fact that its value is «, for all
& € R, if uy = & and uf;"'l = x for all ¢ € N'(p), allows us to write analogous equations to (63) and (64),
and therefore to conclude (66). n

4.2 Continuous entropy estimates for the approximate solution

For @ = IRY or RY x IR, we denote by M(Q) the set of positive measures on €2, that is of s-additive
mappings from the Borel o-algebra of Q in Ry. If p € M(Q) and g € C.(Q), one sets (i, g) = [ gdp.
The following theorems give the entropy inequalities which are satisfied by the approximate solutions,
uT , in the case of the explicit scheme (Theorem 4.1) and of the implicit scheme (Theorem 4.2).

Theorem 4.1 Assume (3), (5), (6) and condition (9), let ury be given by (11), (10), (8); then there
exist pr i € M(IRN x IRy) and pr € M(IRN) such that:

/wm ( luz 5 (2,1) — klei(e, 1)+

) (flur p(2,0) Tr) — flur g (2, 1) Lr))v(z, 1) Vgo(x,t))dxdt +
/}R N luo(2) — kle(z, 0)de > )
_/]wam (|80t(x,t)|+|Vg0(a:,t)|)d/¢77k(x,t)—/IRNSD(QE’())dﬂT(x)’

Ve €R, Yo e CP(RY x Ry, IRy).

The measures pr i and pr satisfy the following properties:

1. For all R > 0 and T > 0, there exists C' depending only on v, F, uy, «, &, R, T such that, for
h<R:
pr x(B(0,R) x [0,T]) < CVh. (68)

2. The measure pr is the measure of density |ug(-) — ur o(-)| w.r.t. the Lebesque measure. If ug €
BV(IRN), then, for all R > 0, there exists D depending only on uy, o and R such that:

pr(B(0, R)) < Dh. (69)

Remark 4.1 Let u be the weak entropy solution to (1)-(2). Then (67) is satisfied with u instead of ur
and pr =0 and pr = 0.

Proor of Theorem 4.1
Let ¢ € C®(RY xRy ,IRy) and & € IR Let 7> 0 and R > 0 such that ¢(z,t) # 0 implies || < R—h

and ¢t < T. Let us multiply (65) by f(n+1)k f o(z,t)dzedt, and sum the result for all p € 7 and
n € IN. One obtains:

m(p)

T 4T, <0, (70)
with (Np = max{n € N,n < T/k}),

|un+1 _ lf| |u _ lf| (n+1)k
Z > p / /go(x,t)dxdt, (71)
P

n=0p€eTr
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and

Ty = Z Z [ m(p) f(n+1)kf oz, t)dzdt

n=0(p,q)€€g
(F( p Tr, UG TR) — fluy Tr) — Fuy Lo, uf Le)+ fuy L
f(n+1)kf oz, t)dzdt

m(Q)
(F(u Tr,up Tr) — fuy Tr) — F(uy L, uf Le) + f(uy Le

)

)
f(n+1)kf oz, t)dzdt

)

)

m(p)
(F( g TR, up TR) — fluy Tr) — Fuy Lo, uy Le) + fuy L +
n+1)k
m(q) f( ) f oz, t)dzdt
(F(ag T, up Th) = Flug Tr) = F(up Lo, wh L) + f(uf L) ).
One has to prove:
T+ s [ (lede)|+ Vo 0l)darste0)+ [ oo 0)dur(a),
RN xRy RY

for some convenient measures g7 3 and pr, where T, Thg are defined as follows:

Tio = —/ lur g (2,t) — klpe(z, t)dedt — / |ug(x) — klp(z,0)de,
RV XIR 4 RY

Tyy = _/]RNX]R ((f(uTyk(x,t)T/f) — J(ur iz, ) Lr))v(z, 1) Vgp(m,t))dxdt.

(74)

(75)

In order to prove (73), one compares 77 and 71 (this will give pr, and a part of pr 1) and one compares

T, and Thg (this will give another part of pr x).

Estimate (22) (in the comparison of T} and Tig) and estimate (21) (in the comparison of T5 and T5g) will

be used in order to obtain (68).
Comparison of 77 and T}
We have, using the definition of ur ; and introducing the function ur o(x) = ug, for all x € p:

n+1 _ _ (n+1)k

n=0peTr

/R (uro(w) — &l ~ Juofe) — sl)p(, 0y

The function |- —«&| is Lipschitz continuous with Lipschitz constant equal to 1, we then obtain:

|un+1 _ un| (n+1)k
Ty — To| < ZZ / /|¢ (n+ 1)k) — oz, t)|dedt +

n=0peTr
luo(z) — ur o(2)lp(,0)dz,

IRN
which leads to:
Nt (n+1)k
|77 — Thol < Z Z |u”‘|'1 "|/ /|g0t(x t)|dedt +
n=0peTr

| Juo@) —ur o@)le(z, 0)de.
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Inequality (78) gives:

|77 — Thol < / lpi(z, t)|dvr (2, 1) —I—/ oz, 0)dpr (), (79)
RN xR, RN

where the measures pr € M(IRN) and vrp € M(IRN x IRy ) are defined, by their action on CC(IRN)
and C,(R™ x IR,), as follows:

(ur,9) = / Jual) — ur o(@)lg(x)dz, Vg € CL(RY), (50)
RN
(n+1)k
(V7 5, 9 Z Z |u"'|'1 "|/ / (z,t)dxdt,
nE]NpET (81)

VgECC( XIR+).

The measures pr and vr; are absolutely continuous w.r.t. the Lebesgue measure. Indeed, one has

dpr(x) = |uo(x) — ur o(x)|dr and dvr 1 (x,1) = (O, cn ZpET |u$"’1 — U$|1px[nk,(n+1)k[)dl‘dt (where 1o

denotes the characteristic function of £2).

If ug € BV(IRN) the measure pr satisfies (69). The function D depends on |ug|py and «, with, |ug|pv
= sup{ [up(x)divep(z)dz, ¢ € (RN, RY); [p(2)] < 1, Yz € RV},

The measure v ; satisfies (68), with v7  instead of u7 g, thanks to (22) and condition (9) (which gives

k < Cyh, where Cy depends only on v, F'| ug, «, ).

Comparison of 75 and Ty

Using divv = 0, and gathering (75) by edges, we get:

w==Y S [ (TR~ FOLe) — (S Th) = f(u L))
n=0(p,q)€E} (82)

/U /n(kn+1)k (v(’y, ) -ny .0(7, t)) d'ydt] .

We can now, in (82), write v(v,t) -1, o = (v(7,1) 1y  T0)+(v(7y,t) -1, ,L0). We introduce the differences
of the average of ¢ on p and on oy 4:

g (n+1)k (n+1)k
= km’p / / xtdxdt——/ / npq)TO) (7, 0)dvdt],  (83)

_ ng (n+1)k (n+1)k
= s /nk / (@, t)dadt + ~ / / 1)1y ) L0) (. )ddt]. (84)

From (72) and (82), one gets

Np
[Ty — Thol < Zk Z [

n=0 (p,q)€€Z

and

ot (F(ug—l—ﬁ, uy Tw) — flug Tr) + Fuy Le,uy Le) — fuy J_/{)) 4
| (85)
ri (Pl T, Th) = Flug TR)+ F(up Lo, wp L) = fluf L))+
g | Flup Tr) — Fuy Te,up Tr) + fluy Le) — Fuy L, uy Lk) +
Pt (Fup TR) = F(ul Tr,ul Tr) + f(ul Lr) — F(u) Lk, ul Lk) ]

For all k € IR, the following inequality holds:
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0< F(UZTK?, ug—l—ff) — f(ug—l—ff) < un<r£1<ac)l(<un(F(d, ¢) — f(d)), (86)

more precisely, one has F(uy Tr,uyTw) — f(uy Tr) = 0, if & > wuy, and one has F(uy Tk, uyTr) —
fluy Tr) = F(d,c) — f(d) WlthC—K?aIldd—u if k € [u?, u?], and with ¢ = u? andd_u if k£ < uy.

oty q
In the same way, we can assert that:
0 < Fuy Lr,uy Lr) = f(uy Lr) < max  (F(d,c) — f(d)). (87)

The same analysis can be applied to the other six terms of (85).

To conclude the estimate on [T, — Ty, it remains to estimate the four quantities r?i This will be done
with convenient measures applied to [V¢| and |¢|. In order to estimate r21, for instance, one remarks
that:

(n+1)k (n+1)k
P Sml, L L) 00l ) TO) ey

_ /(”“)k/(”“)k// / V(e +0(y — 2), L+ 0(s — 1)) - (7 — &)+

pi(z+0(y —x),t40(s —1))(s — 1)
(( (7,5) ~np,q)To) dfdydzdtds (88)

m /n(kn+1)k /(n+1)k /p/ / WS ot 07 — ). 14+ 6(s — 1))+

Kliu(a + 00y = 2), 1+ 6(s = 1))])
((v('y, s) - npyq)TO) dfdydzdtds.

IN

This leads to the definition of a measure up 4+ glven by its action on CC(IRN x IRy ):

Wt g) /(M)k /(n+1)k// / ((h+ )ge + 0, — ). 14 0(s — 1)) o)

((v(7.5) 1y ) TO) dodydadtds,

for all g € C.(RY x Ry).
We define in the same way " and we finally define the measure p7 5

) = r + 00 [ ( g (PO 1) 5
n=0 (p,q)€€} oot
u:sTsafSun(F (c) ) g 9) (90)
(ugglgfguﬁ (@) = Fle.d)) 7, 9)
(ugslglsa§Su;(f(d) - e d>>) (it g) ] |

Note that the measure p7 ; does not appear to be absolutely continuous with respect to the Lebesgue
measure.
Thanks to (21), and convenient estimates on i) q one gets (68).

Finally, from (79), (85) and the definition of 7 ; (that is (90)), one deduces (67). n

The following theorem investigates the case of the implicit scheme.
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Theorem 4.2 Assume (3), (5) and (6). Let {uy,n € IN,p € T} such that uy, € [Un,Un] be the
solution of (12), (8) (existence and uniqueness of such a solution are given by Proposition 3.1). Let
ur p be given by (13). Assume that v does not depend on t and that ug € BV(IRN). Then, there exist

prr € M(IRY x Ry) and pr € M(IRY) such that:

Lo hran - leden
IRNXIR+

(flur 1 (z,)TK) — flur p(x,t)LK))v(z, 1) - vgp(x’t)) dedt +
/IRN |ug(x) — kle(z, 0)dx > o)
_/IRNXIR (|80t(x,t)|+ |Vgo(x,t)|)dp77k(x,t)—/IE{ng(x,o)dﬂT(l,)’

Ve €R, Yo e CP(RY x Ry, IRy).

The measures pr i and pr satisfy the following properties:
1. Forall R> 0 and T > 0, there exists C' depending only on v, F, ug, o, R, T such that, for h < R:

ur (B0, R) x [0, 7)) € C(k + V). (92)

2. The measure pr is the measure of density |ug(-) — ur o(-)| w.r.t. the Lebesque measure and, for all
R >0, there exists D depending only on ug, o and R such that:

pr(B(0, R)) < Dh. (93)

Proor
Similarly to the proof of Theorem 4.1, we introduce a test function ¢ € C'2° (IRN x R4, IR1) and & € TR.

We multiply (66) by m(p) f(n+1)k f o(z,t)dzedt, and sum the result for all p € 7 and n € IN. We then

define 7y and 7% such that 77 + 75 < 0 using equations (71) and (72) in which we replace uj by u;}"'l
and uy by ug‘l'l. Therefore we obtain (79), where the measure vr ; is such that, for all R > 0 and 7' > 0,
there exists C), depending only on v, F', ug, a, R, T such that:

vr (B0, R) x [0, T]) < Ck, (94)

using Lemma 3.2, which holds if v does not depend on ¢. For the same reason, the treatment of 75 leads
to the definition of a measure up 4+ glven by its action on CC(IRN x Ry ):
(n+1)k

(it g) = (h g(a+6(y —2),1))

((v(’y) npyq)TO) dod~ydzdt,

(95)
for all g € CC(IRN x IR4). This measure contributes to the final expression of p7 i, which then satisfies

(92) thanks to Lemma 3.1. n

Remark 4.2 In the case where v depends on ¢, Lemma 3.2 cannot be used, and we get inequality (89)
again. Then (92) is replaced by

pr (B0, R) % 0.7) < €=+ V), (96)

which leads to the result given in Remark 1.3.
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5 Error estimate

5.1 The error estimate theorem

Theorem 5.1 Assume (3) and ug € BV(IRN). Let u € LOO(IRN x Ry) such that Uy <4 < Uy aee..
Assume that there exist y € M(IRY x IRy) and po € M(IRY) such that

Lo (0l = sl

) (fla(e, ) Tr)— fa(z,t) Lr))v(z,1)- Vgo(x,t))dxdt 4
[ )= wlete, 0y . .
_/IF{NXIE{+ (|80t(l‘,t)|+|Vso(x,t)|)du(x,t)—/IRN|¢(95,0)|dﬂ0(x),

Ve € R, Yo e CP(RY x Ry,IR,)
Let u be the unique entropy weak solution of (1), that is:

/IRNxIR [|u(y, s) — &lps(y,s) + (f(u(y, $)Tk) — fluly, S)J_K?))V(y, s)-Vely, s)|dyds+

(98)
/ luo(y) — kle(y, 0)dy > 0, Ve € IR, Yo € CX(RY x Ry, Ry).
RN

(Note that (98) is equivalent to (97) with u instead of & and =0, pg = 0.)
Then, for all compact subsets E of RN x IRy, there exist C., R and T depending only on E, v, f and
ug such that the following inequality holds :

[ 1 t) = ule Oldadt < Cua(BO,R) + (u(BO, R) % 0.T)) + p(BO, B x 0.7)). (09)

The proof of this theorem (Theorem 5.1) consists in using (97) and (98), making x = u(y, s) in (97),
Kk = a(z,t) in (98) and introducing mollifiers in order to make y close of # and s close of t. This proof is
quite technical and will be developed in the following subsections.

From Theorem 4.1 and Theorem 5.1 one deduces easily Theorem 1.1 (which gives an error estimate for
the numerical scheme (10), (8)) and Theorem 1.2 (which gives an error estimate for the numerical scheme

(12), (8))-

5.2 A preliminary lemma

To prove Theorem 5.1, the first step is the following lemma.

Lemma 5.1 Assume (3) and ug € BV(IRN). Let u € LOO(IRN x IRy) such that Uy, < @ < Upyp ace..
Assume that there exist p € M(IRY x Ry) and po € M(IRY) satisfying (97). Let u be the unique
solution to (98).

Then, for all ¢ € CSO(IRN x Ry, IRy ), there exists C, depending only on ¢ (more precisely on ||¢||c,
[[¥elloos |V¥|lco, and of the support of ¢ ), v, f, and wy, such that:

/]RNX]R [z, 1) = ule, ) g, 1) +

(P, O Tu(, 1) = fa(a, ) Lu(e, 1)) (v(e,1) - Vib(a,0)| dedt >

. (100)
—Cuo({#(-0) # 0}) + (u({¥ # 01) 7 + u({w # 0})),

20



ProOOF of Lemma 5.1
For p=1and p = N, one defines p, € C°(IR",IR) satisfying the following properties:

supp(pp) = {& € RY; pp(2) # 0} C {w € R7; || < 1},
pp(x) Z 0’ Vl‘ € ]Rpa

/ pp(z)de =1,
R?

and furthermore, for p = 1:

pl(l‘) = 0, Vl‘ & IR_|_.
For r € IR, r > 0, one defines p, ,(x) = rPp, (rz), for all z € IR.
Let ¢ € C°(IRY x IRy, IR,), one sets:

ola,t,y,s) =v(x, t)pn, (2 —y)p1,r (t —s).

(101)
(102)

(103)

(104)

(105)

Note that, for any (y,s) € IR x IR, one has o(, -y, 8) € CSO(IRN x IRy, IR4) and, for any (z,t) €

IRY x IR, , one has p(z,t,-,-) € C°(IRY x Ry, IRy).

Let us take ¢(-, -, y, s) for the test function ¢ in (97) and ¢(x,t,-, ) for the test function ¢ in (98). We
take, in (97), £ = u(y, s) and we take, in (98), £ = @(x,?). We then integrate (97) for (y,s) € RY x Ry,

and (98) for (x,t) € IR"Y x Ry. Adding both inequations yields:

B+ Eio+ Ei3+ E1q4 > —FEo,

where:
Fi = / [|ﬂ(x,t) —u(y, s)|we(z, t)pn (2 — y)pr1 - (t — 5)] dxdtdyds,
(RY xIR4)?
Eis = /(RNXR+)2 [ (f(ﬂ(x,t)"l’u(y, s)) — f(a(z, t)Lu(y, 5)))
(v(z,t) - V(2. 1)) pnr(e —y)pr-(t — 5)] dxdtdyds,
Bra=- | (£, 0T uly, ) — fiCe, 1) Lu(y, 5) ) ¥z, 1
(IR xIR 4 )2
((v(y,s) = v(z,1)).Von,r(x —y)p1,-(t — s) dedtdyds,
Bua= [ Junle) = )6 O (2 = ) (=)
and

N N B G e e R PR (R R

| o1t = ) (T, pw,p (& = y) + (e, )V o (= )]

du(z,t)dyds
+/ / | ¥(x,0)pn (= y)p1,r(—5)|dpo(x)dyds.
RV xR, JRY

(106)

(107)

(108)

(109)

(110)

(111)

Note that, in order to obtain (106), one does not make use of the fact that the entropy weak solution u
of (1) satisfies the initial condition of (1). Indeed, this initial condition appears only in the third term of
the left hand side of (98) and, for all (z,t) € IR x IR, one has o(z,t,-,0) = 0. Then, the third term
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of the left hand side of (98) is zero when one takes p(x,t,-, ) as test function in (98). The fact that u
satisfies the initial condition of (1) will be used in order to get a bound on 4.

One has to study, now, the four terms of (106). In the following, one denotes by C; (i € IN) various real
functions depending only on [|4|leo, [|¥tllec, |V¥||co, v, f, and ug. One sets K = {(z,t) € RY x R,
W(x,t) £ 0} and Ko = {z € RY; o(z,0) £ 0}.

Equality (111) leads to:

Let us handle the term E;;. For all z € IRY and for all t € IR, one has (using (104)):

/ (2 —y)p1r(t — s)dsdy = 1. (113)
IRNXIR+

Then,

|E11—/IRN IR [|ﬂ(x,t)—u(x,t)|1/;t(x,t) dzdt| <
X4

(114)
/ [|u(x,t) —u(y, s)||(z, )| pn (2 — Y)p1 -t — 5)| dedtdyds < |ii|ce(r, K),
(RY xIR4)?
with
e(r,K) = sup{/ |u(z,t) — u(e +n,t + 7)|dedt; |n| < < -,0< 7L l} (115)
r
Since ug € BV(IRN), one has u € BV(IR x [0,T7) (for all T'), and then
e(r, K) < — C (116)
r
This gives:
- 04
En _/ [l ) = u(ar, ), )] dadt] < = (117)
IRNXIR+
In the same way, one obtains:
FEio — (e, )T [ t 1 t
|E1s /IF{NXIF{+ (f(u(x, YTu(z, b)) — fla(z,t)Lu(z, ) (118)
(v(z,t) - Vi(z,1))dedt| < Cse(r, K) < s,
Let us now turn to F13. We compare this term with:
Frap = _/ (FlCe, O Tz, 1) = fla(a, ) Lu(e, 1)) )b(e, 0
(RN XIR 1 )2 (119)

(v(y,s) —v(z,t)) - Vpn,r(z—y)p1r({t — s) dedtdyds.

Since div(v(-,s) — v(z,t)) = 0 (on R") for all z € RY, ¢t € IRy and s € IRy, one has i3 = 0.
Therefore, substracting Ey3; from Ey3 yields:

Eis< Cs / (e, 1) — u(y, )| (2, 1)
(IRY xIR 1)2
(v(y, ) = v(2,1)) - Vonr (& — 9)lp1 o (L — 5) dudidyds.

The right hand side of (120) is then smaller than Cge(r, K), since |(v(y,s) — v(z,1)) - Von (2 — y)| s
bounded by Cor¥. Then, with (116), one has:

(120)
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By < S0 (121)
T

In order to study F14, let us take in (98), for « € IRY fixed, o(z,y,s) = ¢¥(z,0)pnr(2—Yy) fsoo p1,(—7)dr,
and & = ug(z). This choice for ¢ leads to a function ¢(z,-,-) of C'OO(IRN x IR,IRy), with a compact
support in IRY x IR . We then integrate the resulting inequality with respect to z € RY. We get:

—FEis+ Eis5+ Ei6 >0, (122)
with:

o= [ s Tune) - fuls) L)) 123)
v(y,s) - (¥(z,0)Von, (2 —y))p1,(—7)drdydzds,

Eys = /IRNXIRN /0001/)(90, 0)pn,r (2 = y)p1r (=7)|uo(x) — uo(y)|drdyde. (124)

In order to obtain a bound on FEys, one introduces E45; defined as:

Eisy :/ / (f(u(y, 5) Tuo(y)) = fuly, s) Luo(y)))
RN XIR 4 xRN Js (125)
(v(y,s) - Vpn (2 —y)(x,0)p - (—7)drdydeds,
Integrating by parts for the = variable yields:

Eisp = —/ / (f(u(y, 5) Tuo(y)) = fuly, s) Luo(y)))
RN XIR 4 xRN Js (126)
(v(y,s) - Vi(z,0))pnr (2 — y)p1,r(—7)drdydeds,
Then, noting that the time support of this integration is reduced to [0, 1/7], one has:

C
Eys < —2 (127)
r

Furthermore, one has:

|E1s + Eiss| < C'12/

RV xR IRN/ luo(®) — wo(W)|[v(y,s) - Vonr(x — y)(x,0)p1,(—7)drdyduds,
X + X S

which is bounded by Ciseo(r, Kg) (since the time support of the integration is reduced to [0, 1/r]) where
go(r, Kg) is defined by:

1
o(r, Ko) = sup{ [ Juo(e) = wo(e + n)lde; Jn] < —1. (128)
Ko

Since ug € BV(IRN), one has g¢(r, Kg) < % and therefore, with (127), E15 < %
Thanks to the fact that ug € BV(IRN), it easily seen that the term Es is again bounded by Cig/7.
Hence, since F14 < Fi5 + Fisg,

s ——. (129)

Using (106), (112), (117), (118),(121), (129), one obtains:
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/]RNX]R [l ) = u(ar, ), ) +

(FaCe. O Tu(e, 1) = fGite. ) Lu(e, 1)) (v, ) - Vit 0)] dedt > (130)
—C1(r + D)u(K) — Copo(Ko) — S22,

which, taking r = :(K) (or r — oo if pu(K) = 0), gives (100).

This concludes the proof of the Lemma 5.1. ]

5.3 Conclusion of the proof of Theorem 5.1

Let K be a compact subset of RY x Ri. One sets w = VM, where V is given in (3) and M is the
Lipschitz constant of f in [Up,, Ups] (indeed, since f € C1(IR,IR), one has M = sup{|f’'(s)|; s € [Um, Un]).
Let R > 0, T €]0, %[ such that K C Ug<i<r(B(0, R — wt) x {t}).

Let p € CY(IR4,[0,1]) be a function such that p(r) = 1if r € [0,R], p(r) = 0 if » € [R+ 1,00[ and
p'(r) <0, for all » € IRy. One takes, in (100), ¢ defined by ¢(x,t) = p(|z| + wt)%, if z € RY and
te[0,T], (e, t) =0if z € IRY and ¢ > T. This function is not in CSO(IRN x IRy,IR4), but, using a
classical regularisation technique, one proves that one can take such a function in (100).

Then, inequality (100) leads to:

/IRNX[O,T] [|ﬂ(m,t)—u(x,t)|(

T—t

1
wpl (o] +wt) = Zplle] +wt)) +

(Flate, O Tute,0) = fate, ) Lu(e,0)) L (o] + wt)(v(e 1) - )] dedt > (13D
—C(uo(B(0, R+ 1)) + (u(B(0, R+ 1) x [0, T]))? 4 u(B(0, R+ 1) x [0, 7)),
where (', R, T, depend only on K, v, f and uyg.
Since w = VM and p’ < 0, one has:
(e Tule, 1)) = fGate, 1) Lue, 1)) Tetp! (] + wi)(v(e.0) - £) < 13

(e, 1) — u(z, ) (= (2] + wi)),

and therefore,

/ iz, t) —u(x, )| dwdt < CT(po(B(0, R+1))+(u(B(0, R+1) x [0, T1))? +u(B(0, R+1)x [0, T])). (133)

This completes the proof of Theorem 5.1. ]

Recall that from the entropy inequality given in Theorem 4.1 and the error estimate given in Theorem
5.1 one deduces easily Theorem 1.1, which gives an error estimate for the explicit numerical scheme (10),
(8), and Theorem 1.2, which gives an error estimate for the implicit numerical scheme (12), (8).

6 Conclusion

Theorem 1.1 gives an error estimate of order ht for the approximate solution of a nonlinear hyperbolic
equation of the form wu; 4+ divv(z,t) f(u) = 0, with initial data in L N BV by the explicit finite volume
scheme (10), (8), under a usual CFL condition k& < Ch (see (9), note that there is no “inverse” CFL
condition required here). Note that, in fact, the same estimate holds if ug is only locally BV. More
generally, if the inital data wug is only in L, then one still obtains an error estimate in terms of the
quantities e(r, K) = sup{fK |u(z,t) — u(z + n,t + 7)|dedt; |n| < %, 0 <1< %} and gqo(r, Ky) =
sup{fKD luo(2) — uo(2 + n)|dz; |n| < L} (see (115) and (128)). This is again an obvious consequence of
Theorem 4.1 and Theorem 5.1.
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A crucial ingredient of the proof is the “BV weak estimate”, namely (21), which is in fact “three times
weak” for the following reasons:
(i) the estimate is of order ﬁ, and not of order 1.

(ii) In the left hand side of (21), the quantity which is associated to the (p,q) interface is zero if f is
constant on the interval [u; — uy] thus preventing the appearance of |up — u7| in the estimate.

(iii) The left hand side of (21) involves |v -n| wich depends on the mesh 7 and is not uniformly bounded
by a positive constant.

Note that a ”twice weak BV” estimate in the sense (ii) and (iii), but of order 1, would yield a sharp error

. . 1
estimate, i.e. of order hZ.

In this paper, we also considered the implicit schemes, which seem to be much more widely used in
industrial codes in order to ensure their robustness. The 1implicit case required additional work in order
(i) to prove the existence of the solution to the finite volume scheme,

(ii) to obtain the strong “time BV” estimate (58) in the case where v does not depend on ¢.

For v depending on ¢, Theorem 1.2 yields an estimate of order hi if k behaves as h; however, in the
case where v does not depend on ¢, then an estimate of order h7 is obtained for a behaviour of k as Vh:
Indeed, recent numerical experiments have shown that taking k of the order of /A yields results of the
same precision than taking k& of the order of &, with an obvious reduction of the computational cost.
Note the method described here may also be extended to higher order schemes for the same equation,
[1]; other methods have been used for error estimates for higher order schemes with a nonlinearity of the
form F(u) [6], [21]. However, it is still an open problem, to our knowledge, to improve the order or the
error estimate in the case of higher order schemes.
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