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abstract We prove here the convergence of a cell-centered finite volume scheme
for the discretization on a non-structured grid of the Laplace equation with irregular
data towards the weak solution of the equation.
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1. Introduction

We are interested here in proving the convergence of the finite volume
method in the case of the following model equation:

—Au=p, in Q, (1)
with Dirichlet boundary condition:
u=0, in09Q, (2)
where

Assumption 1
1. Q is an open bounded polygonal subset of R, d =2 or 3,
2. p € LP(Q) for p € [l,+00] or p is a signed bounded measure.

Such problems arise for instance when modelling heat transfers in the pres-
ence of electric current in which case the heat term due to ohmic loss writes



p=oVOV® where o € L™(Q) is the electric conductivity and ® € H(Q) is
the electric potential; hence p € L1(Q2) (see e.g. [FH 94]). Another field where
such a problem arises is in oil reservoir simulation, where the dimension of the
well is often small enough with respect to the size or the domain of simulation
so that it is modelled by a Dirac measure in the two-dimensional case (d = 2).

The purpose of the proposed presentation is to show that the finite volume
method 1s well adapted to this type of problem; we can show in particular
that the analysis tools recently developped by Boccardo, Gallouét [BG 89] for
the study of nonlinear partial differential equations with measure data can be
adapted to show the strong convergence as the size of the mesh tends to 0 of
the approximate finite volume solution in Wol’p for any p € [d, 7% 1[ towards a
weak solution of (1)-(2) which is a function u from Q to IR satisfying:

/ﬂvu( /ﬂ V0 € Ugs a WH(Q).

u€ m1<p< d WOVP Q):

3)

Remark 1

The Laplace operator is considered here for the sake of simplicity, but more
general elliptic operators are possible to handle, for instance operators of the
form —div(a(u)Vu) with adequate assumptions on a.

A by-product of the convergence analysis which is presented here is the ex-
istence of a solution of (3).

2. The finite volume scheme

The finite volume scheme is found by integrating equation (1) on a given
control volume of a discretization mesh and finding an approximation of the
fluxes on the control volume boundary in terms of the discrete unknowns. Let
us first give the assumptions which are needed on the mesh.

Definition 1 (Admissible meshes) Let Q be an open bounded polygonal sub-
set of IRY. An admissible finite volume mesh of Q, denoted by T, is given by
a family of “control volumes”, which are polygonal conver subsets of Q (with
positive measure), a family of subsets of Q contained in hyperplanes of IRd,
denoted by £ (these are the edges of the control volumes), with strictly positive
(d — 1)-dimensional measure, and a family of points of Q denoted by P satisfy-
ing the following properties (in fact, we shall denote, somewhat incorrectly, by
T the family of control volumes):

(i) the set of all control volumes is a partition of ;



(ii) For any K € T, there exists a subset Ex of £ such that 0K = K\ K =
Ugeeg - Let € =Ugerék.

(iii) For any (K, L) € T? with K # L, either the (d—1)-dimensional Lebesgue
measure of K N L is 0 or KN L =7 for some ¢ € £, which will then be
denoted by K |L.

(iv) The family P = (xx)xe7 is such that xx € K (for all K € T) and, if
o = K|L, it is assumed that tx # zr, and that the straight line Dk p,
going through g and zy, is orthogonal to K|L.

In the sequel, the following notations are used. The mesh size is defined by:
size(T) = sup{diam(K), K € T}. Forany K € T and o € £, m(K) is the
d-dimensional measure of K and m(o) the (d — 1)-dimensional measure of .
The set of interior (resp. boundary) edges is denoted by Eint (resp. Eexs), that is
Eint = {0 €E&; 0 ¢ 00} (resp. Eext = {0 € E; 0 C IN}). The set of neighbours
of K is denoted by N(K), that is N(K) = {L € T; 0 € €k, 7 = KN L}.
For any K €T and 0 € £k we denote by di o the Fuclidean distance between
zg and 0. For any o € £, we define dy = di o +dr o if o = K|L € &t (in
which case d, is the Euclidean distance between xx and xr) and d, = dk - if
S gext n EK

For any o € &; the “transmissibility” through o is defined by 7, = m(o)/d,
ifde 20 and 7, = 0 if dy = 0. In some results and proofs given below, there
are summations over o € &, with &g = {o € &; dy # 0}. For simplicity, (in
these results and proofs) &€ = &y is assumed.

We may now introduce the space of piecewise constant functions associated
with an admissible mesh and some “discrete Wol’p” norm for this space. This
discrete norm will be used to obtain some estimates on the approximate solution
given by a finite volume scheme.

Definition 2 (Discrete norm) Let Q be an open bounded polygonal subset
of RY, d =2 or 3, and let T be an admissible mesh. Define X(T) as the set
of functions from Q to IR which are constant over each control volume of the
mesh.

Forue X(T), and p € [1,+00), define the discrete Wol’p norm by

lull 7 = (mlo)do(222y7)” (4)
o€l g
where, for any o € T,
Dou=|ug —up| ifc € &, 0 = K
Dou = |UK| ZfO' € Eext N ‘(:K;
where ug denotes the value taken by u on the control volume K and the
sets £, Eint, Eext and Ex are defined in Definition 1.
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Let T be an admissible mesh. Let us now define a finite volume scheme to
discretize (1)-(2).

Let (ug)kxer denote the discrete unknowns associated with the control
volumes K € T. In order to describe the scheme in the most general way, one
introduces some auxiliary unknowns namely the fluxes Fg ., for all K € 7 and
o € &k, and some (expected) approximation of u on an edge o, denoted by
Ug, forallo € £. For K € T and 0 € &k, let ng , denote the normal unit
vector to o outward to K and vk, = fo v(z) - ng ,dy(z). Note that dy is
the integration symbol for the (d — 1)-dimensional Lebesgue measure on the
considered hyperplane.

We may now write the finite volume scheme for the discretization of Problem
(1)-(2) under Assumption 1 as the following set of equations:

> Fro=u(K), VK €T, (5)

c€efk

where Fi , is defined by

FK70 = —FLJ, Vo € &nt, if 0 = [{|L, (6)
Fk odk,o = —m(0)(us — uk), Vo € Ex, VK € T, (7)

and
Uy = 0, Vo S gext- (8)

Note that the values u, for o € &t are auxiliary values which may be
eliminated so that (5)-(8) leads to a linear system of N equations with N
unknowns, namely the (ug)ger, with N = card(7).

3. Existence and estimates for the approximate solution

Let us first prove the existence of the approximate solution and an estimate
on this solution. This estimate will yield convergence thanks to a compactness
theorem which we recall below.

Lemma 1 (Existence and estimate) Under Assumptions 1, let T be an ad-
missible mesh in the sense of Definition 1, and let:

. . dKo
= min min : 9
¢ KeTocéx dy ' )

then there exists a solution (ug)xeT to the system of equations (5)-(8).

Furthermore, let p € [1, %), and let ur € X(T) be defined by ur(z) = ug
fora.e. z € K, and for any K € T; there exists C' € IR, only depending on €2,

¢, p and p, such that

lurllp,7 < C and |lur|Ls (@) < C. (10)



PRrRooOF of Lemma 1

The existence and uniqueness to the solution of the scheme was proved in
e.g. [H 95]. Let us now turn to the estimate. For # € (1,+00), let ¢ be the
bounded function from IR to IR defined by ¢(s) = fos #~ Multiplying (5)

by ¢(uk) and summing over K € T yields

SN Froplur) = 3 p(K)e(ux).

KeTo€elk KeT

By a discrete integration by part and from the fact that

plur) —p(ur) = (ux — UL)/O ¢ (uk +t(ur — u))dt,

one obtains:

m(o)
> 7 0o(Dow)” < [¢lleopt () (11)
c€ef g
where a, = fol O (ug +t(ur —ug))dt if o0 = K|L € &, and ap = fol o'((1 -
Hug)dt if 0 € Eexe N EK.
Now for 1 < p < 2, by Hélder’s inequality and from (11)

larlf .7 < (llloor(@)F (3 dom(o)az ™7 ) 7

Let us reorder the summation over the control volumes in the right-hand-side
and remark that by definition of {, one has d, < dK.o  This yields the existence
of C1 € IR, depending only on p, 2,8, p and ¢, such that

op \ T
a7 < (14 D2 m(E)ux|*5)
KeT

(12)

Using a discrete Sobolev inequality (the proof of which is similar to the one
proved in [EGH 97] or [CGH 98]), there exists C € IRy depending only on p
such that:

lullps < Collur(lip,T- (13)

From (12) and (13), there exists C3 € IR4 depending only on 6, p and ¢
such that

. < Cs(1+ [lurl|, ). (14)

[

Hence, for p < %, one has 2’%}) < p*, so that one may choose #§ € (1,2) such

that ;Tpp < p*. Since p > %p, from (14) and (12), there exists C' depending
only on u, 2, p and (, such that:

l[ullps < € and |lurf1p7 < C.



4. Convergence

Let us now show the convergence of approximate solutions obtained by the
above finite volume scheme when the size of the mesh tends to 0. One uses
Lemma 1 together with the Kolmogorov compactness theorem given at the end
of this chapter to prove the convergence result. In order to use the Kolmogorov
compactness theorem, one needs the following lemma.

Lemma 2 (Estimate on the space translates) Let Q be an open bounded
set of IRY, d = 2 or 3. Let T be an admissible mesh and u € X(T). One
defines @ by @ = u a.e. on Q, and @ =0 a.e. on IR? \ Q. Then there exists
C > 0, only depending on Q, such that

- - . r—1
-+ m) =l o) < lullf, 71l (Jn]+ Csize(T)) " ¥pe RE. (15)

The proof of this lemma is an easy adaptation of the proof which is available
in [EGH 97] of [EGH 99].

We are now able to state the convergence theorem.

Theorem 1 (Convergence) Under Assumption 1, let T be an admissible
mesh. Let (ug)xeT be the solution of the system given by equations (5)-(8).
Define ur € X(T) by ur(x) = ug for a.e. © € K, and for any K € T. Let
(Ta)new be a sequence of admissible meshes such that size(T,) — 0 as n — 400
and such that

. . . deo
i PR (o)

then there exists a subsequence of (ur,)new, still denoted (ur,)new, which
converges in LP(Q) for p < d% to a weak solution u € ﬁl<q<ﬁW01’q(Q) of

P
Problem (3) as size(T) — 0.

Remark 2 In the case of the uniqueness of a solution to (3), for instance if
d=2, orifd=3 and Q is conver (see e.g. [G 97]), then the whole sequence
(ur, )new tends to the solution of (3), and therefore ur — wu in LP(Q) as
size(T) — 0 under the condition that there exists zeta > 0 such that (v =

. . drc,o
ming e7 Mingegy 2‘# >( for all T.

Proor of Theorem 1

Let Y be the set of approximate solutions, that is the set of functions us
as defined in Theorem 1 where 7 is an admissible mesh which satisfies (16).
Thanks to Lemma 1, for any p < %, there exists C; € IR, only depending
on Q,u,{o and p, such that [|ur||Lrq) < C1 for all uy € Y. Then, thanks



to Lemma 2 and to the Kolmogorov compactness result (see e.g. [EGH 99]
or [EGH 97] for the case p = 2), the set Y is relatively compact in LP(Q).
Now by Lemma 1, we know that for any ¢ € [1, 7% 1) there exists Cs € IR, only
depending on Q, i, (o and ¢, such that ||ur||1 4,7 < C2. Hence, adapting a result
of [EGH 97], one may show that any possible limit (in LP(€)) of a sequence
(ur, )new C Y (such that size(7,) — 0) belongs to Wol’q(Q). Therefore, there
remains to prove that if (ur, )perw C Y converges towards some u € Wy9(Q)
in L?(Q) and size(7,) — 0 (as n — o0), then u is a solution to (3). We prove
this result below, omiting the index n, that is assuming ur — w in LF(Q) as

size(T) — 0.

Let ¢ € C'°(Q) and let size(7T) be small enough so that ¢(z) =0if 2 € K
and K € 7 is such that 6K NJQ # . Multiplying (5) by ¥(¢k ), and summing
the result over K € 7 yields

SN mwnlur —w)blen) = Y p(K)b(ex) (17)

KeT LEN(K) KeT

Since the set {K, K € T} is a partition of Q,

S n(K)Ulan) = [ rla)duls),

KeT

where 7 is defined from Q to IR by ¢7(z) = ¢¥(xk) for € K; since ¢ €

C(Q), by the Lebesgue dominated convergence theorem, one has:

/{sz(m)du(m) — /ﬂi/)(r)d,u(r) as size(T) — 0.

Now, using the same technique as in the variational framework (see [EGH 97]

or [EGH 99]), one has:

Z E 7'K|L ug —up)Y(rg) = — /uAd; as size(T) — 0.

KeT LeEN(K

Hence, letting size(7) — 0 in (17) yields that u € OPE[L%)W&J’(Q) satis-
fies

- /ﬂ u(e) Ag(z)dz = /ﬂ b(@)du(z), Vi € C2(),

which, in turn, yields (3) thanks to the fact that u € Wol’p(Q), and to the
density of C2(Q) in Wy(Q).
This proves that u7 — u in LP () as size(T) — 0, where u is a solution (in

N )Wo P(Q)) to (3) and concludes the proof of Theorem 1.

pell, 745
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