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Abstract. We present in this paper a pressure correction scheme for the barotropic compressible
Navier-Stokes equations, which enjoys an unconditional stability property, in the sense that the energy
and maximum-principle-based a priori estimates of the continuous problem also hold for the discrete
solution. The stability proof is based on two independent results for general finite volume discretiza-
tions, both interesting for their own sake: the L2-stability of the discrete advection operator provided
it is consistent, in some sense, with the mass balance and the estimate of the pressure work by means
of the time derivative of the elastic potential. The proposed scheme is built in order to match these
theoretical results, and combines a fractional-step time discretization of pressure-correction type with
a space discretization associating low order non-conforming mixed finite elements and finite volumes.
Numerical tests with an exact smooth solution show the convergence of the scheme.
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1. Introduction

The problem addressed in this paper is the system of the so-called barotropic compressible Navier-Stokes
equations, which reads: ∣∣∣∣∣∣∣∣∣∣

∂ ρ

∂t
+ ∇ · (ρ u) = 0

∂

∂t
(ρ u) + ∇ · (ρ u ⊗ u) + ∇p −∇ · τ(u) = fv

ρ = �(p)

(1.1)

where t stands for the time, ρ, u and p are the density, velocity and pressure in the flow, fv is a forcing term and
τ(u) stands for the shear stress tensor. The function �(·) is the equation of state used for the modelling of the
particular flow at hand, which may be the actual equation of state of the fluid or may result from assumptions
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concerning the flow; typically, laws as �(p) = p1/γ , where γ is a coefficient that is specific to the considered fluid,
are obtained by making the assumption that the flow is isentropic. This system of equations is posed over
Ω × (0, T ), where Ω is a domain of R

d, d ≤ 3 supposed to be polygonal (d = 2) or polyhedral (d = 3), and the
final time T is finite. It must be supplemented by boundary conditions and by an initial condition for ρ and u.

The development of pressure correction techniques for compressible Navier-Stokes equations may be traced
back to the seminal work of Harlow and Amsden [20,21] in the late sixties, who developed an iterative algorithm
(the so-called ICE method) including an elliptic corrector step for the pressure. Later on, pressure correction
equations appeared in numerical schemes proposed by several researchers, essentially in the finite-volume frame-
work, using either a collocated [10,23,26,30,33,34] or a staggered arrangement [2,4,7,22,24,25,37,38,40–42] of
unknowns; in the first case, some corrective actions are to be foreseen to avoid the usual odd-even decoupling of
the pressure in the low Mach number regime. Some of these algorithms are essentially implicit, since the final
stage of a time step involves the unknown at the end-of-step time level; the end-of-step solution is then obtained
by SIMPLE-like iterative processes [10,23,25,26,30,34,39]. The other schemes [2,7,22,24,33,37,38,40,42,43] are
predictor-corrector methods, where basically two steps are performed sequentially: first a semi-explicit decou-
pled prediction of the momentum or velocity (and possibly energy, for non-barotropic flows) and, second, a
correction step where the end-of step pressure is evaluated and the momentum and velocity are corrected, as
in projection methods for incompressible flows (see [5,36] for the original papers, [29] for a comprehensive in-
troduction and [19] for a review of most variants). The Characteristic-Based Split (CBS) scheme (see [31] for a
recent review or [44] for the seminal paper), developed in the finite-element context, belongs to this latter class
of methods.

Our aim in this paper is to propose and study a non-iterative pressure correction scheme for the solution
of (1.1). In addition, this method is designed so as to be stable in the low Mach number limit, since our final
goal is to apply it to simulate through a drift-flux approach a class of bubbly flows encountered in nuclear safety
studies, where pure liquid (incompressible) and pure gaseous (compressible) zones may coexist. To this purpose,
we use a low order mixed finite element approximation, which meets the two following requirements: to allow
a natural discretization of the viscous terms and to provide a spatial discretization that is intrinsically stable
(i.e. without the adjunction of stabilization terms to circumvent the so-called inf-sup or BB condition) in the
incompressible limit.

In this work, a special attention is payed to stability issues. To be more specific, let us recall the a priori
estimates associated to problem (1.1) with a zero forcing term, i.e. estimates which should be satisfied by any
possible regular solution [15,28,32]:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(i) ρ(x, t) > 0, ∀x ∈ Ω, ∀t ∈ (0, T )

(ii)
∫

Ω

ρ(x, t) dx =
∫

Ω

ρ(x, 0) dx, ∀t ∈ (0, T )

(iii)
1
2

d
dt

∫
Ω

ρ(x, t)u(x, t)2 dx +
d
dt

∫
Ω

ρ(x, t)P (ρ(x, t)) dx

+
∫

Ω

τ(u(x, t)) : ∇u(x, t) dx = 0, ∀t ∈ (0, T ).

(1.2)

In the latter relation, P (·), the “elastic potential”, is a function derived from the equation of state, which
satisfies:

P ′(z) =
℘(z)
z2

(1.3)

where ℘(·) is the inverse function of �(·), i.e. the function giving the pressure as a function of the density. The
usual choice for P (·) is, provided that this expression makes sense:

P (z) =
∫ z

0

℘(s)
s2

ds. (1.4)
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For these estimates to hold, the condition (1.2)-(i) must be satisfied by the initial condition; note that a non-
zero forcing term fv in the momentum balance would make an additional term appear at the right hand side
of relation (1.2)-(iii). This latter estimate is obtained from the second relation of (1.1) (i.e. the momentum
balance) by taking the inner product by u and integrating over Ω. This computation then involves two main
arguments which read:

(i) Stability of the advection operator:
∫

Ω

[
∂

∂t
(ρ u) + ∇ · (ρ u ⊗ u)

]
· u dx =

1
2

d
dt

∫
Ω

ρ |u|2 dx

(ii) Stability due to the pressure work:
∫

Ω

−p∇ · u dx =
d
dt

∫
Ω

ρ(x, t)P (ρ(x, t)) dx.

(1.5)

Note that the derivation of both relations rely on the mass balance equation.
This paper is organized as follows.
We first derive a bound similar to (1.5)-(ii) for a given class of spatial discretizations; the latter are introduced

in Section 2.1 and the desired stability estimate (Thm. 2.1) is stated and proven in Section 2.2. We then show
that this result allows to prove the existence of a solution for a fairly general class of discrete compressible flow
problems. Section 2 gathers this whole study, and constitutes the first part of this paper.

In a second part (Sect. 3), we turn to the derivation of a pressure correction scheme, the solution of which
satisfies a discrete equivalent of the whole set of a priori estimates (1.2). To this purpose, besides Theorem 2.1,
we need as a second key ingredient a discrete version of the bound (1.5)-(i) relative to the stability of the
advection operator, which is stated and proven in Section 3.2 (Thm. 3.1). We then derive a fully discrete
algorithm which is designed to meet the assumptions of these theoretical results, and establish its stability.
Moreover, numerical experiments show that, for smooth solutions, this scheme converges as expected, namely
with first order in time convergence for all the variables and first to second order in space in L2 and discrete
L2 norm for the velocity and the pressure, respectively.

2. Analysis of a class of discrete problems

The class of problems addressed in this section can be seen as the class of discrete systems obtained by space
discretization with low-order non-conforming finite elements of continuous problems of the following form:∣∣∣∣∣∣∣

Au + ∇p = fv in Ω
�(p) − ρ∗

dt
+ ∇ · (�(p)u) = 0 in Ω

u = 0 on ∂Ω

(2.1)

where A stands for an abstract elliptic operator and the forcing term fv and the density field ρ∗ are known
quantities. The unknowns of the problem are the velocity u and the pressure p; the function �(·) stands for the
equation of state. The domain Ω is a polygonal (d = 2) or polyhedral (d = 3) open, bounded and connected
subset of R

d. Of course, at the continuous level, this statement of the problem should be completed by a precise
definition of the functional spaces in which the velocity and the pressure are sought, together with regularity
assumptions on the data. This is out of the scope here, since system (2.1) is only given to fix ideas; indeed, the
aim here is to prove some mathematical properties of the discrete problem, namely to establish some a priori
estimates for its solution and to prove that this nonlinear problem admits solutions for fairly general equations
of state.

This section is organized as follows. We begin by describing the considered discretization and precisely stating
the discrete problem at hand. Then we prove, for the chosen particular discretization, a fundamental result
which is a discrete analogue of the elastic potential identity (1.5)-(ii). The next section is devoted to the proof
of the existence of a solution, and we finally conclude by giving some practical examples of application of the
abstract theory developed here.
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2.1. The discrete problem

Let M be a decomposition of the domain Ω either into convex quadrilaterals (d = 2) or hexahedra (d = 3)
or in simplices. By E and E(K) we denote the set of all (d− 1)-edges σ of the mesh and of the element K ∈ M
respectively. The set of (d − 1)-edges included in the boundary of Ω is denoted by Eext and the set of internal
ones (i.e. E \ Eext) is denoted by Eint. The decomposition M is supposed to be regular in the usual sense of
the finite element literature (e.g. [6]), and, in particular, M satisfies the following properties: Ω̄ =

⋃
K∈M K̄;

if K, L ∈ M, then K̄ ∩ L̄ is reduced to the empty set, to a vertex or (if d = 3) to a segment, or K̄ ∩ L̄ is (the
closure of) a common (d − 1)-edge of K and L, which is denoted by K|L. For each internal edge of the mesh
σ = K|L, nKL stands for the normal vector of σ, oriented from K to L. By |K| and |σ| we denote the measure,
respectively, of K and of the edge σ.

The space discretization relies either on the so-called “rotated bilinear element”/P0 introduced by Rannacher
and Turek [35] for quadrilateral of hexahedric meshes, or on the Crouzeix-Raviart element (see [8] for the seminal
paper and, for instance [12], pp. 199–201, for a synthetic presentation) for simplicial meshes. The reference
element K̂ for the rotated bilinear element is the unit d-cube (with edges parallel to the coordinate axes); the
discrete functional space on K̂ is Q̃1(K̂)d, where Q̃1(K̂) is defined as follows:

Q̃1(K̂) = span
{
1, (xi)i=1,...,d, (x2

i − x2
i+1)i=1,...,d−1

}
.

The reference element for the Crouzeix-Raviart is the unit d-simplex and the discrete functional space is the
space P1 of affine polynomials. For both velocity elements used here, the degrees of freedom are determined by
the following set of nodal functionals:

{Fσ,i, σ ∈ E(K), i = 1, . . . , d} , Fσ,i(v) = |σ|−1

∫
σ

vi dγ. (2.2)

The mapping from the reference element to the actual one is, for the Rannacher-Turek element, the standard Q1

mapping and, for the Crouzeix-Raviart element, the standard affine mapping. Finally, in both cases, the
continuity of the average value of discrete velocities (i.e., for a discrete velocity field v, Fσ,i(v), 1 ≤ i ≤ d) across
each edge of the mesh is required, thus the discrete space Wh is defined as follows:

Wh = { vh ∈ L2(Ω)d : vh|K ∈ W (K)d, ∀K ∈ M; Fσ,i(vh) continuous across each edge σ ∈ Eint, 1 ≤ i ≤ d ;

Fσ,i(vh) = 0, ∀σ ∈ Eext, 1 ≤ i ≤ d }

where W (K) is the space of functions on K generated by Q̃1(K̂) through the Q1 mapping from K̂ to K for the
Rannacher-Turek element and the space of affine functions on K for the Crouzeix-Raviart element. For both
the Rannacher-Turek and Crouzeix-Raviart discretizations, the pressure is approximated by the space Lh of
piecewise constant functions:

Lh =
{
qh ∈ L2(Ω) : qh|K = constant, ∀K ∈ M}

.

Since only the continuity of the integral over each edge of the mesh is imposed, the velocities are discontinuous
through each edge; the discretization is thus nonconforming in H1(Ω)d. These pairs of approximation spaces
for the velocity and the pressure are inf-sup stable, in the usual sense for “piecewise H1” discrete velocities, i.e.
there exists cis > 0 possibly depending on the regularity of the shape of the cells but not on their size such that:

∀p ∈ Lh, sup
v∈Wh

∫
Ω,h

p∇ · v dx

||v||1,b
≥ cis ||p − p̄||L2(Ω)
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where p̄ is the mean value of p over Ω, the symbol
∫
Ω,h stands for

∑
K∈M

∫
K and || · ||1,b stands for the broken

Sobolev H1 semi-norm:

||v||21,b =
∑

K∈M

∫
K

|∇v|2 dx =
∫

Ω,h

|∇v|2 dx.

From definition (2.2), each velocity degree of freedom can be univocally associated to an element edge.
Therefore we shall use hereafter, somewhat improperly, the expression “velocity on the edge σ” to name the
velocity vector defined by the degrees of freedom of the velocity components associated to σ. In addition, the
velocity degrees of freedom are indexed by the number of the component and the associated edge, thus the set
of velocity degrees of freedom reads:

{vσ,i, σ ∈ Eint, 1 ≤ i ≤ d}.
We define vσ =

∑d
i=1 vσ,iei where ei is the ith vector of the canonical basis of R

d. We denote by ϕ
(i)
σ the vector

shape function associated to vσ,i, which, by the definition of the considered finite elements, reads:

ϕ(i)
σ = ϕσ ei

where ϕσ is a scalar function. Similarly, each degree of freedom for the pressure is associated to a mesh K, and
the set of pressure degrees of freedom is denoted by {pK , K ∈ M}.

For any K ∈ M, let ρ∗K be a quantity approximating a known density ρ∗ on K. The family of real numbers
(ρ∗K)K∈M is supposed to be positive. The discrete problem considered in this section reads:∣∣∣∣∣∣∣∣∣

a(u, ϕ(i)
σ ) −

∫
Ω,h

p ∇ · ϕ(i)
σ =

∫
Ω

fv · ϕ(i)
σ dx, ∀σ ∈ Eint, for 1 ≤ i ≤ d

|K|
δt

(�(pK) − ρ∗K) +
∑

σ=K|L
v+

σ,K �(pK) − v−
σ,K �(pL) = 0, ∀K ∈ M

(2.3)

where v+
σ,K and v−

σ,K stand respectively for v+
σ,K = max(vσ,K , 0) and v−

σ,K = −min(vσ,K , 0) with vσ,K =
|σ|uσ · nKL = v+

σ,K − v−
σ,K . The first equation is the standard finite element discretization of the first equation

of (2.1), provided that the bilinear form a(·, ·) is related to the operator A by a relation of the form:

a(v, w) =
∫

Ω

Av · w dx

where v and w are regular functions vanishing on the boundary (while this identity generally does not hold
for functions of Wh). Since the pressure is piecewise constant, the finite element discretization of the second
relation of (2.1), i.e. the mass balance, is similar to a finite volume formulation, in which we introduce the
standard first-order upwinding. The bilinear form a(·, ·) is supposed to be elliptic on Wh, i.e. to be such that
the following property holds:

∃ca > 0 such that, ∀v ∈ Wh, a(v, v) ≥ ca ||v||2∗

where || · ||∗ is a norm over Wh. We denote by || · ||∗ its dual norm with respect to the L2(Ω)d inner product,
defined by:

∀v ∈ Wh, ||v||∗ = sup
w∈Wh

∫
Ω

v · w dx

||w||∗ ·
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2.2. On the pressure control induced by the pressure forces work

The aim of this subsection is to prove that the discretization at hand satisfies a stability bound which can
be seen as the discrete analogue of equation (1.5)-(ii), which we recall here:

−
∫

Ω

p∇ · u dx =
d
dt

∫
Ω

ρ P (ρ) dx, where P (·) is such that P ′(z) =
℘(z)
z2

·

The formal computation which allows to derive this estimate in the continuous setting is the following. The
starting point is the mass balance, which is multiplied by the derivative of z 	→ z P (z) taken at ρ, denoted
by [ρP (ρ)]′:

[ρP (ρ)]′
[
∂ρ

∂t
+ ∇ · (ρu)

]
= 0.

This relation yields:
∂[ρP (ρ)]

∂t
+ [ρP (ρ)]′ [u · ∇ρ + ρ∇ · u] = 0. (2.4)

And thus:
∂[ρP (ρ)]

∂t
+ u · ∇[ρP (ρ)] + [ρP (ρ)]′ρ∇ · u = 0.

Developing the derivative, we get:

∂[ρP (ρ)]
∂t

+ u · ∇[ρP (ρ)] + ρP (ρ)∇ · u︸ ︷︷ ︸
∇ · (ρP (ρ)u)

+ ρ2P ′(ρ)∇ · u︸ ︷︷ ︸
p∇ · u

= 0 (2.5)

and the result follows by integration in space, thanks to the fact that the velocity vanishes at the boundary.
We are going here to reproduce this computation at the discrete level.

Theorem 2.1 (stability due to the pressure work). Let us suppose that the equation of state �(·) is defined
over [0, +∞). Let P (·) be an elastic potential (i.e. a function satisfying (1.3)) such that the function f :
(0, +∞) → R defined by f(z) = z P (z) is once continuously differentiable and strictly convex. Let (pK)K∈M
satisfy the second relation of (2.3). For any K ∈ M, we suppose that pK > 0 and we define ρK by ρK = �(pK);
we also recall that, by assumption, ρ∗K > 0. Then the following estimate holds:

−
∫

Ω,h

p∇ · u dx =
∑

K∈M
−pK

∑
σ=K|L

vσ,K ≥ 1
δt

∑
K∈M

|K| [ρK P (ρK) − ρ∗K P (ρ∗K)] . (2.6)

Proof. Let us write the divergence term in the discrete mass balance over K (i.e. the second relation of (2.3))
under the following form: ∑

σ=K|L
ρσ vσ,K

where ρσ is either ρK if vσ,K ≥ 0 or ρL if vσ,K ≤ 0. Multiplying this term by f ′(ρK), we obtain:

Tdiv,K = f ′(ρK)
∑

σ=K|L
ρσ vσ,K = f ′(ρK)

⎡⎣ ∑
σ=K|L

(ρσ − ρK) vσ,K + ρK

∑
σ=K|L

vσ,K

⎤⎦.

This latter form of Tdiv,K may be compared to equation (2.4): up to the multiplication by 1/|K|,
the first summation in the right hand side is the analogue of u · ∇ρ and the second one to ρ∇ · u.
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Developing the derivative of f(·), we then obtain a discrete analogue of the corresponding terms in relation (2.5):

Tdiv,K = f ′(ρK)
∑

σ=K|L
(ρσ − ρK) vσ,K + ρK P (ρK)

∑
σ=K|L

vσ,K + ρ2
K P ′(ρK)

∑
σ=K|L

vσ,K . (2.7)

By definition (1.3) of P (·), the last term is equal to pK

∑
σ=K|L vσ,K . The process will be completed if we put

the first two terms in divergence form. To this end, let us sum up the quantities Tdiv,K over K ∈ M and reorder
the summation: ∑

K∈M
Tdiv,K =

∑
K∈M

pK

∑
σ=K|L

vσ,K +
∑

σ∈Eint

Tdiv,σ (2.8)

where, if σ = K|L:

Tdiv,σ = vσ,K [f(ρK) + f ′(ρK)(ρσ − ρK) − f(ρL) − f ′(ρL)(ρσ − ρL)].

In this relation, there are two possible choices for the orientation of σ, i.e. K|L or L|K; we suppose that the
chosen orientation is such that vσ,K ≥ 0. Let ρ̄σ be defined by:∣∣∣∣∣ if ρK �= ρL: f(ρK) + f ′(ρK)(ρ̄σ − ρK) = f(ρL) + f ′(ρL)(ρ̄σ − ρL)

otherwise: ρ̄σ = ρK = ρL.
(2.9)

As the function f(·) is supposed to be once continuously differentiable and strictly convex, the technical
Lemma 2.3 proven hereafter applies and ρ̄σ is uniquely defined and satisfies ρ̄σ ∈ [min(ρK , ρL), max(ρK , ρL)].
By definition, the choice ρσ = ρ̄σ is such that the term Tdiv,σ vanishes, and thus, with this centred choice for ρσ,
the first two terms of equation (2.7) are a conservative approximation of the quantity ∇ · (ρP (ρ))u appearing
in equation (2.5), with the following expression for the flux:

Fσ,K = [f(ρ)]σ vσ,K , with: [f(ρ)]σ = f(ρK) + f ′(ρK)(ρ̄σ − ρK) = f(ρL) + f ′(ρL)(ρ̄σ − ρL).

Now, for any choice of ρσ, we have:

Tdiv,σ = vσ,K (ρσ − ρ̄σ) (f ′(ρK) − f ′(ρL)).

With the orientation taken for σ, an upwind choice for ρσ yields:

Tdiv,σ = vσ,K (ρK − ρ̄σ) (f ′(ρK) − f ′(ρL))

and, using the fact that f ′(·) is an increasing function since f(·) is convex and that min(ρK , ρL) ≤ ρ̄σ ≤
max(ρK , ρL), it is easily seen that Tdiv,σ is non-negative.

Multiplying by f ′(ρK) the mass balance over each cell K and summing for K ∈ M thus yields, invoking
equation (2.8):

−
∑

K∈M
pK

∑
σ=K|L

vσ,K = R +
∑

K∈M

|K|
δt

f ′(ρK) (ρK − ρ∗K) (2.10)

where R is non-negative, and the result follows invoking once again the convexity of f(·). �
Remark 2.2 (on a non-dissipative scheme). The preceding proof shows that, for a scheme to conserve the
energy (i.e. to obtain a discrete equivalent of (1.2)-(iii)), besides other arguments, the choice of ρ̄σ given
by (2.9) for the density at the edge of the control volume in the discretization of the flux in the mass balance
seems to be mandatory; any other choice leads to an artificial (i.e. due to the numerical scheme) dissipation
or production in the work of the pressure forces. Note however that, this discretization being essentially of
centered type, the positivity of the density is not warranted in this case.
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In the course of the preceding proof, we used the following technical lemma.

Lemma 2.3. Let g(·) be a strictly convex and once continuously derivable real function over an open
interval I ⊂ R. Let ρ1 ∈ I and ρ2 ∈ I be two distinct real numbers. Then the following relation:

g(ρ1) + g′(ρ1)(ρ̄ − ρ1) = g(ρ2) + g′(ρ2)(ρ̄ − ρ2) (2.11)

uniquely defines the real number ρ̄. In addition, we have ρ̄ ∈ [min(ρ1, ρ2), max(ρ1, ρ2)].

Proof. Without loss of generality, let us suppose that ρ1 < ρ2. Reordering equation (2.11), we get:

g(ρ1) + g′(ρ1) (ρ2 − ρ1) − g(ρ2) = (ρ̄ − ρ2) [g′(ρ2) − g′(ρ1)].

Since g(·) is strictly convex, g′(ρ2) − g′(ρ1) does not vanish, and therefore the latter equation proves that
ρ̄ is uniquely defined. In addition, for the same reason, the left hand side of this relation is negative and
g′(ρ2) − g′(ρ1) is positive, thus we have ρ̄ < ρ2. Reordering equation (2.11) yields:

g(ρ2) + g′(ρ2) (ρ1 − ρ2) − g(ρ1) = (ρ̄ − ρ1) [g′(ρ1) − g′(ρ2)]

which, considering the signs of the left hand side and of g′(ρ1) − g′(ρ2), implies ρ̄ > ρ1. �

2.3. Existence of a solution

The aim of this section is to prove the existence of a solution to the discrete problem (2.3). It follows from
a topological degree argument, linking by a homotopy the problem at hand to a linear system.

This section begins with a lemma which is used to obtain a positive lower bound for the pressure in the
sequel.

Lemma 2.4. Let (p∗K)K∈M and (pK)K∈M be two families of real numbers such that:

∀K ∈ M, |K| ϕ1(pK) − ϕ1(p∗K)
δt

+
∑

σ=K|L
v+

σ,K ϕ2(pK) − v−
σ,K ϕ2(pL) = 0 (2.12)

where ϕ1(·) is an increasing function and ϕ2(·) is a non-decreasing and non-negative function. Suppose that
there exists p̄ such that:

ϕ1(p̄) + δt ϕ2(p̄) max

⎡⎣0, max
K∈M

⎛⎝ 1
|K|

∑
σ=K|L

vσ,K

⎞⎠⎤⎦ = min
K∈M

[ϕ1(p∗K)]. (2.13)

Then, ∀K ∈ M, pK satisfies pK ≥ p̄.

Proof. Let us assume that there exists a cell K̄ such that pK̄ = minK∈M pK < p̄. Multiplying by δt/|K̄| the
relation (2.12) written for K = K̄, we get:

ϕ1(pK̄) +
δt

|K̄|
∑

σ=K̄|L

[
v+

σ,K̄
ϕ2(pK̄) − v−

σ,K̄
ϕ2(pL)

]
= ϕ1(p∗̄K). (2.14)
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Then, subtracting equation (2.13), we have:

ϕ1(pK̄) − ϕ1(p̄) +
δt

|K̄|
∑

σ=K̄|L

[
v+

σ,K̄
ϕ2(pK̄) − v−

σ,K̄
ϕ2(pL)

]

−δt ϕ2(p̄) max

⎡⎣0, max
K∈M

⎛⎝ 1
|K|

∑
σ=K|L

vσ,K

⎞⎠⎤⎦= ϕ1(p∗̄K) − minK∈M[ϕ1(p∗K)] ≥ 0.

The previous relation can be written as T1 + T2 + T3 ≥ 0 with:

T1 = ϕ1(pK̄) − ϕ1(p̄)

T2 = δt ϕ2(pK̄)

⎡⎣ 1
|K̄|

∑
σ=K̄|L

vσ,K̄

⎤⎦− δt ϕ2(p̄) max

⎡⎣0, max
K∈M

⎛⎝ 1
|K|

∑
σ=K|L

vσ,K

⎞⎠⎤⎦
T3 =

δt

|K̄|
∑

σ=K̄|L
v−

σ,K (ϕ2(pK̄) − ϕ2(pL)).

Since ϕ1(·) is an increasing function and, by assumption, pK̄ < p̄, we have T1 < 0. Similarly, 0 ≤ ϕ2(pK̄) ≤ ϕ2(p̄)
and the discrete divergence over K̄ (i.e. 1/|K̄| ∑σ=K̄|L vσ,K̄) is necessarily smaller than the maximum of this
quantity over the cells of the mesh, thus T2 ≤ 0. Finally, since, by assumption, pK̄ ≤ pL for any neighbouring
cell L of K̄, ϕ2(·) is a non-decreasing function and v−

σ,K ≥ 0, T3 ≤ 0. We thus obtain a contradiction with the
fact that T1 + T2 + T3 ≥ 0, which proves that pK ≥ p̄, ∀K ∈ M. �

We now state the abstract theorem which will be used hereafter; this result follows from standard arguments
of the topological degree theory (see [9] for an exposition of the theory and [13] for another utilisation for the
same objective as here, namely the proof of existence of a solution to a numerical scheme).

Theorem 2.5 (a result from the topological degree theory). Let N and M be two positive integers and V be
defined as follows:

V = {(x, y) ∈ R
N × R

M such that y > 0}
where, for any real number c, the notation y > c means that each component of y is greater than c. Let b ∈
R

N × R
M and f(·) and F (·, ·) be two continuous functions respectively from V and V × [0, 1] to R

N × R
M

satisfying:

(i) F (·, 1) = f(·);
(ii) ∀α ∈ [0, 1], if v ∈ V is such that F (v, α) = b then v ∈ W , where W is defined as follows:

W = {(x, y) ∈ R
N × R

M s.t. ‖x‖ < C1 and ε < y < C2}

with C1, C2 and ε three positive constants and ‖ · ‖ a norm defined over R
N ;

(iii) the topological degree of F (·, 0) with respect to b and W is equal to d0 �= 0.

Then the topological degree of F (·, 1) with respect to b and W is also equal to d0 �= 0; consequently, there exists
at least a solution v ∈ W such that f(v) = b.

We are now in position to prove the existence of a solution to the discrete problem (2.3), for fairly general
equations of states.
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Theorem 2.6 (existence of a solution). Let us suppose that the equation of state �(·) is such that:

(1) �(·) is defined and increasing over [0, +∞), �(0) = 0 and lim
z→+∞ �(z) = +∞;

(2) there exists an elastic potential P (·) (i.e. a function satisfying (1.3)) such that the function f : (0, +∞) →
R defined by f(z) = z P (z) is once continuously differentiable, strictly convex and f(z) ≥ −CP , ∀z ∈
(0, +∞), where CP is a non-negative constant.

In addition, we recall that, in the discrete problem at hand (2.3), ρ∗K > 0, ∀K ∈ M.
Then problem (2.3) admits at least one solution (uσ, pK)σ∈Eint, K∈M, and any solution is such that, ∀K ∈ M,

pK is positive.

Proof. Let N = d card(Eint) and M = card(M). We identify the space of discrete velocities Wh and pressures Lh

to R
N and R

M respectively and, keeping the same notation for the discrete functions and the associated vectors
of degree of freedom, we define V by:

V = {(u, p) ∈ R
N × R

M such that p > 0}.

Let the mapping F : V × [0, 1] → R
N × R

M be given by:

F (u, p, α) =

∣∣∣∣∣∣∣∣∣∣
vσ,i = a(u, ϕ(i)

σ ) − α

∫
Ω,h

p ∇ · ϕ(i)
σ dx −

∫
Ω

fv · ϕ(i)
σ dx, ∀σ ∈ Eint, for 1 ≤ i ≤ d

qK =
|K|
δt

[�(pK) − �(p∗K)] + α
∑

σ=K|L
v+

σ,K �(pK) − v−
σ,K �(pL), ∀K ∈ M

(2.15)

where, ∀K ∈ M, p∗K is chosen such that ρ∗K = �(p∗K); note that, by assumption, �(·) is one to one from (0, +∞)
to (0, +∞), so the previous definition makes sense. The problem F (u, p, 1) = 0 is exactly system (2.3).

The present proof is obtained by applying Theorem 2.5 with b = 0; we are thus going to show that any
solution of F (u, p, α) = 0 satisfies suitable a priori estimates. To this purpose, we progress as follows. First,
Lemma 2.4 shows that the pressure is positive, thus Theorem 2.1 applies, and we obtain a control on u in the
discrete norm associated to a(·, ·), uniform with respect to α. Since we work in a finite dimensional space, we
then obtain a control on p in L∞ by using the conservativity of the system of equations. For the same reason,
the control on u yields a bound in L∞ of the value of the discrete divergence, which is shown to allow, by
Lemma 2.4, to bound p away from zero independently of α. The proof finally ends by examining the properties
of the system F (u, p, 0) = 0.

Step 1. α ∈ (0, 1], || · ||∗ estimate for the velocity.
Applying Lemma 2.4 to the second equation F (u, p, α) = 0 (i.e. the relation obtained by setting qK = 0

in (2.15)) with ϕ1(·) = ϕ2(·) = �(·), we get:

∀K ∈ M, pK ≥ p̄α (2.16)

where p̄α is given by:

�(p̄α) =
min

K∈M
�(p∗K)

1 + δt max
K∈M

⎡⎣0,
α

|K|
∑

σ=K|L
vσ,K

⎤⎦ ·

Note that p̄α is well defined since, by assumption, �(·) is one to one from (0, +∞) to (0, +∞), and p̄α > 0,
for any discrete velocity field u. The pressure is thus positive. Setting now vσ = 0 in (2.15), multiplying
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the corresponding equation by uσ,i and summing over σ ∈ Eint and 1 ≤ i ≤ d yields the following equation:

a(u, u) − α

∫
Ω,h

p∇ · u dx =
∫

Ω

fv · u dx.

Since the pressure is positive, by a computation very similar to the proof of Theorem 2.1, we see that, from the
second relation of (2.15) with qK = 0:

−α

∫
Ω,h

p∇ · u dx ≥ 1
δt

∑
K∈M

|K| [ρK P (ρK) − ρ∗K P (ρ∗K)]

where ρK = �(pK). By the stability of the bilinear form a(·, ·) and Young’s inequality, we thus get:

ca

2
||u||2∗︸ ︷︷ ︸
T1

+
1
δt

∑
K∈M

|K| ρK P (ρK)︸ ︷︷ ︸
T2

≤ 1
2ca

||fv||∗2 +
1
δt

∑
K∈M

|K| ρ∗K P (ρ∗K). (2.17)

By assumption, T2 ≥ −Cp |Ω| and we thus get the following estimate on the discrete norm of the velocity:

||u||∗ ≤ C1 (2.18)

where C1 only depends on the data of the problem, i.e. the bilinear form a(·, ·), fv, ρ∗, the mesh and δt and
not on α.

Step 2. α ∈ (0, 1], L∞ estimate for the pressure.
Let us now turn to the estimate of the pressure. By conservativity of the discrete mass balance, it is easily

seen that: ∑
K∈M

|K| �(pK) =
∑

K∈M
|K| ρ∗K .

Since each term in the sum on the left hand side is non-negative, we thus have:

∀K ∈ M, �(pK) ≤ 1
minK∈M (|K|)

∑
K∈M

|K| ρ∗K

which, since by assumption lim
z→+∞ �(z) = +∞, yields:

∀K ∈ M, pK ≤ C2 (2.19)

where C2 only depends on the data of the problem.

Step 3. α ∈ (0, 1], p bounded away from zero.
We now exploit the estimate (2.16). As α ≤ 1, we get:

�(p̄α) ≥
min

K∈M
�(p∗K)

1 + δt max
K∈M

⎡⎣0,
1
|K|

∑
σ=K|L

vσ,K

⎤⎦
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and, by equivalence of norms in a finite dimensional space, the bound (2.18) also yields a bound in the L∞ norm
and, finally, an upper bound for the denominator of the fraction at the right hand side of this relation. We thus
get, still since �(·) is increasing on (0, +∞), that, ∀α ∈ (0, 1], p̄α ≥ ε1, and, finally:

∀K ∈ M, pK ≥ ε1 (2.20)

where ε1 only depends on the data.

Step 4. Conclusion.
For α = 0, the system F (u, p, 0) = 0 reads:∣∣∣∣∣∣∣

a(u, ϕ(i)
σ ) =

∫
Ω

fv · ϕ(i)
σ dx ∀σ ∈ Eint, 1 ≤ i ≤ d

�(pK) = �(p∗K) ∀K ∈ M.

Since �(·) is one to one from (0, +∞) to (0, +∞) and thanks to the stability of the bilinear form a(·, ·), this
system has one and only one solution (which, for the pressure, reads of course pK = p∗K , ∀K ∈ M), which
satisfies:

||u||∗ ≤ C3, ε2 = min
K∈M

p∗K ≤ p ≤ max
K∈M

p∗K = C4. (2.21)

Let W be defined by:

W =
{

(u, p) ∈ R
N × R

M such that ||u||∗ < 2 max(C1, C3) and
1
2

min(ε1, ε2) < p < 2 max(C2, C4)
}

.

We now need to prove that the topological degree d0 of F (·, ·, 0) with respect to 0 and W is not zero. Let us first
suppose that the function �(·) is continuously differentiable and that its derivative is positive over (0, +∞). The
Jacobian matrix of the system F (u, p, 0) = 0 is block diagonal: the first block, associated to the first relation, is
constant (this part of the system is linear) and non-singular; the second one, associated to the second relation,
is diagonal, and each diagonal entry is equal to the derivative of �(·), taken at the considered point. The
determinant of this Jacobian matrix thus does not vanish for the solution of the system, and d0 �= 0. This proof
can then be extended to a continuous increasing function �(·) by a regularization technique. Hence, finally, by
inequalities (2.18), (2.19), (2.20) and (2.21), Theorem 2.5 applies, which concludes the proof. �

2.4. Some cases of application

First of all, let us give some examples for the bilinear form a(·, ·), for which the theory developed in this work
holds. The first of them is:

a(u, v) =
∫

Ω

u · v dx, ||u||∗ = ||u||L2(Ω)d , ||fv||∗ = ||fv||L2(Ω)d .

This choice for a(·, ·) yields a discrete Darcy-like problem which is, up to numerical integration technicalities, the
projection step arising in the pressure correction scheme which is considered in the present paper (see Sect. 3).
Note that, in this case, the boundary condition u ∈ H1

0(Ω)d does not make sense at the continuous level; in
addition, the considered discretization is known to be not consistent enough to yield convergence (see Rem. 3.6
hereafter) for the Darcy problem.

The bilinear form associated to the Stokes problem provides another example of application. It may read in
this case:

a(u, v) =
∫

Ω,h

∇u · ∇v dx, ||u||∗ = |u|H1(Ω)d
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or, without additional theoretical difficulties:

a(u, v) = µ

∫
Ω,h

∇u · ∇v dx +
µ

3

∫
Ω,h

(∇ · u) (∇ · v) dx

this latter form, where the real number µ > 0 is the viscosity, corresponding to the physical shear stress tensor
expression for a compressible flow of a constant viscosity Newtonian fluid.

In addition, consider a time step of a (semi-)implicit time discretization of the unsteady Navier-Stokes
equations, in which case a(·, ·) and fv read:

a(u, v) =
1
δt

∫
Ω

ρu · v dx +
∫

Ω,h

∇ · (ρw ⊗ u) · v dx + µ

∫
Ω,h

∇u · ∇v dx +
µ

3

∫
Ω,h

(∇ · u) (∇ · v) dx

fv =
1
δt

ρ∗u∗ + fv,0

where fv,0 is the physical forcing term, ρ∗ and u∗ stand for known density and velocity fields and w is an
advection field, which may be u itself or be derived from the velocity obtained at the previous time steps. Let
us suppose that the following identity holds:

1
δt

∫
Ω

(ρu − ρ∗u∗) · u dx +
∫

Ω,h

∇ · (ρw ⊗ u) · u dx ≥ 1
2δt

[∫
Ω

ρ|u|2 −
∫

Ω

ρ∗|u∗|2
]

which is the discrete counterpart of equation (1.5)-(i). The algorithm considered in this paper provides an
example where this condition is verified (see Sect. 3). Then the present theory applies with few modifications:
in the proof of existence of Theorem 2.6, the right hand side of the preceding equation must be multiplied by
the homotopy parameter α (and thus this term vanishes at α = 0, which yields the problem considered in Step 4
above); the (uniform with respect to α) stability in Step 1 stems from the diffusion term, and Steps 2 and 3
remain unchanged.

Note finally that, in the steady state case, an additional constraint is needed for the problem to have a chance
to be well posed, namely to impose the total mass M of fluid in the computational domain to a given value.
This constraint can be simply enforced by solving an approximate mass balance which reads:

c(h)
[
ρ − M

|Ω|
]

+ ∇ · ρu = 0

where |Ω| stands for the measure of Ω, h is the spatial discretization step and c(h) > 0 must tend to zero with h,
fast enough to avoid any loss of consistency. With this form of the mass balance, the theory developed here
directly applies to this case too, provided that the corresponding unsteady-like term is also introduced in the
momentum balance equation.

Examining now the assumptions for the equation of state in Theorem 2.6, we see that our results hold with
equations of state of the form:

�(p) = p1/γ or, equivalently ρ = pγ , where γ > 1.

In this case, the elastic potential is given by equation (1.4), which yields:

P (ρ) =
1

γ − 1
ργ−1, ρP (ρ) =

1
γ − 1

ργ

(
=

1
γ − 1

p

)
.

The same conclusion still holds with γ = 1 (i.e. p = ρ), with P (ρ) = log(ρ) satisfying equation (1.3). The
case γ > 1 is for instance encountered for isentropic perfect gas flows, whereas γ = 1 corresponds to the
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isothermal case. It is worth noting that this range of application is larger than what is known for the continuous
case, for which the existence of a solution is known only in the case γ > d/2 [15,28,32].

3. A pressure correction scheme

In this section, we build a pressure correction numerical scheme for the solution of the compressible barotropic
Navier-Stokes equations (1.1), based on the low order non-conforming finite element spaces used in the previous
section, namely the Crouzeix-Raviart or Rannacher-Turek elements.

The presentation is organized as follows. First, we write the scheme in the time semi-discrete setting
(Sect. 3.1). Then we prove a general stability estimate which applies to the discretization by a finite vol-
ume technique of the convection operator (Sect. 3.2). The proposed scheme is built in such a way that the
assumptions of this stability result hold (Sect. 3.3); this implies first a prediction of the density, as a non-
standard first step of the algorithm and, second, a discretization of the convection terms in the momentum
balance equation by a finite volume technique which is especially designed to this purpose. The discretization
of the projection step (Sect. 3.4) also combines the finite element and finite volume methods, in such a way that
the theory developed in Section 2 applies; in particular, the proposed discretization allows to take benefit of the
pressure or density control induced by the pressure work, i.e. to apply Theorem 2.1. The remaining steps of
the algorithm are described in Section 3.5 and an overview of the scheme is given in Section 3.6. The following
section (Sect. 3.7) is devoted to the proof of the stability of the algorithm. Finally, we shortly address some
implementation difficulties (Sect. 3.8), then we provide some numerical tests (Sect. 3.9) which are performed to
assess the time and space convergence of the scheme.

3.1. Time semi-discrete formulation

Let us consider a partition 0 = t0 < t1 < . . . < tn = T of the time interval (0, T ), which, for the sake of
simplicity, we suppose uniform. Let δt be the constant time step δt = tk+1 − tk for k = 0, 1, . . . , n − 1. In a
time semi-discrete setting, the scheme considered in this paper reads:

1 – Solve for ρ̃n+1:
ρ̃n+1 − ρn

δt
+ ∇ · (ρ̃n+1 un) = 0. (3.1)

2 – Solve for p̃n+1: −∇ ·
(

1
ρ̃n+1

∇p̃n+1

)
= −∇ ·

(
1√

ρ̃n+1 ρ̃n
∇pn

)
. (3.2)

3 – Solve for ũn+1:

ρ̃n+1 ũn+1 − ρn un

δt
+ ∇ · (ρ̃n+1 un ⊗ ũn+1) + ∇p̃n+1 −∇ · τ(ũn+1) = fn+1

v . (3.3)

4 – Solve for ūn+1, pn+1, ρn+1:∣∣∣∣∣∣∣∣∣
ρ̃n+1 ūn+1 − ũn+1

δt
+ ∇(pn+1 − p̃n+1) = 0

�(pn+1) − ρn

δt
+ ∇ · (�(pn+1) ūn+1

)
= 0

ρn+1 = �(pn+1).

(3.4)

5 – Compute un+1 given by:
√

ρn+1 un+1 =
√

ρ̃n+1ūn+1. (3.5)

The first step is a prediction of the density, used for the discretization of the time derivative of the mo-
mentum. As remarked by Bijl and Wesseling [2] and Wesseling [43], this step can be avoided when solving
the Euler equations: in this case, the mass flowrate may be chosen as an unknown, using the explicit velocity
as an advective field in the discretization of the convection term in the momentum balance; the velocity is
then updated by dividing by the density at the end of the time step. For viscous flows, if the discretization
of the diffusion term is chosen to be implicit, both the mass flowrate and the velocity appear as unknowns
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in the momentum balance; this seems to impede the use of this trick. Let us emphasize that the special way
that step one is carried out (i.e. solving a discretization of the mass balance instead as, for instance, performing
a Richardson’s extrapolation) is crucial for the stability.

Likewise, the second step is a renormalization of the pressure the interest of which is clarified only by the
stability analysis. A similar technique has already been introduced by Guermond and Quartapelle for variable
density incompressible flows [18].

Step 3 consists in a classical semi-implicit solution of the momentum balance equation to obtain a predicted
velocity.

Step 4 is a nonlinear pressure correction step, which degenerates in the usual projection step as used in
incompressible flow solvers when the density is constant (e.g. [29]). Taking the divergence of the first relation of
(3.4) and using the second one to eliminate the unknown velocity ūn+1 yields a non-linear elliptic problem for
the pressure. This computation is formal in the semi-discrete formulation, but, of course, is necessarily made
clear at the algebraic level, as described in Section 3.8. Once the pressure is computed, the first relation yields
the updated velocity and the third one gives the end-of-step density.

Finally, Step 5 is a renormalization of the velocity, once again useful for stability reasons.

3.2. Stability of the advection operator: a finite-volume result

The aim of this section is to state and prove a discrete analogue to the stability identity (1.5)-(i), which may
be written for any sufficiently regular functions ρ, z and u as follows:∫

Ω

[
∂ρz

∂t
+ ∇ · (ρzu)

]
z dx =

1
2

d
dt

∫
Ω

ρz2 dx

and which holds if the velocity u vanishes at the boundary of the computational domain Ω and provided that
the following balance is satisfied by ρ and u:

∂ρ

∂t
+ ∇ · (ρu) = 0.

As stated in the introduction, applying this identity to each component of the velocity yields the central
argument of the proof of the kinetic energy theorem.

The discrete analogue to this identity follows. This result is presented in a general algebraic setting, with no
reference to the underlying partial differential equation (see Rem. 3.2 hereafter for a clarification of this link);
note however that, in the following relations, the sum of the fluxes is restricted to the internal edges of the
mesh, which implicitly reflects the fact that the normal velocity is supposed to be zero at the boundary.

Theorem 3.1 (stability of the advection operator). Let (ρ∗K)K∈M and (ρK)K∈M be two families of positive
real numbers satisfying the following set of equations:

∀K ∈ M,
|K|
δt

(ρK − ρ∗K) +
∑

σ=K|L
Fσ,K = 0 (3.6)

where Fσ,K is a quantity associated to the edge σ and to the control volume K; we suppose that, for any internal
edge σ = K|L, Fσ,K = −Fσ,L. Let (z∗K)K∈M and (zK)K∈M be two families of real numbers. For any internal
edge σ = K|L, we define zσ either by zσ = 1

2 (zK + zL), or by zσ = zK if Fσ,K ≥ 0 and zσ = zL otherwise.
The first choice is usually referred to as the “centered choice”, the second one as “the upwind choice”. In both
cases, the following stability property holds:

∑
K∈M

zK

⎡⎣ |K|
δt

(ρK zK − ρ∗K z∗K) +
∑

σ=K|L
Fσ,K zσ

⎤⎦ ≥ 1
2

∑
K∈M

|K|
δt

[
ρK z2

K − ρ∗K z∗K
2
]
. (3.7)
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Proof. We write: ∑
K∈M

zK

⎡⎣ |K|
δt

(ρK zK − ρ∗K z∗K) +
∑

σ=K|L
Fσ,K zσ

⎤⎦ = T1 + T2

where T1 and T2 read:

T1 =
∑

K∈M

|K|
δt

zK (ρK zK − ρ∗K z∗K), T2 =
∑

K∈M
zK

⎡⎣ ∑
σ=K|L

Fσ,K zσ

⎤⎦.

The first term reads:

T1 =
∑

K∈M

|K|
δt

[
z2

K (ρK − ρ∗K) + ρ∗K zK (zK − z∗K)
]
.

Developing the last term by the identity a(a − b) = 1
2 (a2 + (a − b)2 − b2), we get:

T1 =
∑

K∈M

|K|
δt

z2
K (ρK − ρ∗K)︸ ︷︷ ︸

T1,1

+
1
2

∑
K∈M

|K|
δt

ρ∗K (z2
K − z∗K

2)︸ ︷︷ ︸
T1,2

+
1
2

∑
K∈M

|K|
δt

ρ∗K (zK − z∗K)2︸ ︷︷ ︸
T1,3

.

The last term, namely T1,3, is always non-negative and can be seen as a dissipation associated to the backward
time discretization of equation (3.7). We now turn to T2:

T2 =
∑

K∈M
z2

K

⎡⎣ ∑
σ=K|L

Fσ,K

⎤⎦
︸ ︷︷ ︸

T2,1

+
∑

K∈M
zK

⎡⎣ ∑
σ=K|L

Fσ,K (zσ − zK)

⎤⎦
︸ ︷︷ ︸

T2,2

.

The first term, namely T2,1, will cancel with T1,1 by equation (3.6). The second term reads, developing as
previously the quantity zK (zσ − zK):

T2,2 = −1
2

∑
K∈M

z2
K

⎡⎣ ∑
σ=K|L

Fσ,K

⎤⎦− 1
2

∑
K∈M

⎡⎣ ∑
σ=K|L

Fσ,K [(zσ − zK)2 − z2
σ]

⎤⎦
︸ ︷︷ ︸

T2,3

.

Reordering the sum in the last term, we have, as Fσ,K = −Fσ,L:

T2,3 =
1
2

∑
σ∈Eint (σ=K|L)

Fσ,K [(zσ − zK)2 − (zσ − zL)2].

This expression can easily be seen to vanish with the centered choice. With the upwind choice, supposing
without loss of generality that we have chosen for the edge σ = K|L the orientation such that Fσ,K ≥ 0, we
get, as zσ = zK :

T2,3 = −1
2

∑
σ∈Eint (σ=K|L)

Fσ,K (zK − zL)2 ≤ 0.
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We thus have, by equation (3.6):

T2,2 ≥ −1
2

∑
K∈M

z2
K

⎡⎣ ∑
σ=K|L

Fσ,K

⎤⎦ =
1
2

∑
K∈M

|K|
δt

z2
K (ρK − ρ∗K)

and thus:

T1 + T2 ≥ 1
2

∑
K∈M

|K|
δt

[
z2

K (ρK − ρ∗K) + ρ∗K (z2
K − z∗K

2)
]

which concludes the proof. �

Remark 3.2. Equation (3.6) can be seen as a discrete mass balance, with Fσ,K standing for the mass flux
across the edge σ, and the right hand side of (3.7) may be derived by the multiplication by zK and summation
over the control volumes of the transport terms in a discrete balance equation for the quantity ρz, reading:

∀K ∈ M,
|K|
δt

(ρK zK − ρ∗K z∗K) +
∑

σ=K|L
Fσ,K zσ + . . . [possible diffusion terms] . . . = 0.

In this context, the relation (3.6) is known to be exactly the compatibility condition which ensures a discrete
maximum principle for the solution z of this transport equation, provided that the upwind choice (or any
monotone choice) is made for the expression of zσ [27]. We proved here that the same compatibility condition
ensures a L2 stability for ρ1/2z.

3.3. Space discretization of the density prediction and the momentum balance equation

The main difficulty in the discretization of the momentum balance equation is to build a discrete convection
operator which enjoys the stability property (1.5)-(i). To this purpose, we derive for this term a finite volume
discretization which satisfies the assumptions of Theorem 3.1.

The natural space discretization for the density is the same as for the pressure, i.e. piecewise constant
functions over each element. This legitimates a standard mass lumping technique for the time derivative term,
since no additional accuracy seems to be expected from a more complex numerical integration. Note that, for
the Crouzeix-Raviart element in two dimensions, the mass matrix is genuinely diagonal. Let the quantity |Dσ|
be defined as follows:

|Dσ| def=
∫

Ω

ϕσ dx > 0. (3.8)

For any σ ∈ E and any control volume K adjacent to σ, let DK,σ be the cone of basis σ and having the
mass center of K as opposite vertex. The volume DK,σ is referred to as the half-diamond cell associated to σ
and K (see Fig. 1) and the measure of DK,σ is denoted by |DK,σ|. For σ ∈ E , we define the diamond cell Dσ

associated to σ by Dσ = DK,σ ∪ DL,σ if σ ∈ Eint, σ = K|L, and, if σ ∈ Eext, by Dσ = DK,σ where K is the
only control volume adjacent to σ. For the Crouzeix-Raviart element, |Dσ| can be identified to the measure of
the diamond cell Dσ associated to σ. The same property holds for the Rannacher-Turek element in the case
of rectangles (d = 2) or cuboids (d = 3), which are the only cases considered here, even though extensions to
non-perpendicular grids are probably possible.

The discretization of the term ρn un thus leads, in the equations associated to the velocity on an internal
edge σ, to an expression of the form ρn

σ un
σ, where ρn

σ results from an average of the values taken by the density
in the two elements adjacent to σ, weighted by the measure of the half-diamonds:

∀σ ∈ Eint, |Dσ| ρn
σ = |DK,σ| ρn

K + |DL,σ| ρn
L. (3.9)

This definition naturally extends to any external edge σ by ρn
σ = ρn

K , where K is the control volume which is
adjacent to σ.
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Figure 1. Dual finite volume mesh: the so-called “diamond cells”.

In order to satisfy the compatibility condition which was introduced in the previous section, a prediction
of the density is first performed, by a finite volume discretization of the mass balance equation, taking the
diamond cells as control volumes:

|Dσ|
δt

(ρ̃n+1
σ − ρn

σ) +
∑

ε∈E(Dσ)

Fn+1
ε,σ = 0, ∀σ ∈ E (3.10)

where E(Dσ) is the set of the edges of Dσ and Fε,σ stands for the mass flux across ε outward Dσ. This latter
quantity is expressed as follows:

Fn+1
ε = |ε| un

ε · nε,σ ρ̃n+1
ε

where |ε| is the measure of ε, nε,σ is the normal to ε outward Dσ, the velocity un
ε is obtained by interpolation

of un at the center of ε (using the standard finite element expansion) and ρ̃n+1
ε is the density at the edge,

calculated by the standard upwinding technique (i.e. either ρ̃n+1
σ if un

ε · nε,σ ≥ 0 or ρ̃n+1
σ′ otherwise, with σ′

such that ε separates Dσ and Dσ′ , which we denote by ε = Dσ|Dσ′).

The discretization of the convection terms of the momentum balance equation is built from relation (3.10),
according to the structure which is necessary to apply Theorem 3.1. This yields the following discrete momentum
balance equation:

|Dσ|
δt

(ρ̃n+1
σ ũn+1

σ,i − ρn
σun

σ,i) +
∑

ε∈E(Dσ)
(ε=Dσ |Dσ′ )

1
2

Fn+1
ε,σ (ũn+1

σ,i + ũn+1
σ′,i )

+
∫

Ω,h

τ(ũn+1) : ∇ϕ(i)
σ dx −

∫
Ω,h

p̃n+1 ∇ · ϕ(i)
σ dx =

∫
Ω

fn+1
v · ϕ(i)

σ , ∀σ ∈ Eint, for 1 ≤ i ≤ d

(3.11)

where ϕ
(i)
σ stands for the vector shape function associated to vσ,i, which reads ϕ

(i)
σ = ϕσ ei with ei the ith vector

of the canonical basis of R
d and ϕσ the scalar shape function, and where the notation

∫
Ω,h means

∑
K∈M

∫
K .

Note that, for Crouzeix-Raviart elements, a combined finite volume/finite element method, similar to the
technique employed here for the discretization of the momentum balance, has already been analysed for a
transient non-linear convection-diffusion equation by Feistauer and co-workers [1,11,16].
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3.4. Space discretization of the projection step

The fully discrete projection step of the proposed algorithm reads:∣∣∣∣∣∣∣∣∣
|Dσ| ρ̃n+1

σ

δt
(ūn+1

σ,i − ũn+1
σ,i ) −

∫
Ω,h

(pn+1 − p̃n+1) ∇ · ϕ(i)
σ dx = 0, ∀σ ∈ Eint, for 1 ≤ i ≤ d

|K|
δt

(�(pn+1
K ) − ρn

K) +
∑

σ=K|L
(v+

σ,K)n+1 �(pn+1
K ) − (v−

σ,K)n+1 �(pn+1
L ) = 0, ∀K ∈ M

(3.12)
where (v+

σ,K)n+1 and (v−
σ,K)n+1 stand respectively for max(vn+1

σ,K , 0) and −min(vn+1
σ,K , 0) with vn+1

σ,K =
|σ| ūn+1

σ · nKL. The first (vector) equation may be seen as the finite element discretization of the first re-
lation of the projection step (3.4), with the same lumping of the mass matrix for the Rannacher-Turek element
as in the prediction step. As the pressure is piecewise constant, the finite element discretization of the second
relation of (3.4), i.e. the mass balance, is equivalent to a finite volume formulation, in which we introduce the
standard first-order upwinding. Exploiting the expression of the velocity and pressure shape functions, the first
set of relations of this system can be alternatively written as follows:

|Dσ| ρ̃n+1
σ

δt
(ūn+1

σ − ũn+1
σ ) + |σ| [(pn+1

L − p̃n+1
L ) − (pn+1

K − p̃n+1
K )

]
nKL = 0, ∀σ ∈ Eint, σ = K|L (3.13)

or, in an algebraic setting:
1
δt

Mρ̃n+1 (ūn+1 − ũn+1) + Bt (pn+1 − p̃n+1) = 0. (3.14)

In this relation, Mw stands for the diagonal mass matrix weighted by (wσ)σ∈Eint (so, for 1 ≤ i ≤ d and σ ∈ Eint,
the corresponding entry on the diagonal of Mρ̃n+1 reads (Mρ̃n+1)σ,i = |Dσ| ρ̃n+1

σ ), Bt is the matrix of R
(d N)×M ,

where N is the number of internal edges (i.e. N = card (Eint)) and M is the number of control volumes in the
mesh (i.e. M = card (M)), associated to the gradient operator; consequently, the matrix B is associated to the
opposite of the discrete divergence operator. Throughout this section, we use the same notation for the discrete
function (defined as usual in the finite element context by its expansion using the shape functions) and for the
vector gathering the degrees of freedom; so, in relation (3.14), ū (respectively ũ) stands for the vector of R

d N

components ūσ,i (respectively ũσ,i), σ ∈ Eint, 1 ≤ i ≤ d and p (respectively p̃) stands for the vector of R
M of

components pK (respectively p̃K), K ∈ M. Both forms (3.13) and (3.14) are used hereafter.
We have the following existence result.

Proposition 3.3. Let the equation of state �(·) be defined and increasing over [0, +∞), and be such that
�(0) = 0, limz→+∞ �(z) = +∞ and such that there exists an elastic potential function P (·) (i.e. a function
satisfying (1.3)) such that the function z 	→ z P (z) is bounded from below in (0, +∞), once continuously differ-
entiable and strictly convex. Let us suppose that ρ̃n+1

σ > 0, ∀σ ∈ Eint. Then the nonlinear system (3.12) admits
at least one solution and any possible solution is such that pK > 0, ∀K ∈ M (and thus ρK > 0, ∀K ∈ M).

Proof. The theory of Section 2 applies, with:

||ūn+1||2∗ =
∑

σ∈Eint

|Dσ|
δt

ρ̃n+1
σ |ūn+1

σ |2.

This yields both the existence of a solution and the positivity of the pressure. �
In view of this result and of the form of the discrete density prediction (3.10), the property ρ̃n+1 > 0 is

satisfied by induction at any time step of the computation (provided, of course, that the initial density is
positive everywhere).

We finish this section by some remarks concerning the projection step at hand.
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Lemma 3.4. The following identity holds for each discrete pressure q ∈ Lh:

∀K ∈ M, (B M−1
ρ̃n+1 Bt q)K =

∑
σ=K|L

1
ρ̃n+1

σ

|σ|2
|Dσ| (qK − qL).

Proof. Let q ∈ Lh be given. By relation (3.13), we have:

(Bt q)σ,i = |σ| (qL − qK)nKL · ei.

Let 1K ∈ Lh be the characteristic function of K. Denoting by (·, ·) the standard Euclidean inner product, by
the previous relation and the definition of the lumped velocity mass matrix, we obtain:

(B M−1
ρ̃n+1 Bt q, 1K) = (M−1

ρ̃n+1 Bt q, Bt 1K) =
∑

σ∈Eint

d∑
i=1

1
ρ̃n+1

σ |Dσ|
(Bt q)σ,i (Bt 1K)σ,i

=
∑

σ=K|L

d∑
i=1

1
ρ̃n+1

σ |Dσ|
[|σ| (qL − qK) nKL · ei] [−|σ|nKL · ei]

which, remarking that
d∑

i=1

(nKL · ei)2 = 1, yields the result. �

Remark 3.5 (on spurious pressure boundary conditions). In the context of projection methods for incompress-
ible flow, it is known that spurious boundary conditions are to be imposed to the pressure in the projection
step, in order to make the definition of this step of the algorithm complete. These boundary conditions are
explicit when the process to derive the projection step is first to pose the elliptic problem for the pressure at
the time semi-discrete level and then discretize it in space; for instance, with a constant density equal to one
and prescribed velocity boundary conditions on ∂Ω, the semi-discrete projection step would take the form:∣∣∣∣∣∣ −∆ (pn+1 − p̃n+1) = − 1

δt
∇ · ũn+1 in Ω

∇ (pn+1 − p̃n+1) · n = 0 on ∂Ω.

When the elliptic problem for the pressure is built at the algebraic level, the boundary conditions for the
pressure are somehow hidden in the discrete operator B M−1 Bt. Lemma 3.4 shows that this matrix takes the
form of a finite-volume Laplace discrete operator, with homogeneous Neumann boundary conditions, i.e. the
same boundary conditions as in the time semi-discrete problem above stated.

Remark 3.6 (on the non-consistency of the discretization at hand for the Darcy problem). Considering the
semi-discrete problem (3.4), in the case of a constant density equal to one, one may expect to recover a consistent
discretization of a Poisson problem with homogeneous Neumann boundary conditions, as stated above. The
following example shows that this route is misleading. Let us take for the mesh a uniform square grid of step h.
The coefficient |σ|2/|Dσ| can be easily evaluated, and we obtain:

(B M−1 Bt q)K = d
∑

σ=K|L

|σ|
h

(qK − qL)

that is the usual finite volume Laplace operator, but multiplied by the space dimension d. This result is of course
consistent with (and gives some insight in) the well-known non-consistency of the Rannacher-Turek element for
the Darcy problem; similar examples could also be given for simplicial grids, with the Crouzeix-Raviart element.
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3.5. Renormalization steps

The pressure renormalization (Step 2 of the algorithm) reads, in an algebraic setting:

B M−1
ρ̃n+1 Bt p̃n+1 = B M−1√

ρ̃n+1 ρ̃n
Bt pn. (3.15)

Note that, at the first time step, the quantity ρ̃0 must be defined; it can for instance be computed from the
initial density (defined on the control volumes of M) by equation (3.9). In view of the expression of these
operators provided by Lemma 3.4, this relation equivalently reads:

∑
σ=K|L

1
ρ̃n+1

σ

|σ|2
|Dσ| (p̃n+1

K − p̃n+1
L ) =

∑
σ=K|L

1√
ρ̃n+1

σ ρ̃n
σ

|σ|2
|Dσ| (pn

K − pn
L), ∀K ∈ M. (3.16)

As Bt and B stands for respectively the discrete gradient and (opposite of the) divergence operator, this system
can be seen as a discretization of the semi-discrete expression of Step 2; note however, as shown in Remark 3.6,
that this discretization is non-consistent.

The velocity renormalization (Step 5 of the algorithm) simply reads:

∀σ ∈ Eint,

√
ρn+1

σ un+1
σ =

√
ρ̃n+1

σ ūn+1
σ or M√

ρn+1 un+1 = M√
ρ̃n+1 ūn+1. (3.17)

3.6. An overview of the algorithm

To sum up, the algorithm considered in this section is the following one:
(1) Prediction of the density. The density on the edges at tn, (ρn

σ)σ∈E , being given by (3.9), compute
(ρ̃n+1)σ∈E by the upwind finite volume discretization of the mass balance over the diamond cells (3.10).

(2) Renormalization of the pressure. Compute a renormalized pressure (p̃n+1
K )K∈M by equation (3.16).

(3) Prediction of the velocity. Compute (ũn+1
σ )σ∈Eint by equation (3.11), obtained by a finite volume dis-

cretization of the transport terms over the diamond cells and a finite element discretization of the other
terms.

(4) Projection step. Compute (ūn+1
σ )σ∈Eint and (pn+1

K )K∈M from equation (3.12), obtained by a finite
element discretization of the velocity correction equation and an upwind finite volume discretization of
the mass balance (over the elements K ∈ M).

(5) Renormalization of the velocity. Compute (un+1
σ )σ∈Eint from equation (3.17).

The existence of a solution to Step 4 is proven above; the other problems are linear, and their well-posedness
follows from standard coercivity arguments, using the fact that the discrete densities (i.e. ρn and ρ̃n+1) are
positive, provided that this property is satisfied by the initial condition.

3.7. Stability analysis

In this section, we use the following discrete norm and semi-norm:

∀v ∈ Wh, ||v||2h,ρ̃ =
∑

σ∈Eint

|Dσ| ρ̃σ |vσ|2

∀q ∈ Lh, |q|2h,ρ̃ =
∑

σ∈Eint, σ=K|L

1
ρ̃σ

|σ|2
|Dσ| (qK − qL)2

(3.18)

where ρ̃ = (ρ̃σ)σ∈Eint is a family of positive real numbers. The function || · ||2h,ρ̃ defines a norm over Wh,
and | · |h,ρ̃ can be seen as a weighted version (with mesh dependent weights) of the H1 semi-norm classical
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in the finite volume context [14]. The links between this latter semi-norm and the problem at hand are clarified
in the following lemma, which is a straightforward consequence of Lemma 3.4.

Lemma 3.7. The following identity holds for each discrete pressure q ∈ Lh:

(B M−1
ρ̃ Bt q, q) = |q|2h,ρ̃.

We are now in position to state the stability of the scheme under consideration.

Theorem 3.8 (stability of the scheme). Let the equation of state �(·) be defined and increasing over [0, +∞),
and be such that �(0) = 0, limz→+∞ �(z) = +∞ and that there exists an elastic potential function P (·)
(i.e. a function satisfying (1.3)) such that the function f : z 	→ z P (z) is bounded from below in (0, +∞),
once continuously differentiable and strictly convex. Let (ũn)0≤n≤N , (un)0≤n≤N , (pn)0≤n≤N and (ρn)0≤n≤N be
the solution to the considered scheme, with a zero forcing term. Then the following bound holds for 0 ≤ n < N :

1
2
||un+1||2h,ρn+1 +

∫
Ω

ρn+1P (ρn+1) dx + δt
n+1∑
k=1

∫
Ω,h

∇ũk : τ(ũk) dx +
δt2

2
|pn+1|2h,ρ̃n+1

≤ 1
2
||u0||2h,ρ0 +

∫
Ω

ρ0P (ρ0) dx +
δt2

2
|p0|2h,ρ̃0 .

(3.19)

Proof. Multiplying each equation of the Step 3 of the scheme (3.11) by the corresponding unknown (i.e the
corresponding component of the velocity ũn+1 on the corresponding edge σ) and summing over the edges and
the components yields, by virtue of the stability of the discrete advection operator (Thm. 3.1):

1
2 δt

||ũn+1||2h,ρ̃n+1 − 1
2 δt

||un||2h,ρn +
∫

Ω,h

τ(ũn+1) : ∇ũn+1 dx −
∫

Ω,h

p̃n+1∇ · ũn+1 dx ≤ 0. (3.20)

On the other hand, reordering equation (3.14) and multiplying by M−1/2
ρ̃n+1 (recall that Mρ̃n+1 is diagonal), we

obtain:
1
δt

M1/2
ρ̃n+1 ū

n+1 + M−1/2
ρ̃n+1 Bt pn+1 =

1
δt

M1/2
ρ̃n+1 ũ

n+1 + M−1/2
ρ̃n+1 Bt p̃n+1.

Squaring this relation gives:(
1
δt

M1/2
ρ̃n+1 ū

n+1 + M−1/2
ρ̃n+1 Bt pn+1,

1
δt

M1/2
ρ̃n+1 ū

n+1 + M−1/2
ρ̃n+1 Bt pn+1

)
=(

1
δt

M1/2
ρ̃n+1 ũ

n+1 + M−1/2
ρ̃n+1 Bt p̃n+1,

1
δt

M1/2
ρ̃n+1 ũ

n+1 + M−1/2
ρ̃n+1 Bt p̃n+1

)
which reads:

1
δt2

(
Mρ̃n+1 ūn+1, ūn+1

)
+
(
M−1

ρ̃n+1 Bt pn+1, Bt pn+1
)

+
2
δt

(
ūn+1, Bt pn+1

)
=

1
δt2

(
Mρ̃n+1 ũn+1, ũn+1

)
+
(
M−1

ρ̃n+1 Bt p̃n+1, Bt p̃n+1
)

+
2
δt

(
ũn+1, Bt p̃n+1

)
.

Multiplying by δt/2, remarking that, ∀v ∈ Wh, (Mρ̃n+1v, v) = ||v||2h,ρ̃n+1 and that, thanks to Lemma 3.7,
∀q ∈ Lh, (M−1

ρ̃n+1 Bt q, Bt q) = (B M−1
ρ̃n+1 Bt q, q) = |q|2h,ρ̃n+1 , we get:

1
2δt

||ūn+1||2h,ρ̃n+1 +
δt

2
|pn+1|2h,ρ̃n+1 + (ūn+1, Bt pn+1)

− 1
2δt

||ũn+1||2h,ρ̃n+1 − δt

2
|p̃n+1|2h,ρ̃n+1 − (ũn+1, Bt p̃n+1) = 0.

(3.21)
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The quantity −(ũn+1, Bt p̃n+1) is nothing more than the opposite of the term
∫
Ω,h p̃n+1∇ · ũn+1 dx appearing

in (3.20), so, when summing (3.20) and (3.21), these terms cancel, leading to:

1
2δt

||ūn+1||2h,ρ̃n+1 − 1
2 δt

||un||2h,ρn +
∫

Ω,h

τ(ũn+1) : ∇ũn+1 dx

+
δt

2
|pn+1|2h,ρ̃n+1 − δt

2
|p̃n+1|2h,ρ̃n+1 + (ūn+1, Bt pn+1) ≤ 0.

Finally, (ūn+1, Bt pn+1) is precisely the pressure work which can be bounded by the time derivative of the elastic
potential, as stated in Theorem 2.1:

1
2δt

||ūn+1||2h,ρ̃n+1 +
∫

Ω,h

τ(ũn+1) : ∇ũn+1 dx +
δt

2
|pn+1|2h,ρ̃n+1 − δt

2
|p̃n+1|2h,ρ̃n+1

+
1
δt

∫
Ω

ρn+1P (ρn+1) dx ≤ 1
2 δt

||un||2h,ρn +
1
δt

∫
Ω

ρnP (ρn) dx.
(3.22)

The proof then ends by using the renormalization steps (Steps 2 and 5 of the algorithm). Step 2 reads in an
algebraic setting:

B M−1
ρ̃n+1 Bt p̃n+1 = B M−1/2

ρ̃n+1 M−1/2
ρ̃n Bt pn.

Multiplying by p̃n+1, we obtain:(
M−1/2

ρ̃n+1 Bt p̃n+1, M−1/2
ρ̃n+1 Bt p̃n+1

)
=
(
M−1/2

ρ̃n Bt pn, M−1/2
ρ̃n+1 Bt p̃n+1

)
and thus, by Cauchy-Schwarz inequality:(

M−1/2
ρ̃n+1 Bt p̃n+1, M−1/2

ρ̃n+1 Bt p̃n+1
)
≤
(
M−1/2

ρ̃n Bt pn, M−1/2
ρ̃n Bt pn

)1/2 (
M−1/2

ρ̃n+1 Bt p̃n+1, M−1/2
ρ̃n+1 Bt p̃n+1

)1/2

.

This relation yields |p̃n+1|2h,ρ̃n+1 ≤ |pn|2h,ρ̃n . In addition, Step 5 of the algorithm gives ||un+1||2h,ρn+1 =
||ūn+1||2h,ρ̃n+1 . Using these two relations in (3.22), we get:

1
2δt

||un+1||2h,ρn+1 +
∫

Ω,h

τ(ũn+1) : ∇ũn+1 dx +
δt

2
|pn+1|2h,ρ̃n+1 +

1
δt

∫
Ω

ρn+1P (ρn+1) dx

≤ 1
2 δt

||un||2h,ρn +
1
δt

∫
Ω

ρnP (ρn) dx +
δt

2
|pn|2h,ρ̃n

and the estimate of Theorem 3.8 follows by summing over the time steps. �
Remark 3.9 (entropy conservation). In this paper, we employ the terminology of the mathematical analysis
of the compressible Navier-Stokes equations, as can be found in [15,28,32]. In this context, the function P (·)
is referred to as the elastic potential, and the total energy of the system is the sum of the kinetic energy
and of the integral of ρP (ρ) over the fluid domain. In the literature concerned with hyperbolic problems, the
same quantity is referred to as the entropy of the system, and Theorem 3.8 states that the considered pressure
correction scheme preserves the entropy.

Remark 3.10 (on the upwinding of the mass balance discretization, the inf-sup stability of the discretization
and the appearance of spurious pressure wiggles.). In the scheme considered in this section, the upwinding in the
discretization of mass balance controls the onset of density oscillations. As long as the pressure and the density
are linked by an increasing function, that is as long as the flow remains compressible with a reasonable equation
of state, it is probably sufficient to prevent pressure oscillations. Besides, the fourth term of the left hand side
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of (3.19), i.e. the term involving |pn+1|2h,ρ̃n+1 , provides a control on the discrete H1-like semi-norm of the
pressure, at least for large time steps, and therefore also produces an additional pressure smearing. However,
it comes up in the analysis as the composition of the discrete divergence with the discrete gradient; conse-
quently, one will obtain such a smoothing effect only for inf-sup stable discretizations. Note also that, even for
steady state problems, some authors recommend the use of stable approximation space pairs to avoid pressure
wiggles [3,17].

Remark 3.11 (on a different projection step). Some authors propose a different projection step [2,43], which
reads in the time semi-discrete setting:∣∣∣∣∣∣∣∣

�(pn+1)un+1 − ρ̃n+1 ũn+1

δt
+ ∇(pn+1 − p̃n+1) = 0

�(pn+1) − ρn

δt
+ ∇ · (�(pn+1)un+1

)
= 0.

Considering this system, one may be tempted by the following line of thought: choosing qn+1 = �(pn+1)un+1

as variable, taking the discrete divergence of the first equation and using the second one will cause the convec-
tion term of the mass balance to disappear from the discrete elliptic problem for the pressure, whatever the
discretization of this term (and, in particular, the choice of the density at the edges) may be. Consequently,
the equation for the pressure will be free of the non-linearities induced by the upwinding and the dependency
of the convected density on the pressure, while one still may hope to obtain a positive upwind (with respect
to the density) scheme. In fact, this last point is incorrect. To be valid, it would necessitate that, from any
solution (qn+1, pn+1), one could be able to compute a velocity field un+1 by dividing qn+1 by the density of
the control volume located upstream with respect to un+1. Unfortunately, it is not always possible to obtain
this upstream value; for instance, if for two neighbouring control volumes K and L, ρK < 0, ρL > 0 and
qn+1 ·nK|L > 0, neither the choice of K nor L for the upstream control volume is valid. Consequently, with this
discretization, we are no longer able to guarantee the positivity of ρ or the absence of oscillations. However, as
explained above, if the density remains positive, we will have a smearing of pressure or density wiggles due to
the fact that the discretization is inf-sup stable.

3.8. Implementation

The implementation of the first three steps (3.1)–(3.3) of the numerical scheme is standard, and we therefore
only describe here in details the fourth step, that is the projection step. The precise algebraic formulation of
the system (3.4) reads: ∣∣∣∣∣∣∣

1
δt

Mρ̃n+1 (ūn+1 − ũn+1) + Bt (pn+1 − p̃n+1) = 0

1
δt

R (�(pn+1) − ρn) − BQup
ρn+1 ū

n+1 = 0
(3.23)

where Mρ̃n+1 and Qup
ρn+1 are two diagonal matrices; for the first one, we recall that the entry corresponding to

an edge σ ∈ Eint, σ = K|L is computed by multiplying the measure of the diamond associated to σ by the
predicted density (at the edge center) ρ̃n+1

σ ; in the second one, the same entry is obtained by just taking the
density at tn+1 in the element located upstream of σ with respect to ūn+1, i.e. either � (pn+1

K ) or � (pn+1
L ).

Note that these definitions can be extended in a straightforward way to the boundary edges, if the velocity
is not prescribed to zero on the boundary of the computational domain. The matrix R is diagonal and, for
any K ∈ M, its entry RK is the measure of the element K. For the sake of simplicity, we suppose for the
moment that the equation of state is linear:

�(pn+1) =
∂�

∂p
pn+1.
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The elliptic problem for the pressure is obtained by multiplying the first relation of (3.23) by B Qup
ρn+1 (Mρ̃n+1)−1

and using the second one. This equation reads:[
L +

∂�

∂p

1
δt2

R
]

pn+1 = L p̃n+1 +
1

δt2
Rρn +

1
δt

B Qup
ρn+1 ũn+1 (3.24)

where L = B Qup
ρn+1 (Mρ̃n+1)−1 Bt can be viewed, for the discretization at hand, as a finite volume discrete

approximation of the Laplace operator with Neumann boundary conditions (when the velocity is prescribed at
the boundary), weighted by a mesh-dependent coefficient and the densities ratio (see Rems. 3.5 and 3.6). We
recall that, by a calculation similar to the proof of Lemma 3.4, this matrix can be evaluated directly in the
“finite volume way”, by the following relation, valid for each element K:

(L pn+1)K =
∑

σ=K|L

ρup,σ

ρ̃n+1
σ

|σ|2
|Dσ| (pn+1

K − pn+1
L )

where ρup,σ stands for the upwind density associated to the edge σ. Provided that pn+1 is known, the first
relation of (3.23) gives us the updated value of the velocity:

ūn+1 = ũn+1 − δt (Mρ̃n+1)−1 Bt (pn+1 − p̃n+1). (3.25)

In order to preserve the positivity of the density, it is necessary to use the value of the density upwinded with
respect to ūn+1 in the mass balance; therefore, equations (3.24) and (3.25) are not decoupled, in contrast with
what happens in usual projection methods. We thus implement the following iterative algorithm:

Initialization: pn+1
0 = p̃n+1 and ūn+1

0 = ũn+1.

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Step 4.1. Solve for pn+1
k+1/2:[

L +
∂�

∂p

1
δt2

R
]

pn+1
k+1/2 = L p̃n+1 +

1
δt2

R ρn +
1
δt

B Qup
ρn+1 ũn+1

where the density in L and Qup
ρn+1 is evaluated at pn+1

k and the upwinding
in Qup

ρn+1 is performed with respect to ūn+1
k .

Step 4.2. Compute pn+1
k+1 as pn+1

k+1 = α pn+1
k+1/2 + (1 − α) pn+1

k .

Step 4.3. Compute ūn+1
k+1 as:

ūn+1
k+1 = ũn+1 − δt (Mρ̃n+1)−1 Bt (pn+1

k+1 − p̃n+1).

Convergence criteria: max
[ ||pn+1

k+1 − pn+1
k || , ||un+1

k+1 − un+1
k || ] < ε.

The second step of the previous algorithm is a relaxation step which can be performed to ensure convergence;
however, in the tests presented hereafter, we use α = 1 and obtain convergence in a few iterations (typically less
than 5). When the equation of state is nonlinear, Step 4.1 is replaced by one iteration of Newton’s algorithm.

3.9. Numerical experiments

In this section, we describe numerical experiments which are performed to assess the behaviour of the pressure
correction scheme presented in this paper, in particular the convergence rate with respect to the space and time
discretizations.
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Figure 2. Velocity error as a function of the time step.

With Ω = (0, 1) ×
(
−1

2
,
1
2

)
, we choose for the momentum and density the following expressions:

ρ u = −1
4

cos(πt)
[

sin(πx1)
cos(πx2)

]
, ρ = 1 +

1
4

sin(πt) [cos(πx1) − sin(πx2)] .

These functions satisfy the mass balance equation; for the momentum balance, we add the corresponding right
hand side. In this latter equation, the divergence of the stress tensor is given by:

∇ · τ(u) = µ∆u +
µ

3
∇∇ · u, µ = 10−2

and, in the discrete momentum balance equation (3.11), we use instead of
∫

Ω,h

τ(ũn+1) : ∇ϕ(i)
σ dx the expression:

µ

∫
Ω,h

[
∇ũn+1 : ∇ϕ(i)

σ +
1
3
(∇ · ũn+1)(∇ · ϕ(i)

σ )
]

dx

which ensures that this term is coercive. The pressure is linked to the density by the following equation of state:

p = ℘(ρ) =
ρ − 1
γ Ma2 , γ = 1.4, Ma = 0.5

where the parameter Ma corresponds to the characteristic Mach number.
We use in these tests a special numerical integration of the forcing term of the momentum balance, which is

designed to ensure that the discretization of a gradient is indeed a discrete gradient (i.e. if the forcing term fv

can be recast under the form fv = ∇gv, the discrete right hand side of the momentum balance belongs to the
range of Bt).

Velocity and pressure errors obtained at t = 0.5, in respectively L2 and discrete L2 norms and as a function
of the time step, are drawn on respectively Figures 2 and 3, for 20 × 20, 40 × 40 and 80 × 80 uniform meshes
(so using the Rannacher-Turek element). For large time steps, these curves show a decrease corresponding to
approximately a first order convergence in time for the velocity and the pressure, until a plateau is reached, due
to the fact that errors are bounded from below by the residual spatial discretization error. For both velocity
and pressure, the value of the errors on this plateau show a space convergence order (in L2 norm) between 1
and 2.
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Figure 3. Pressure error as a function of the time step.

4. Conclusion

We presented in this paper a numerical scheme for the barotropic Navier-Stokes compressible equations,
based on a pressure-correction time stepping algorithm. For the space discretization, it combines low-order
non-conforming mixed finite elements with finite volumes; in the incompressible limit, one recovers a classical
projection scheme based on an inf-sup stable pair of approximation spaces for the velocity and the pressure.
This scheme is proven to enjoy an unconditional stability property: irrespectively of the time step, the discrete
solution obeys the a priori estimates associated to the continuous problem, i.e. strict positivity of the density,
bounds in the L∞-in-time norm of the quantity

∫
Ω ρ u2 dx and

∫
Ω ρ P (ρ) dx and in the L2-in-time norm of the

viscous dissipation
∫
Ω τ(u) : ∇u dx. To our knowledge, this result is the first one of this type for barotropic

compressible flows.
However, the scheme presented here is by no means “the ultimate scheme” for the solution to the compressible

Navier-Stokes equations. It should rather be seen as an example of application (and probably one of the less
sophisticated ones) of the mathematical arguments developed to obtain stability, namely Theorems 2.1 (discrete
elastic potential identity) and 3.1 (stability of the advection operator), and our hope is that these two ingredients
could be used as such or adapted in the future to study other algorithms. For instance, a computation close to
the proof of Theorem 3.8 (and even simpler) would yield the stability of the fully implicit scheme; adding to
this latter algorithm a prediction step for the density (as performed here) would also allow to linearize (once
again as performed here) the convection operator without loss of stability. A stable pressure-correction scheme
avoiding this prediction step can also be obtained, and is currently under tests at IRSN for the computation of
compressible bubbly flows. Besides these variants, less diffusive schemes should certainly be sought. Finally, the
proposed scheme is currently the object of more in-depth numerical studies including, in particular, problems
admitting less smooth solutions than the test presented here.
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[11] V. Doleǰśı, M. Feistauer, J. Felcman and A. Kliková, Error estimates for barycentric finite volumes combined with noncon-
forming finite elements applied to nonlinear convection-diffusion problems. Appl. Math. 47 (2002) 301–340.

[12] A. Ern and J.-L. Guermond, Theory and practice of finite elements, Applied Mathematical Sciences 159. Springer (2004).
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