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2 2 r i 2e yyls.tl
+ [x(0) " = x|l +[h prLLA ds
=(=2a(0y + [BO| + () + DIx0)P + 2xO11Lf ¢, x| — x|

—~(1—Ib(t>lh2) ] o(s)lx ()] ds + f L ds.

p di

For each fixed s, if ||x2( A = |x(@)* with s < 8 < rand |[x(z)| < |x(@)] for
all < 7 <z, then Z|x*(- )||ls “1 = ( (see Hale [4], p. 127). Now suppose thatf

x24T = |x ()] Then Ix(6)] = |x(z)| for T € [s, 7] and
Eilxz(-)ll[s"] < =20 x®OF + [BO] Ix () |
+ 16k f IC (s, 26N ds + 2 Lf (2. x0)]
t—h )
< [6()|A f NGl x()Pds + 211 1)1
Thus,

Vigy (2, xe) <( 2a(t) + |b(D)] + a(t) + Dix @) +2(1 —i—h)lx(t)l If(l‘ xt)l

o (s) Lx(S)E ds
t—h

< (=2a() + [b@)] + a(t) + DIx@ + 21 + B plxe|® = ||
—B()x@)*.
It follows from (10) that
L+ IO < V{1, ) <201 + DO + |$21 + hllpl*.

Let W(r) = 2, Wo(r) = 2(1:4 L)r2, Wi(r) = (1 + h)r?, and Wa(r) = hr?
conditions of Corollary 7 are satisfied and the zero solution of (E) is UAS.

- T 1 n?
— |l [ |6 (1 + ~)i"] (11}

(12)
. Then all
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1. Introduction. Existence results for weak solutions of equations involving the
p-Laplacian with right hand side measure have been recently obtained in [1]. G. Stam-
pacchia [5] first considered the problem in the linear case; he obtained an existence
tesult through a duality method. if T € W17 (Q), r > N, then the solution of the
Dirichlet problem :

w e Hi ()

:—div(A(x)Dw) = (1.1)

lies in C%(S2) and the mapping 7 > w is linear and continuous from W=7 (L) to
CY(). Therefore the adjoint operator maps M, (£2) into Wol 4(R), forany g < T
In this paper we consider anisotropic equations with right hand side measures. We

. confine ourselves to the model case

—div{(j (Du)) = in £2
{ (J(Du)) = f (12)
u=>0 on 382,
where j(£) is the vector field whose components are |&;|# 728G = 1,..., N; p; > 1).

We shall prove the existence of solutions of (1.2). More precisely we obtain the existence
of a solution in the Sobolev space

A 9
W@y e W@ = e LB@, Vi=1,..., N},

Xi

where ¢; (fori =1, ..., N) is any real number greater than 1 and such that

l<g<BZD,,
pN—1)
and
1 151 | 13
—_ == — — pi= 1 .
p Nizlpi
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Our existence result can be seen as a “nonlinear version” of the Stampacchia method,
since it is known that the Dirichlet problem

{ —div(j (Dw)) = —~div(j (F))
€ Wy'(2)

has an L™ solution if each component F; of the vector field F belongs to L“(Q) o
P Np' (see [6], [3], [4D).

The use of the nonisotropic Sobolev inequality {see {7]) leads_to

dug 1w & g )%
'3“k”14*<63ﬂ1| p <C4H[f(1+1uk|)w]" ”
i =179

:c4ﬂ[fﬂ<1 + iuw%]{“”]‘? :a{]ﬂu + |ukl)‘?*‘]l_”ﬂ.

By estimate (2.4), 5 3”" is bounded in L% (£2). Then we can assume (for some u and for
some subsequence sull denoted ;) that

(14) (2.5)

2. Existence theorems. Let Q be an open bounded set of RY (N > 1), 'pi. >}
(¢(=1,...,N)and p <« N. The aim of this paper is to obtain weak solutions of the

{model) problem ou ou
Y (P =y inQ - T g, veaklyin L%(Q), 26)
5 I (2.1) i . )
U= on “p —> U strongly in L9(£2). 2.7

in the sense of distributions, when x is a bounded Randon measure: on Q (1 e, ,u e_ .
Mp(£2)).
We shall prove the following existence theorem.

.. This is not sufficient to pass to the limit, but the monotonicity properties of the differential

a operator allow us to use the techniques of [1] in order to deduce that we have also

a9 2 .

G L L), o< g 2.8)
Bxi Bxi

Indeed, by (2.2), we have, for any 7 > 0,
o1 20 a p—2 O
Zf a2 | S I  — ) = [ (= STk — ),

Theorem 1. Ler i € My(Q). Then there exists u € Wy () (such that 8—“ € L%(Q),-
gi < %{; B pi) solution of (2.1)

Proof. As in [1] we consider a sequence of smooth functions f, convergmg to @ in

M, (£2) weak, such that || fe [l < @] M,(2)> and the soluations u, of the equations dx;

i where T}, is the truncati()n at levels +n (n > 0). Then,fori =1,..., N,

L ity p—2 du
up € Wy ™ (82) - — — —) = f. 2.2
F 0" (5 Z ax; (l ox; ] Bxi) T (22) QUL p—2 Ol Oty 20Uy 0
i=1 Pi Bi
I 1" 5~ lae " 3 las 0 —ww) = 20llul
We define lug—tiy<n 0K ox; ax; -~ ox;
0 0=s=n 1, for a fixed i, p; is greater than or equal to 2, we deduce that
§—n n<s<n+l o{uy —u ,
@(s) / |—( k= Uh) ™ < esy
1 szn+l fus—upl=n x;
—p{—5) s <0 - and then
and we use @(uy) as test function in (2.2). Let B,; = {x e Q:n < lup(x)| <n+ 1}, __'-ﬁﬁj_;} f |3(uk — uy) ‘p,‘ . [[ |3(uk — uy) p;—];_i-
Then . ) dx; = lg—up|<n dx;
oy i . :Z::Ef_ . -
Z | — v " <e, + crmis (x € 1 |up(x) — up(x}| > n) =
By = i S 2 . _n
which implies < csna +cmmis {x € Q: lue(x) — up(x)| > g} @,
f i dug ’ P i=1 N 23 . Recall that u; is a Cauchy sequence is measure. The arbitrariness of n > 0 leads to the
B, 0x; ol (2.3) e conclusion that a“" is a Cauchy sequence in L" (£2). A slight modification is needed to
- i . . obtain (2.8) for p; < 2. Then by (2.8}, we have
Let g = 8pi, o = S0 and ¢ < (0, g’(g(,;;). Then, using (2.3), » > 1 and Holder =~ 2.8) for p y (2.8),
. alit dug px_gauk Ou pi-2 du .,
inequality, e L2 B
P \ @ g 8}61‘ dx i
f ’ s ’q‘ < f |— ’p'(l + ue))* ”‘ j(l + |uk|)pi ;, T i and therefore u is a solutlon of equation (2.1).
Y Theorem 1 allows us to ﬁnd a solution when, for instance, the data are L' -functions.
< 1 auk p[ z 1—i 24) Anyway, to obtain g; = £2-2) ((£ 7y Pi, We have to make stronger assumptions on the right
- [; (1+n) [, f I+ I”kl)p' q‘ : ' hand side. This is stated in the following.
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Theorem 2. Let f be a measurable function such that

/gtfélog(l LIS < oo

Then there exists a solution u of the Dirichlet problem

| 29
we W@ - Zax, (12 \p ? ”):f,

Np-1

where gq; = o= Pi-

Proof. We modify the previous proof with the help of techniques used in [2]. ”‘.Us_i_ng .

log(1 - |uzl}sgn(uy) as test function in (2.2), the inequality (2.3) becomes. -

Buk i f
_/li}xi' 1+| = | S log(l + fuil)

_<_LJfJIOg(1+|fI)+f(1+EukD sc1+f(1+|u’kr§).y?
Q =

This implies the change in inequality (2.5),

i-g

el 502+Cz[f(1+|ukl)lf_f’] T
Q

and so the sequence iy is bounded in WOI % (2). The a priori estimate and the strong L'
convergence of % allow us to pass to the limit.
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Abstract. We consider the operator H = eh+cos{e- j+ ) for j € Z7, where k is self-adjoint, trans-
lation invariant and finite ran ge. The vector @ = (o1, o1z, . .., @) is assumed to have the diophantine
property |7 - ¢mod 2| = C/|j|*, where j 3 0 and C is some constant. For & sufficiently small we-
prove that H has pure point spectrum for almost every #. Moreover, every polynomially bounded
eigenfunction of H decays exponentially fast. Finally, we will show how this operator comes up in
the study of electrons in a transverse magnetic field subject to a two dimensional periodic potential.

1. Introduction. We consider the equation
HY =(Eh+ V)Y =Ey

on the lattice Z". We assume that & is self-adjoint, translation invariant and finite range;
i.e., the matrix elements of % satisfy, #;; = Owhen |i — j| > R, where i, j € Z" and R
is some positive constarnt. The potential V is given by matrix elements

V_,J('[}) = Sjjvj(?}) = 51-]- COS(OJ . j + 19)
and the vector o = (oy, an, . . ., &) is assumed to have the Dicphantine property
|j - emod27| = C/IjP, b

where j # 0 and C is some constant,
We state our main result:

Theorem. Consider the operator H = ¢h + cos(a - ] + @) (j € Z*) subject to
the conditions listed above. For ¢ sufficiently small H has pure point spectrum for
almost every #. Moreover, every polynomially bounded eigenfunction of H decays
exponentially fast.

Our motivation for considering operators of this type comes from the study of elec-
trons in a transverse magnetic field subject to a two dimensional periodic potential, [26],
[27]. Tn Section 4, we will examine the Schridinger equation in a Magnetic field. We
will make a series expansion of the solution to the differential equation and show that the
recursion formula for the coefficients in the expansion leads us to the finite difference
equation treated in this paper. In recent years many problems of this type have been
studied. We now mention a few of the latest results.
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