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Abstract

We study here the discretization by monotone finite volume schemes of multi-dimensional nonlinear
scalar conservation laws forced by a multiplicative noise with a time and space dependent flux-function and
a given initial data in L> (Rd). After establishing the well-posedness theory for solutions of such kind of
stochastic problems, we prove under a stability condition on the time step the convergence of the finite
volume approximation towards the unique stochastic entropy solution of the equation.

Keywords : Stochastic PDE e first-order hyperbolic equation e It integral e multiplicative noise e fi-
nite volume method e monotone scheme e Godunov scheme e Young measures e Kruzhkov smooth entropy.
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1 Introduction

We are interested in the Cauchy problem for a nonlinear hyperbolic scalar conservation law in d space
dimensions with a multiplicative stochastic perturbation of type:

du+div [0z, 1) f(u)]dt = g(u)dW in Q2xR?x(0,T), 1
uw(w,r,0) = wo(x), we, zeRY, (1)

where div is the divergence operator with respect to the space variable (which belongs to Rd), dis a
positive integer, T > 0 and W = {W;,F;0 < t < T} is a standard adapted one-dimensional continuous
Brownian motion defined on the classical Wiener space (2, F,P). As mentioned by Kim [Kim06|, by
denoting @ = R? x (0,T) this equation has to be understood in the following way: for almost all w in Q and
for all ¢ in D(Rd x[0,7))

/Rd uo(z)p(z,0)dr + fQ u(w, z,t)0rp(x,t) + 0(x,t) f(u(w, z,t)).Vap(z, t)dzdt

_ fQ A ' gu(w, 2, 5))AW (5)rp(e, t)dodt. 2)

In order to relieve the presentation of the paper, we omit in the sequel the variables w,x,t and write u
instead of u(w,x,t).

Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation law is not unique
in general. The mathematical challenge consists in introducing a selection criterion in order to identify a
unique solution. In the present work we consider a stochastic version of the entropy condition proposed by
KRruzHKOV in the 70s, the one used in [BVW12] and adapted to a space and time dependent flux-function,
which is presented in Section

We assume the following hypotheses:

Hi: uo € L*(RY).

Hy: f:R - R is a Lipschitz-continuous function with f(0) = 0.

Hs: g:R — R is a Lipschitz-continuous function with g(0) = 0.

Hy: 9 e CH (R x [0,T],R?) and div[6(z,t)] =0 ¥(z,t) e R* x [0, T].

*This work has been carried out in the framework of the Labex Archiméde (ANR-11-LABX-0033) and of the A*MIDEX
project (ANR~11-IDEX-0001-02), funded by the “Investissements d’Avenir" French Government programme managed by the French
National Research Agency (ANR)
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Hs: There exists V < oo such that |o(z,t)] <V V(z,t) e R x [0,T].
Hg: g is a bounded function.

Remark 1 (On these assumptions)

. Hi to Hs are used in the present work to prove the well-posedness of Problem . Note that, as it is
classically done for hyperbolic scalar conservation laws, for convenience one can assume that f(0) =0
without loss of generality.

. 9(0) =0 is a technical condition which allows us to show the well-posedness of our problem and is also
used in the present work to show a priori estimates on the finite volume approximate solution.

. Note that the present study can be extended to the case div[v(z,t)] # 0 (which only brings technical
difficulties) following for example the work of [CHOO] in the deterministic case.

. Hg is used to show the convergence of the finite volume scheme (precisely to prove that the term denoted
ghk . iy
5" goes to 0 in the proof of Proposition .

Remark 2 Following VALLET [Val08] Section 6.1, if we assume in addition the following hypotheses

(i) wuo € L= (R?).

(ii) suppg c [0,1].

then we can show that the stochastic entropy solution u also belongs to L™ (R®). Indeed, thanks to the It
formula, this mazimum principle is direct for the viscous solution u., then it is conserved at the limit for
u. Note that assuming (i) and (i) allows us to treat the cases where f and g are only locally Lipschitz-

continuous. In particular, all the results stated in this paper hold if one considers the stochastic Burgers
equation (i.e. when f(u)=u?).

1.1 State of the art

Only few papers have been devoted to the theoretical study of scalar conservation laws with a multiplicative
stochastic forcing, let us mention in chronological order the contributions of [FNO08|, [DVI0], [CDK12],
[BVW12], [BVW14], [BM14], [Hof14]. Concerning the study of numerical approximation of these stochastic
problems, there is also, to our knowledge, few papers. Let us cite the work of [HR91| and also its recent
generalization to the multidimensional-case [Baul4] where a time-discretization of the equation is proposed
by the use of an operator-splitting method. Let us also mention the paper of [KRI2] where a space-
discretization of the equation is investigated by considering monotone numerical fluxes. In a recent submitted
work, [BCG] proposed a time and space discretization of the problem and showed the convergence of a class
of flux-splitting finite volume schemes towards the unique stochastic entropy solution of the problem by
using the theoretical framework of [BVW12|. For a thorough exposition of all these papers, we refer the
reader to the introduction of [BCG]. Note that to the best of our knowledge, in the case of a space and
time dependent flux-function, stochastic equations of type have not been studied yet from a theoretical
(respectively numerical) point of view, neither by means of entropy formulation (respectively finite volume)
framework nor by any other approachs.

1.2 Goal of the study and outline of the paper

The aim of the present paper is to fill the gap left by the previous authors by introducing a convergence
result for a both time and space discretization of multi-dimensional nonlinear scalar conservation laws forced
by a multiplicative noise and with a time and space dependent flux-function. More precisely, we firstly show
that under assumptions H; to Hs, Problem is well-posed. Secondly, we introduce a general finite volume
monotone scheme for the discretization of such a problem and, by assuming additionally that hypothesis
Hg holds, we prove that the associated finite volume approximate solution converges in L7 (Qx Q) for all
1 < p <2 to the unique stochastic entropy solution of the equation.

The paper is organized as follows. In Section [2} by adapting the work of [BVW12] to the case of a time
and space dependent flux-function, we propose the definition of a stochastic entropy solution for and
state the well-posedness result of the problem. For the sake of clarity, the proof of this theoretical result
is presented in Appendix [A] In Section [3] we define the general monotone scheme used to approximate the
stochastic entropy solution of . Then, we give the main result of this paper, which states the convergence
of the approximate solution towards the unique stochastic entropy solution of the equation. The remainder
of the paper is devoted to the proof of this convergence result. In Section [d] several preliminary results
satisfied by the finite volume approximate solution denoted w7y j are stated. Then, Section |§| is devoted to
show the convergence of ur , towards the unique stochastic entropy solution of Problem .



1.3 General notations

First of all, we need to introduce some notations and make precise the functional setting.

. Q=R%x(0,7T).

. Throughout the paper, we denote by Cy and Cy the Lipschitz constants of f and g.

. |z| denotes the Euclidian norm of  in R? and z.y the usual scalar product of  and y in R%.
. Forp=1,dor d+1, |||l denotes the L*=(R”) norm.

. Forany p> 1, L} (Qx Q) denotes the set of measurable functions f such that for any compact subset K

of RY, fe LP(Qx K x (0,T)).

. E[.] denotes the expectation, i.e. the integral over {2 with respect to the probability measure P.

. D (Rd x [0,T)) denotes the subset of nonnegative elements of D(R? % [0,T)).

. For a given separable Banach space X we denote by ./\/’i(O,T,X ) the space of the predictable X-valued
processes endowed with the norm H¢H3\/§,(0,T,X) =F [fOT ||¢||§(dt] (see [DPZ92] p.94).

. A denotes the set of any C*(R) convex functions such that 7', n”” and 5" are bounded functions.

. ® denotes the entropy flux defined for any a € R and for any smooth function 7 € A by
D(a) = f n'(0)f'(c)do. Note in particular that ® is a Lipschitz-continuous function.
0

2 The continuous problem

Let us introduce in this section the definition of a solution for Problem and the existence and uniqueness
result which ensures us the well-posedness of such a problem. This result is obtained under hypotheses H1
to Hs and is adapted from the work of [BVW12].

Definition 1 (Stochastic entropy solution)
A function u of N2 (O,T, Lz(Rd)) nL> (07T;L2(Q X R’i)) is an entropy solution of the stochastic scalar

conservation law with the initial condition ug € LQ(Rd), if P-a.s in QQ, for any n € A and for any
e D' (RYx[0,T))

0 < [Rd n(uo)cp(x,o)dm+an(u)atgo(m,t)dmdmL@(u)@(x,t)_vw(x,t)dmdt
+_/0T_/Rd ﬁ,(u)g(u)np(m,t)dach(t)+%L)g2(u)n”(u)¢(m,t)dxdt_

For technical reasons, as in [BVW12| and [BCG], we also need to consider a generalized notion of entropy
solution. In fact, in a first step, we will only prove the convergence of the finite volume approximate solution
uT ) to a measure-valued entropy solution. Then, thanks to the result of uniqueness stated in Theorem [1}
we will be able to deduce the convergence of ur i to the unique stochastic entropy solution of Problem (|1).

Definition 2 (Measure-valued entropy solution)

A function u of N2 (O,T, L? (]Rd x (0, 1))) nL™ (O,T; L2(Q x R? x (0, 1))) 18 a measure-valued entropy so-
lution of the stochastic scalar conservation law with the initial condition ug € L*(R?), if P-a.s in Q, for
any n e A and for any p € D+(Rd x [O,T))

1 1
0 < [d n(uo)np(m,())d:v+f f n(u(.,a))c’)tgo(x,t)dadmdt+/ f P(u(.,®))v(x,t).Vao(zx, t)dadzdt
R Q Jo QJo
T 1 , 1 1 ”
oL G e a)ete tdadedw () + 5 [ [ o)) (. 0)p (e, Hdadzdt.
Theorem 1 Under assumptions Hi to Hs there exists a unique measure-valued entropy solution for the

Problem and this solution is obtained by viscous approrimation. Moreover, it is the unique stochastic
entropy solution in the sense of Definition[]

Remark 3 The proof of this theorem is presented in Appendiz[A]l The existence proof relies on a parabolic
regularization of and the uniqueness result is obtained by adapting the Kruzhkov’s doubling variable
technique of the deterministic setting to the stochastic case as it is done in [BVWIZ].

3 Main result

In the sequel, assume that assumptions H; to Hg hold. Let us first give a definition of the admissible meshes
for the finite volume scheme.



3.1 Meshes and scheme

Definition 3 (Admissible mesh) An admissible mesh T of R for the discretization of Problem s
given by a family of disjoint polygonal connected subset of R? such that R? is the union of the closure of the
elements of T (which are called control volumes in the following) and such that the common interface of any
two control volumes is included in a hyperplane of R®. It is assumed that h = size(T) = sup{diam(K), K €
T} < oo and that, for some & € R}, we have

1.
ah®<|K|, and |0K|<—h™", VKT, (3)
«

where we denote by
. & the set of all the interfaces of the mesh T .
. OK the boundary of the control volume K.
. |K| the d-dimensional Lebesgue measure of K.
. |0K]| the (d - 1)-dimensional Lebesgue measure of OK .
. Ek the set of interfaces of the control volume K.
. N(K) the set of control volumes neighbors of the control volume K.
. ok,L the common interface between K and L for any L € N(K).

. nk,r the unit normal vector to interface ok 1., oriented from K to L, for any L e N(K).
From we get the following inequality, which will be used several times later :
|OK| 1
— < = 4
|K| ~ a2h )
We now define the general monotone scheme. Consider an admissible mesh 7 in the sense of Definition

In order to compute an approximation of u on [0,7] we take N € N* and define the time step k = N eR}.

N-1
In this way [0,7] = | [nk, (n+1)k].

n=0
The equations satisfied by the discrete unknowns denoted by u%, n € {0,..., N =1}, K € T, are obtained by
discretizing Problem . For the discretization of such a problem, we need to define the numerical flux.

Definition 4 (Monotone numerical flux) We say that a function F € C(R*,R) is a monotone numerical
fluz if it satisfies the following properties:

. F(a,b) is nondecreasing with respect to a and nonincreasing with respect to b.

. There exists F1,Fs >0 such that for any a,b € R we have |F(b,a) — F(a,a)| < Fila-b| and |F(a,b) -
F(a,a)| < Fsla -1

. F(a,a) = f(a) for all a e R.

Remark 4
. It is not necessary to suppose F' to be continuous, even with respect to each variable separately.

. It is possible to choose a numerical flur F depending on T,0k,L,n, as soon as the constants Fy, F>
can be chosen independently of T,0k,,,n. For the sake of readability we will consider in what follows
a numerical fluz F independent of T, K|L,n.

The set {u%, K €T} is given by the initial condition
1
uye = 04 /Kuo(x)da:, VKeT. (5)

The equations satisfied by the discrete unknowns uy, n € {0,..., N -1}, K € T are given by the following
explicit scheme associated to any monotone numerical flux F': for any K € T, any n € {0,..., N - 1}
K n n n n n n n n n Wn+l - Wn
|—k|(uK+1 —ug)+ Yy, |0K,L|{UK,LF(UK,UL) - UL,KF(UL,UK)} = |K|9(UK)T» (6)
LeN (K)

where, by denoting d~y the (d - 1)-dimensional Lebesgue measure

" 1 (n+l)k N
D [ @@ tng) dy@t,
’ IC|0'K}L‘ nk OK,L
" 1 (n+l)k + 1 (n+l)k _
o} = 7f f (5(x,t).np k) dy(x)dt = f f (0(,t).nk,1) dy(z)dt
’ k)|O'K,L| nk OK,L IC|O'K,L| nk 9K,L

4



and W" =W (nk) Vn e {0,...,N - 1}.

The approximate finite volume solution w7 may be defined on € x R? x [0,T) from the discrete unknowns
uk, KeT,ne{0,...,N -1} which are computed in @ by:

urp(w,@,t) = uy for we Q,z e K and t e [nk, (n+1)k). (7

Remark 5 Note that

" " 1 (n+1)k R
VK,L “UL,K = 77 o(w,t).nk dy(z)dt
’ ’ k|O'K7L| nk OK,L

1 (n+1)k

and Vg +VL K = Horr] Jue f |9(x,t).nK,L|dy(z)dt.
, n OK,L

Moreover, since div[t(z,t)] = 0 for any (z,t) e R? x [0,T], we have

Z |UK,L|(’U?<,L - 'UZ,K) =0. (8)
LeN(K)

Indeed,

n n 1 (n+1)k .
Y loxil(vk L -vix)= \UK,Ll(i f / v(l’,t)-nK,LdV(w)dt)
]C|O'K,L| nk OK,L

LeN(K) LeN (K)
1 (n+l)k
- / div[o(z, t)]dzdt = 0.
k Jnk K

Remark 6 (On the measurability of the approxzimate finite volume solution) Let us mention that
using properties of the Brownian motion, for all K in T and all n in {0,...,N - 1}, u is Fpi-measurable
and so, as an elementary process adapted to the filtration (Fi)s0, ur ) is predictable with values in L*(R?).

3.2 Main result

We now state the main result of this paper.

Theorem 2 (Convergence to the stochastic entropy solution) Assume that hypotheses Hi to Hg
hold. Let T be an admissible mesh in the sense of Deﬁm‘tion@, NeN* and k = % € R} be the time step. Let
ut,k be the finite volume approzimation defined by the monotone finite volume scheme (6) and @ Then
uT . converges to the unique stochastic entropy solution of in the sense of Definition|1], in L (£2x Q)
for any p <2 as h tends to 0 and k/h tends to 0.

Remark 7 Under the CFL Condition
a’h

ks(l—g)m 9)

one gets for & = 0 the L?Li,z stability of ur stated in Proposition p@ and for some & € (0,1) the
“weak BV estimate stated in Proposz'tion@ p@. In the deterministic case, condition @ for some € € (0,1)
is sufficient to show the convergence of ur i to the unique entropy solution of the problem, whereas in the
stochastic case this condition doesn’t seem to be sufficient to show the convergence of the scheme, that is
why we assume the stronger assumption k/h -0 as h — 0.

Remark 8 This theorem can easily be generalized to the case of a stochastic finite dimensional perturbation
of the form g(u).d W where g takes values into R and W is a p-dimensional Brownian motion.

4 Preliminary results on the finite volume approximation

4.1 Stability estimates

Let us state several results on the finite volume approximate solution w7 defined by @ and .

Proposition 1 (L{°L2 , estimate) Let T > 0, ug € L>(R?), T be an admissible mesh in the sense of
Deﬁnition@ NeN and k = % e R} satisfying the Courant-Friedrichs-Levy (CFL) condition

ah

< m (10)



Let ur i be the finite volume approximate solution defined by @ and @
Then we have the following bound

c?r/2
||UT,kHL°°(0,T;L2(Qde)) < e ||U0||L2(Rd)-

As a consequence we get

TC?
lur kll72(0xq) < Te" 7 lluol72 gay-

Proof. Let us show by induction on n € {0,.., N — 1} the following property:

> IKIB[(ui)*] < (1+kCE)" luol T2 oy - (Pn)
KeT

First one has

S IK|E[(u%)?] > |K|E[(|11<|f;<”°($)dx)2]

KeT KeT

IN

2
||U0||L2(Rd)-

Set n € {0, ..., N -1} and assume that (P, ) holds. Let us multiply the numerical scheme @ by u%, we thus
get
‘K| n+l

T —ui ik = - Y Jowl{vkuFulul) - vl P(ul ui) buk
LeN (K)

K n n n n
+%g(uK)(W How Jug-

By using formula ab = 3[(a + b)? - a? - b*] with a =« —u?% and b = u}% we obtain

1 K n n n n n n n n n n n
7u [(uKH)2 - (uK)2 - (uKJrl - 'U/K)Q] =- Z lox,L {UK,LF(UK7UL) - 'UL,KF(UL7UK)}UK
2 k LeN (K)
K n n n n
+ %g(uK)(W oWk
and then
|5]

K "
Sy i) =Bl i -k S ool P uE) — o P i) Yk
LeN (K)

+[Klg(ui) (W™ = W ulk.

Using the finite volume scheme @ we can replace (upt! —u%)? and we take then the expectation. Thanks
to the independance between the random variables (W™ — W™) and u}, together with the equality

E[(g(uie) (W™ =W™)*] = E[(9(ui))* [E[(W™** = W™)*] = kE[(9(u3)) ], we get

'?E[(wfz“)?—(uﬁf]@ff[( 2D |aK,L|{v?<,LF(u3auz>—vz,KF(u’z’u’M}+g<u32)(W”“—W">)]

‘K| LeN (K)

—kE Z |UK,L|{v?(,LF(uT}(,u2)—vZKF(ug,u?()}u?(]+|KE[g(u7}()(W"+1—W")uT}(]
LeN (K)
k2 1 kx|
Bl weal{okn Pt - vz} |+ e ((gi?)
2|K]| LeN(K) 2
- kE Z |O'K,L|{’U§’LF(U?(,UTZ) —vaKF(uTLL,u?()}u’;{]. (11)
LeN (K)

Using , which states that > |0k L|(vi,r — I k) =0, this equality can be rewritten as
LeN(K)

K n n
%E[ up™)? - (ui)?] =B1 - B2 + D,



2 2
where Bj = k—E ( Z |UK,L|{vﬁ,L(F(u?(7UZ)—f(UTIL())_UZ,K(F(UZaU?()_f(u?())})
2|K| LeN(K)

B; - kE[ > s el{vkon(F e uf) - Fuf)) - o s (F(uf k) - f(u?())}u%]
LeN(K)
KKl

d D
an 5

[(9(uk))*].

Let us now define B3 by

Bs=k 3 |aK,L|E[v?<,L{u}z(F<u?<,uz> - f(ui)) - i (Fufe,ut) - f(ui))
(K,L)eTp

_UZ,K{u;L((F(uz,u?{) - f(u?()) —uf(F(u’Ll,u?() - f(u’i))}]

where ¥, = {(K,L) eT?: L e N(K) and uf > uz} One notes that Z Bs> = Bs.
KeT

Denoting by ¢ the function defined for any a € R by ¢(a) = / sf'(s)ds, an integration by parts yields, for
0
all (a,b) e R?

o) - o) = [ sf(s)ds =b(F() - F(a,0)) ~a(7(@) - Fab)) - [ (F()~ Fla,0)) s

By using this formula, the term Bs can be decomposed as Bs = By — Bs where

Bys=FE E klow,o|{vk 1 K f(s) - F(ufk,ur))ds |+ vl i & f(s) - F(ur,ux))ds
and

(K,L)eTn

Bs = E[ > klok|(vkr - UZ,K){¢(U?<) - ¢(U7LL)}:| .

Note that since div[d(z,t)] =0 V(z,t) e R* x [0,T], Bs = 0. Indeed,
1 (n+1)k n "
BBl ¥ Mol [ [ @ mcdy@)d) {s(ui) - é(ui) )
K.L)e ]C|0'K7L| nk OK.,L
(K,L)e%n
(n+1)k "
) {( L) K‘Lv(x,t).nK,Ldv(x)dt)qﬁ(uK)

(K,L)eXp
(n+l)k
+ (f / ﬁ(x,t).nL,Kd’y(x)dt) o(ur,
nk OK,L

:E[ > > luk) ‘/nliml)k /UKL D(x,t).nKLd'y(a:)dt]

KeT LeN(K)

=FE

(n+1)k
:E[ S p(uk) / f div[ﬁ(x,t)]dwdt]
KeT nk K
=0.
Let us now turn to an estimate of By.
We now use the following technical lemma from [EGHO0] (Lemma 4.5 p.107):

Lemma 1 Let G: R - R be a monotone Lipschitz-continuous function with a Lipschitz constant Cg > 0.
Then:

|fcdg(t) _G(e)dt

1
> @(g(d) ~G(c))*, Ve, d e R.

From this lemma, we can notice that for all a,b € R we have

b b 1 2
fa F(t) = Fa,b)dt f Fla,t) - F(a,a)dt > 5= (f(a) - F(a.)) (12)
and
fabf(t) — F(a,b)dt > _/abF(m b) - F(a,b)dt > Tllpl(f(b) - F(a,b))’ (13)



F: F;
Multiplying 1' (respectively li by 2 (respectively by ! ) and adding the two inequalities
F1 + F2 Fl + F2

yields:

fab F(t) - F(a,b)dt > [(F(a) = F(a,0))* + (F(b) - F(a,b))"].

1
2(F1 + FQ)
We can deduce from this inequality that

B3s=Bs>k Z |O’K,L|E|:
(K,L)e%,,

st (P - P+ (i) - 1))

n

e U0 - Pkl s (e - Fakiof )] an

This gives finally a bound on Bs. Let us now turn to the study of Bj.
We have, after summing over K € T

S B-Y) ij[( > ok

KeT KeT LeN (K)

{vz,L(F(u;z,uZ)ff(u’&))fvz,K(F(uz,u?affo&))}) ]

,Un
Using the notations A = F(ul,u}) - f(uk), B = F(u},uj) - f(uk), (= ——"v,
Vi, t VLK
Un
1-¢= LE e (0,1) we get using Cauchy-Schwarz inequality that

n n
Vg, TUL K

( > O'K,L|{'U?<,LA_'U2,KB}) —( > JK,L'(U?(,L+UZ,K){§A_(1_§)B})

LeN(K) LeN(K)
n n n n 2
< Y loknl(rkr+vik) Y. lokol(vkr +vEr){CA+ (1-¢)(-B)}

LeN(K) LeN (K)
<Y okl +vik) Y lokrl(vin +vE k) {CA%+ (1-() B}
LeN(K) LeN(K)

Since (vi, 1 +vf k)¢ =vg 1, and (vi  +vf k) (1= () =v7 i, we get the following estimates
> Bi< ) 72\K|( > loxrl(vik.p +UL,K)) xBl >, \UK,L|{UK,L(F(UK7UL) - f(uk))

KeT KeT LeN (K) LeN(K)
n n n n 2
+ UL,K(F(uLauK) - f(UK)) }] (15)

Using the fact that

> ok.L|(vE,L + v k) < V]|OK| (16)
LeN (K)
which implies thanks to the mesh properties and the CFL Condition that
K a2 1 1
; e . (17)

— o vr L +Ur k) <KV < T =T
‘K| LE/\;(K)| K,L|( oL L’K) |K‘ V(Fl +F2) azh F1 +F2

one finally gets by reordering the summation in

Y Bi< Y WK‘L'E[v?(,L{(F(U%,u’i)—f(u}%))Q+(F(U?<,u2)—f(u7£))2}

KeT (K,L)eT, 2(F + F»)
#0f e { (k) = F(ui, ui))” + () - F(uf, uk)) }] (18)
In this way, using and ((18)), since

5 @E[(u}?l)?]: » (Bl—B2+D+@E[(u’;<)2])

KeT 2 KeT
one gets
K e kK n K n
> Blplarn< $ Margi+ x> o)
KeT KeT KeT
K n
<y %(1+k0§)E[(uK)2].

KeT



In this way, using (P,) we get

> IKIE[(ug)?] < 3 |K|(1+kCo)E [(uk)?]
KeT KeT
< (1+kCH) ™ Muol|7 2 gay-

We deduce that (Pn+1) holds, and we conclude by induction that

c2r/2
HUT,kHLw(o,T;H(Qde)) <e%’! HUOHL2(R'1)'
This gives the Lg” Li,z stability of the approximate solution. As a consequence, we have
-1

N
lurkllZeeqy = 2 2 KIKIE[(uk)?]
n=0 KeT

IN

c2r 2
Te s [luo|[z2(ra)-

4.2 Weak BV estimate

Proposition 2 (Weak BV estimate) Let T be an admissible mesh in the sense of Definition @ T >0,
N eN* and let k = % e R} satisfying the CFL Condition

a’h

kg(l_g)V(F1+F2)7

(19)
for some £ € (0,1).
Let {u’}(,K eT,ne{0,....N - 1}} be given by the finite volume scheme @
We have then the two following bounds:
1. There exists Cy € Ry, only depending on T, uo,&, F1, Fo and Cy such that

N-1

2Lk ) loww

n=0 KeT LeN(K)

B [vie n{F (uie, ui) = f(ui)}* + vf s (P (., uic) - fuio)}*] < o

2. Let R >0 be such that h < R. Then, there exists Ca € R}, only depending on R,d,T,&,uo, &, F1, Fo and
Cy such that

N-1
ko> |0K,LE|:'U?(,L{ max (F(d,c) - f(d))+ max (F(d,c)—f(c))}

n n n n
=0 (K,L)GTE uf <c<dsuly uf <csdsuly

+ UZK{ max (f(d) - F(c, d)) +  max (f(c) - F(c, d))}] < CQh_l/Q’
uZScsdsu% uzgcsdsu?(

where

Tr = {K €T such that K c B(0,R)} and T = {(K,L) € T such that L e N(K) and uf > u}}.

Proof. Similarly to the proof of Proposition multiplying the numerical scheme by ku}, taking the
expectation, summing over K € 7 and using the independence properties of the Brownian motion yields

A+B=0,
where
A= A1 +A2,
1=t 2 k2 2
Av=—2 % 3 HKIE[(90ii))*] + T B ( 5 |aK,L|{v?<,L(F(uz,u2)—f(u}%))—vz,K(F(uz,uz)—f(u%))}) ,
2 n=0 KeT |K| LeN(K)
A= 3 IKIE[()? - (u5)?].
KeT
and

—

B=Y > k|aK,L|E[{v?<,L(F<u;z,u2)—f(u;w)—vz,K(F(uz,u?()—f(u;z))}u;z].

n=0 KeT LeN'(K)



Similarly to , it follows from the CFL Condition and the mesh properties that

k
— . (20)
|K]| LEJ\Z[EK) Fy +F
Using (20) and Cauchy-Schwarz inequality, we deduce that
1 N-
Al 2 5 Z k Z |K\E[(g(uK)) :|
n=0
_(175)1\§1k 7|0K’L| EI:’U;L(,L{ max (F(d c) - f(d)) max (F(d c) - f(c)) }
2 0% (Dyes, (P11 F2) uf <esd<uf u Sesdsu

+’U27K{ max ((d) F(c, d)) max ((c) F(c, d)) }]

n n n
L<c<d<u L<c<d<

where we recall that T,, = {(K,L) € T?: L e N(K) and u% > u}}.
Thus,

1 2 TC? 2 1 2
A > _*Tcge g||U0||L2(1Rd)—§||U0||L2(Rd)

-9 Ny aK,L|E[u;;,L{u ma | (F(d.0)= (@)« max . (P(d.0) - /()]

C2(F + Fy) n=0 (K,L)eT, 7 Se<d<uye 7 Se<dsu

+’U2’K{ max (f(d)- F(cd)) max (f(c) - F(c,d)) }:|

uf <c<d<uly uf <c<d<uly

We now study the term
N-1
B=Y kY, Y |0K,L|E[{v?<,L(F<uz,uz> — F(uk)) = vF s (F(u, ui) - f(u%))}u;z].
n=0 KeT LeN(K)

Reordering the terms and using the result obtained in the proof of Proposition [1| (the fact that Bz = Ba),
we get:

ko3 |aK,L|E[v?<,L{u;z(F<ux,u’z> - J(ui)) ~ul (Flufe,ui) - f(ul) }

(K,L)eTn

(R (P k) ) = (P ) - )|

=k > lox.il|E [{UK,L fn f(s) = Fug,ur)ds +vr i fn f(s) - F(UL:UK)ds}:I
u 'U4L

(K,L)e%,, K
Taking the sum over n, one can then rewrite B in the following way

B=Yk % |0K,L|E[v?<,L{u}’<(F(u?<,u7£)*f(u}?))*UTZ(F(U%U’E)*J”(U’Z))}

n=0 (K,L)eTp

o e (e (F i)  f(u)) — uf (F(uf i) - f(uz>)}]

N-1 ™ ™
= Z k Z |0K’L|E[{U%’L f7 L f(s) - F(uk,ul)ds+vi x /nK £(s) —F(uz,u}l{)ds}]
UK vr

n=0 (K,L)eT, .

Let us now turn to an estimate of B.
For this purpose, let a,b € R and define C(a, b) = {(c,d) € [min(a,b), max(a,b)]*: (d - ¢)(b-a) > 0}. Thanks
to the monotonicity of F, the following inequality holds for any (c,d) € C(a,b):

b d d
f F(s) = F(a,b)ds > f £(s) - F(a,b)ds > f £(s) = F(c,d)ds.
We now use again Lemma [I] p[7] and deduce that for all (c,d) € C(a,b):

b d
fa f(s)—F(a,b)dszfc f(s)—F(c,d)ds>fC F(e,s) = F(e,d)ds > 5o (f(c) Fle,d))’ (21

and
1

b d
fa f(s)—F(a,b)ds;fc f(s)—F(c,d)ds;fC F(s,d) = Fe.d)ds > 30 (£(d) - (e, D). (22)
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F:
Multiplying 1) (respectively 1} by ——— (respectively by
F1 + F2

F
L), taking the maximum for (c,d) e
F1 + F2
C(a,b) and adding the two inequalities yields:

b 1 2 2
fa f(s) - F(a,b)ds > PZEY ) I:(c,dI)Ilgi(a,b) (f(e)-F(c,d))"+ max (f(d)-F(c,d)) ] .

(c,d)eC(a,b)
Taking the sum over n, we can deduce from this last inequality that

N |UKL| n
P B B W [ g 2 (OO IO) e (P01

+U2’K{ungil§u" (f(d)-F(c, cl))2 max (f(c) - F(c,d)) }]

ul <c<d<u
Therefore, since A + B =0, by denoting C = (1 + TCﬁeTCS)HuoHQm(Rd
1~
-C > lok,L|E v},L{ max (F(d,c) - f(d) max (F(d,c) - f(c) }
0 a5 el (01 s 0 - 509)

u’f <e<d<u

um <c<d<u n

+vZ,K{ z<mc<aé>§u” (f(d) F(e, d)) max (f(c) F(c, d)) }:|

which, in turn, gives the existence of C1 € R}, only depending on T',C', Cy,§ and [[uol|2(ra) such that

u”t <e<d<u’,

Jel E[U%L{u gmcgfiu" (F(d c) - f(d)) max (F(d c) - f(c)) }

u’f <e<d<uly

+vz7K{ n(r?%;iu (f(d)-F(c, d)) max (f(c) - F(c,d)) }] < Ci. (23)

Moreover by reordering the summation we have in particular
N-—

[un

> X lolB vk {F (i ut) - (i)} + ok s {F (i, i) - (3} < O,
n=0 KeT oefg

O=0K,L

which proves the first point of the proposition. Let us now turn to the second point of the proposition
Set R >0 be such that h < R and define the sets

Tk = {K €T such that K c B(0,R)} and T5

R~ {(K,L) e T such that L e N(K) and u} > u}}
Now we aim to estimate

N-1
{ koY |O'K,L|E|:U;L(7L{ o max (F(d,c) - f(d)) + o ax (F(d,c) —f(c))}
n=0 (K,L)eTR upSesdsuy 1A A

n<<<n
Lcd

+’U27K{ "'<I£1<ad>§u"' (f(d)-F(c,d))+ max (f(c)-F(c, d))}]}
Let us denote by

Ti=, max  (F(do)-f(d)+  max  (F(dc)-f(e))

and

Tz = . n( (d) - F(c,d)) + <m<aluix (f(e) - F(c,d))

Using Cauchy-Schwarz inequality, one gets

n=0 (K,L)exR

N-1 2
( Z k Z ‘O'KyL'EI:’U}L(,LTI +/UZ’KT2])

N-1 N-1 n nopy2
S(Z k Z 0K7L|(vﬁ’L+vz,K))x(z k Z |O’K7L|E|:(UK,L 1+ oy g Te) ])
n=0 (K,L)eIR

n n
n=0 (K,L)exR Vi,L T VL K
(N—l

N-1
Z k \UK,L|(U?(,L + 'UZ,K)) x ( Z k Z |0'K,L|E|:U?(,LT12 + UE,KTQQ:I)v
n=0 (K,L)exR

n=0 (K,L)eTR

11



n n 2 n n
where we have used the convexity inequality (UK’LTl - UL’KT2) < VKL T? + YLK T3. Note
Vi VUL K Vi ULk Vi ¥ VUL Kk
that
N-1
Yk Y lokol(wkr+vig)<T Y, |0K|V <T Card(Tr) max|0K]|V,
n=0 (K,L)eTR KeTr KeTr

1 4
and by deducing from the mesh properties that {(nz;,’wa\ < =h*" and the bound
eTRr a

BO,R)| _ |B(O,R)|

min |[K| ©  ahd
KeTg

Card(Tr) <

we have

N

-1
2k Y loxrl(vkL +oL k) <
n=0 (K,L)eTR

Finally, using and , the fact that

TV|B(0, R)|

a’h 24)

! < 2{me (F(d,c) - f(d))” + e (F(d0)- f(C))Q}

T; < 2{ max (f(d)—F(c,d))2+ max (f(c)—F(c,d))2}

n <egd<um n <egd<um
uf <c<d<uly uf <c<dsuly

one finally gets

(ilk > |0’K’L|E['U;gyL{ max (F(d,c)—f(d))+ max (F(d,c)—f(c))}

n <e<d<u® " <e<d<u™
n=0 (K,L)yetR u <c<d<ul uf <c<d<uly

2
. 2TCi|B(0, R)|V
b azh ’

+UZK{ max (f(d)-F(c,d))+ max (f(c)—F(c,d))}])

u <c<d<ul u <c<d<uly

which concludes the proof of the second point of the proposition. m

4.3 Convergence of the finite volume approximate solution

First of all, note that the a priori estimates stated in Propositiononly provide (up to a subsequence) weak
convergences for uy . Moreover, due to the nonlinearity of f and g, one needs compactness arguments
to pass to the limit in the nonlinear terms and these arguments have to be compatible with the random
variable. The concept of Young measures is appropriate here and the technique is based on the notion
of narrow convergence of Young measures (or entropy processes), we refer to BALDER [Bal00| but also to
EYMARD-GALLOUET-HERBIN [EGH95].

In this way, taking a sequence of approximate finite volume solution, wr j, it converges (up to a subse-
quence still denoted wr ) in the sense of Young measures to an “entropy process” denoted by u which
belongs to L2(Q X @ x (0,1)). Precisely, given a Carathéodory function ¥ : Q x @ x R - R such that
U(.,ur k) is uniformly integrable, one has:

E[/Q qf(.,ufr,k)dxdt] —>E[fQ follll(.,u(.,a))dada:dt].

A proof of this result can be found in [BVW12], Section A.3.2. We recall that a function ¥: QxQ xR - R
is a Carathéodory function if for almost any (w,z,t) € Q x Q the function v — ¥ (w, z,t,v) is continuous and
for all v € R, the function (w,z,t) » ¥(w,z,t,v) is measurable. We also recall that a sequence (1n)ns0 of
functions 1, : 2 x Q — R is said to be uniformly integrable (see [BVW12], Section A.3.2.) if it satisfies the
following properties:

. (¥n)ns0 is bounded in L'(Q2 x Q).

. (¥n)no is equi-integrable, that is to say that for any € > 0, there exists § > 0 such that for any
measurable set A of Q x Q satisfying (L4 ® P)(A) < §, we have for any n e N,

fA (b (w0, 2, t)|dadtdP <

(where £% is the d + 1-dimensional Lebesgue measure).

12



. For any € > 0 there exists a measurable set K. of Q x Q with (£4' ® P)(K.) < o and such that for
any n € N we have

f [ton (w, x,t)|dedtdP < €.
K¢

We recall the following classical result. If K is a subset of () with finite measure, a sequence of function
bounded in LP (2 x K) for some p > 1 is uniformly integrable.

Remark 9 (On the measurability of u) Since ur i is bounded in the Hilbert space Nj(O,T, LZ(Rd)), by
identification one shows that ur j — fol u(., a)da weakly in L*(Q x Q) so that fol u(.,a)da is a predictable
process with values in L* (Rd). An interesting point is the measurability of u with respect to all its vari-
ables (w,x,t,c). Revisiting the work of PANov [Pan96] with the o-field Pr @ L(R?), one shows that u is
measurable for the o-field Pr ® L(R?x]0,1[), thus u € ./V’f,(O,T7 L*(R%x]o0, 1[)) See Appendix A.3.3 p.707
[BYW12].

Remark 10 (L""(O7 T; L (Q xR x (0, 1)))) regularity of u) Since the sequence of approzimate solutions
uT,k 18 bounded in L”(O,T; L*(Q x Rd)) according to Pmposition following [BVWI12] Remark 2.4 p.667-
668 we show that we L=(0,T; L* (€ x R x (0, 1))).

Note that if one is able to show that u is a measure-valued entropy solution of Problem in the sense
of Definition [2] then, using our reduction result stated in Theorem [I} we will be able to conclude that all
the sequence w7 i converges in Li. (22 x Q) to the unique stochastic entropy solution of in the sense of
Definition [T} Since u satisfied the regularities required by Definition [2] it remains to show that u satisfies
the following entropy inequalities:

Vne A, Vpe D (RYx[0,7)) and P-a.s. in Q

0 < /Rdn(uo)w(x,())dx+fool{U(U(.,a))atw(x,t)+@(U(.,a))@(x,t).vzgo(xt)}dadwdt
+[OT fRdLln'(U(.,a))g(u(.,a))ga(m,t)dadde(t)
o [ [t e, Ddadaar

This is the aim of the next section.

5 Convergence of the scheme

In order to show the convergence of the finite volume scheme @, we are going to use the following lemma,
which states that any general monotone numerical flux can be split into the sum of a Godunov flux and
a modified Lax-Friedrichs flux (also known as Rusanov flux). More precisely, we have the following result,
whose proof can be found in [CHO0]. We give here a simple proof for the sake of completness.

Lemma 2 Any monotone flur F (i.e. any numerical flux satisfying Deﬁm’tion can be written as a convex
combination of a Godunov flur and a modified Lax-Friedrichs flux as follows:
For any a,b e R there exists 6(a,b) € [0,1] such that

F(a,b) =0(a,b)F°(a,b) + (1-0(a,b))F5" (a,b),

where FC is a Godunov flux (see @ below for the definition) and FLF 4s a modified Laz-Friedrichs fluz
with parameter D = max(F1, F2) satisfying :

FEF (a,b) = w ~D(b-a).

Note that since D is fized independently from a and b, F'F is indeed a fluz-splitting type scheme.

Proof. We give the proof in the case a < b (the case a > b is similar). If a < b, one has F%(a,b) = f(c)
where c € [a,b] is such that f(c¢) =min{f(d), d € [a,b]}. Then, thanks to the fact that F(c,c) = f(c¢) and to
the monotony properties of F, one has (since a < ¢ < b) F(a,b) < F(c,b) < F(c,¢) = f(¢) = F€(a,b).

From the other hand, the second property of F' (in Definition 4) gives F(a,b) > F(a,a) - Fa(b-a) >
f(a) -D(b-a) and F(a,b) > F(b,b) — Fi(b-a) > f(b) - D(b-a).

Adding this two inequalities leads to F(a,b) > 1(f(a) + f(b)) - D(b—-a) = F5"(a,b). This proves that
F(a,b) is a convex combination between F°(a,b) and F5¥ (a,b) and concludes the proof of Lemma 2. m

Note that to show the convergence of the scheme, we will treat in a first step the case where F' is a Godunov

numerical ﬂux; More precisely, the fact that F' is a Godunov numerical flux will be only use to study the
terms B™* - B"* and B"* — BI"* (defined below) in the points 1.2 p and IL.3 p. of the proof of
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Proposition[d] In a second step, we will explain how to treat the general case, i. e when F'is a general mono-
tone numerical flux, by using the decomposition of Lemmato study the terms B"* - B"* and B"* 7Bf’k.

We propose in this section entropy inequalities satisfied by the finite volume approximate solution and
aim to pass to the limit in these formulations in order to show the convergence of the scheme. For technical
reason, one considers a time-continuous approximate solution constructed from wur  and denoted ur j in
the sequel.

5.1 A time-continuous approximation

Set K € T, ne{0,..,N -1} and consider u%(s) the time-continuous stochastic process defined on  x
[nk,(n+1)k) from the discrete unknowns u, by :

n n s 1 n n n n n n s n
Uk (s) = ug - /k K] > \UK,L|{UK,LF(UK,UL) - UL,KF(uL>uK)}dt + /k g(ux )W (t) (25)
n LE n

N(K)
n S — nk n n n n n n s n
=UK ~ T > |O'K,L|{UK,LF(UK7UL) - UL,KF(uLauK)} + / g(uf)dW ().
|K| LeN(K) nk

In this way, we have for almost all w, @% (w,nk) = u% and 4% (w, (n+1)k) = u%" and therefore we can now

define a time-continuous approximate solution @7 on Q x R? x [0,T) by
trk(w,x,t) =g (w,t),weQ,xe K and t € [nk, (n+ 1)k]. (26)
Using again the fact that Y |ox L|(vk 1 — v x) = 0 we can rewrite for any K € 7 and n € {0,..., N -1}

LeN(K)
the time-continuous approximate solution 47, on Q x K x [nk,(n + 1)k] in the following way:

e (s) = ufe - S|;(’”|"“ > >|aK,L|{v?(,L(F(u%,u2)—f(u;z))—vz,K(F(u;u?()—f(u;z))}
+ [ gugyaw () @)

We now estimate the difference between the continuous approximation @7 and the finite volume solution
UT k-

Proposition 3 Let uo € L*(R?) and T be an admissible mesh in the sense of Definition @ N ¢ N* and
let k = % € R} satisfying the CFL Condition @) Let ut ) be the time-continuous approximate solution
defined by @), and uT i be the finite volume approzimate solution defined by (@) and (@) Then there exists
c € R} depending only on T,Cy, F1, F2,&,V and uo such that

_ 2
[|lwr k- uT,kHLz(QXQ) <c(h+k).
Proof. Using the equivalent definition of ur i,

_ 2
llur e = 47 k22 (2x )

5 1\rz—:1-/n(n+1)k/KE|:(_g(u})(W(s)—Wn)

KeT n=0 Jnk

s—nk
+ Z |UK,L
|K| LeN (K)

N-1 ,(n+l)k n n 2
BB L el -]

{vi L (F (e, uf) - f(ufe)) = o, s (F(u, uie) - f<u?<>)}) ]da:ds

' |K|E[(S|;(”k > lownl{vie (P (uie,ui) = f(uie)) = vF x(F(uf, ufc) —f(u;z»}) ]}d

LeN (K)

0
N-1 kQK
+ k ‘ |E Z |O’K,L
LeN (K)

(iR (P o) = F0) =P i) - 1) ) |

We use now Cauchy-Schwarz inequality, the assumptions on the mesh , the CFL Condition (10) and then
the first estimate given in Proposition [2] (note that we can apply this Proposition since the more restrictive
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CFL Condition is fulfilled):

llur i - ﬂT,k”QL?(QxQ)
< kC;HUT,kHi?(QxQ)
= 2 ‘aK‘ n n n n 2 n n n n 2
+ Z k Z Z E°V ——lok L|E| vk, (F(ufk,ur) - f(uk)) +7}L,K(F(uL7uK) - f(uk))
|K|
n=0 KeT LeN(K)
a’h

< kC;HuT,kHQLz(QXQ) +C1 m

where we have used the constant C given by Proposition[2] =

5.2 Entropy inequalities for the approximate solution

In this section, entropy inequalities satisfied by the approximate solution are introduced (Proposition @,
and will be used in the proof of convergence of the numerical scheme (Theorem [3). In order to obtain
these entropy inequalities, some discrete entropy inequalities satisfied by the approximate solution are first
derived in the following proposition. From now on, we assume that F' is the Godunov flux, namely defined

by :
rr[lirllﬂ f(s) ifa<b
F(a,b) = nﬁéx] f(s) ifa>b (28)

For all (a,b) € R? we will denote by s(a,b) € [min(a,b), max(a, b)] a real such that F(a,b) = f(s(a,b)). We
define then the associated numerical entropy flux G by G(a,b) = ®(s(a,b)) for any a,b € R. Note that for
all a e R, G(a,a) = ®(a).

Proposition 4 (Discrete entropy inequalities) Assume that hypotheses Hi to Hg hold and that F is
the Godunov flux defined by ‘ Let T be an admissible mesh in the sense of Deﬁnition@ N e N* and let
k= % e R} be the time step. Then P-a.s in Q, for any n€ A and for any ¢ € D*(Rd X [O,T)):

-

-T2 [ R - nwi) el nk)da

n=0 KeTr
N-1 (n+1)k
+ > / f B (uk)v(z,t).Vop(z,nk)dzdt
n=0 KeTp ¥ "k K
N-1

(n+1)k - "
DY f [U(UK)Q(UK)W(x,nk)d:rdW(t)
0 KeTr 7™ K

k

3

N-1

(n+1)k . .
2, fnk /Kn (uk)g” (uk )p(x, nk)dzdt

1

+=
2 =0 KeTr
h

> RMK (29)

where for any P-measurable set A, E[ILARh’k] -0 as (h, %) - (0,0).

Proof. In order to prove this proposition, we are going to show firstly that inequality (29) holds for a
certain R™* and in a second time, we will prove that for any P-measurable set A, E[ﬂARh’a 0as h—0.
We will in particular use some technics from [EGHO00] and [CHOO] and adapt these technics to our case.
Let T >0, ug € L* (Rd), T be an admissible mesh in the sense of Definition [3), NV ¢ N* and k = % e R;. We
assume that k/h — 0 as h — 0, in this way we can suppose that the CFL Condition

< (1-¢a’h
S (FL+ BV

holds for some £ € (0,1). In this manner, the estimates given by Proposition [I| and Proposition [2| hold.
Consider 1 € A and ¢ € D*(R? x [0,T)), thus there exists R > h such that supp ¢ ¢ B(0, R—h) x [0,T). We
also define Tr = {K € T such that K c B(0,R)} and TF = {(K, L) € T3 such that L e N(K) and u}% > u}}.

STEP I: Existence of Ry,
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The application of It6’s formula to the process @ defined by Equation for some K € 7 and the
function v € R » n(v) € R on the interval [nk, (n + 1)k] yields P-a.s in

n(ax((n+1)k)) = n(ag(nk)) - 7l f n'(ar k) Y loxcl{vk L F(uk,uL) - v g F(ul,uf) fdt
|K| Jnk LeN (K)

+ ‘[n:”l)k n'(ﬂT,k(t))g(u%)dW(t)+ % L;”*l)k 'r)"(ﬂ7jk(t))‘(f(u?{)dt~ (30)

1
Let us multiply Equation 1) by |K|¢fk, where ok = ﬁ f p(z,nk)dz, and sum for all K € Tr and
K
n € {0,...,N —1}. One gets P-a.s in Q

N71 n n n N71 (TL+1))€ — n n n n n n n
Z Z [U(UK+1) - U(UK)] | Ko =~ Z Z / U’(UT,k(t)) Z lox, L {UK,LF(UKvuL) - vL,KF(uL: UK)}dtSDK
n=0 KeTp n=0 KeTp Y1k LeN (K)

(n+1)k n n
£ x [ G )gui)aw lKek
1 (n+1k "y — 2 n n
S > [ Era)g (WKl

n=0 KeTg 7"k

This can be written as A™* = —B"F + ¢™* 4 DME where

N-1

AV = > [n(uie™) = nuio)] K¢k
n=0 KeTp
h,k & (n+Dk /(= n n n n n n n
B = > f n'(ar k) Y loxcl{vk L F(uk,ul) - v x F(ul, uf) fdigk
n=0 KeTg nk LeN (K)
h,k = (n+)k n n
= Xy [ @ ae)guk)aw (1)K lgk
n=0 KeTp
1 N=t (n+1)k
D= 2 [ @ @)g? (widt Ko
n=0 KeTr 7™

Let us analyze separately these terms.
I.1 Study of A™*: we note that —A™* is equal to the first left hand side term of inequality .

1.2 Study of B"*: we decompose

(n+l)k 1 !y — n n n n n n
f T KTI (a7 k(1)) Z |UK,L|{’UK,LF(UK,UL)*’UL,KF(ULvUK)}SO(xank)dmdt

R
n=0 Ke nk |K| LeN (K)

Tr
in the following way

h,k h,k Hh,k Hh,k Hh,k ~h,k h,k h,k
Bk = gk _ gk gk _ phik | gk _ gk phik

~ N-1 (n+k 1 n n n n n n o n
BMF = Z f ' (uik) Z |U'K,L|{'UK,LF(UK7UL)_UL,KF(uLvuK)}‘P(x7nk)dmdt

n=0 KeTp 7"k |K| Jx LeN (K)
~h,k = (n+1)k 1 n n n n n n
B =% 3 f V7 > ok, cl{vik, G(uk,ur) — v kG(ul, uk) yo(z, nk)dzdt
n=0 KeTp 7"k |K| Jx LeN(K)
ok N-1 (n+1)k "
Bt = - > / f D (ug)v(x,t). Vap(z, nk)dzdt.
n=0 KeTp ¥k K

We show that B™* — B"* > 0 almost surely.
First we notice that by we have

Y loknl(vgr —vik)P(uk) = Y, lok.L|(vk,L —vi,x)f(uk) =0.
LeN(K) LeN(K)
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Recall that for any K € T, F(uk,uk) = f(uk) and G(uk,uk) = ®(ujk) and that @ is defined by
D(a) = f n'(t)f'(t)dt for a € R. Hence we can rewrite B"* — B™* in the following way :

0
K

K] LEJ\;K) |UK,L|{UK,L[77 (ufe)(F(ufe,ur) - f(uk)) - (G(ug,ul) - CD(uK))]

Bk _ ghik _ Ni:l
n=0 KeTr
(31)

- e[ i) (F(ut k) - F (k) - (Gut k) - @(u}@))]} [ #tank)de.

Let K,L € T and suppose that u% <u} (the case uf < ufy is similar).
We first determine the sign of n'(ufk)(F(u%,u?) — f(uk)) — (G(uk,ul) — ®(uk)). Using the fact
that we are in the particular case where F' is the Godunov numerical flux, we know that there exists
s(uf,ur) € [uk,ur] such that F(uk,ul) = f(s(uk,ur)) = [min ]f(t). In this way

te “%’“2
' (uge ) (F(uk,ur) = f(uk)) = (G(uk,ul) - ®(uk))
' (ui) (f (s(uk,ur)) = f(uk)) = (D(s(uk,ul)) - P(uk))

s(u?(,uz) , ’om s(u}l(,uz) , ,

/ 7o' (widt - [ oo

n n
K UK

= [ e o - iy
s(ufe,ul) p n n 'm , n "
= [ o @de - (suie ) {of () = (s uke, ui )}
> [ paui ) (0t + FsCuie ) (' (k) - o (s(uf )

2

o

Using the same technics, we show that n'(uj ) (F(uf,uk ) - f(uk)) - (G(ul,uk)-®(uk)) <0. Indeed,
since uy > uk, there exists s(uf,ux) € [uk,ur] such that F(uy,uk) = f(s(uf,uk)) = [max ]f(t)
te u’I‘(,uz

and we have
' (ug)(F(ul,uf) - f(uk)) = (G(ul,uk) - ®(uk))
= 7' (uk)(f(s(ul,uk) - f(uk)) = (P(s(uk,ur)) - P(uk))

s@paly
L Py ) —of 1)

L2 pan @y st i) (o () - o (s(uf )

um

s(up,ui) n n " n n reomn ’ n o n
L s i (Dt + F(s(uf i) (' () = (s(uf, o))}

UK

0.

IN

IN

Finally we get

Vi, [0 (i) (F(uie, ul) = f(uk)) = (G(ufe,up) - @(uk))]
—vp k[0 (ui ) (F(ur, ui) = f(uk)) = (G(uz,uk) - P(ufk))] > 0.

We deduce that we have for almost all w € €2,
B _ B"F 50

and thus _
B"* > B"* _ BMF L BMF - BYF 4 B (32)

1.3 Study of C"*: we decompose C™* in the following way
Ok — ghok _ Ghik | Ghok

where

oy S [ et k)W (). (33)

17



I.4 Study of D™*: we decompose D"* in the following way
Dhk _ phok _ phik . Hhik

where

~hk 1 Nl (n+1)k "Ny n 2 n
D= S e [T [ hog (uioe (e nk)dadt (34)

n=0 KeTr

Conclusion of STEP I:
Since P a.s in Q, A"F = —BM* 4 0™k 4 DMFwe get by using inequality

_APE Bk G ok L (ghoE _ BhRY L (BE L BREY L (BRR Z BIRY 4 (GMF - oRY 4 (DR - iRy
> BME _ MR L BhR gk L (GMR ok 4 (PP - DRy,

In this way

RSy +1
-3 3 [ (i)~ i) e nkdz

n=0 KeT YK

N-1 (n+1)k
* f f O (uk )0.Vap(x,nk)dzdt

n=0 KeT YNk K

N-1 (n+1)k . B
* fW(UK)Q(UK)QO(x,nk)dxdW(t)
n=0 KeT Jnk K

1 N= (n+1)k o
*5 > / f n (uk)g” (ug)e(z,nk)dzdt

n=0 KeT YNk K
> RM,

which is exactly inequality , where

RME _ ghk _ gk, ghk 73?,/% + (éh,k B Ch,k) + (Dh,k 7Dh,k). (35)
STEP II: Convergence of Ry i

In this second step, we show that for any measurable set A,

E[‘ﬂARh’k] h:)O 0.

To do this, we show that all the following quantities converge to 0:
E[14(B"" - B"")], E[14(B"* - B}"")] , E[14(C"" - C"*)] and E[1.4(D™"* - D"*)].

I1.1 Convergence of E[14(B"" - B"¥)]
For almost all w € Q, t € (nk, (n+1)k), any K € T and any n € {0, ..., N — 1}, there exists (i (w,t) € R
such that
0 (a7 (t)) =1 (uic) = 0" (Ci(w, ) (. (t) - uk).
Note that n”(¢{x(w,t)) is measurable with respect to w and ¢ since it depends continuously from
U7 k(t) and uk. In this way, by denoting (x (w,t) = (x (¢)

~ N-1 (n+1)k 1
B"* _ Bk - f — | [0 (ar(t)) -n'(uk)
2.2 e TR el }
x> ok l{vk L F(uk,ul) - vi k F(ul, uj) fo(x, nk)dzdt
LeN (K)
N-1 (n+1l)k 1 "o _ n
SN Tl B LG TONCENORETS)
n=0 KeTg 71k |K| JK
x> ok l{vk L F(uk,ul) —vi k F(ul, uj) foo (@, nk)dzdt
LeN (K)
=TPF + Tk,
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where
N-1

(n+l)k 1 t—nk
T = - f — / 0" (Cx (1)) ———o(z,nk)dxdt
! =0 K;’R nk |K| Jx (Che®)) K] (k)

( > aK,L|{v?<,L<F(u;z,u2)f(u%))vz,xwmz,ux)f(u}@))})

LeN (K)
and
h,k = (n+1)k 1 Iy n
Tt ey w [ o [ G @)g i) (W (1) - W (nk))}
n=0 KeTp 71k |K| Jx
xS lownl{vi F(uic,ul) - of i F (uf uie) (e, nk)dadt.
LeN (K)

e Let A be a measurable set, we first study E[]IATlh‘k],
Note that here the assumption k/h — 0 as h — 0 is crucial. Using Cauchy-Schwarz inequality,
Assumption on the mesh and the first estimate of Proposition |2 we get

Nl (ntD)k ] t—nk
E[L.T)| = |E|1 f —f”"ti ,nk)dzdt
BT ]| l [A§K§R o T S GO e et k)

( > ox,L|{u?<,L(F(u;z,u’z)f(u;z»vz,K(F(uz,ux)f(u;z))})]

LeN (K)

” N-1 ]{32
<nleeleleo 35 X 1Al >, ok
Le

n n
(UK,L + UL,K)
n=0 KeTg N(K)

LeN(K)
N-1 kQ

<" leellellee 35 32

n=0 KeTr |K‘

xE[ Z |0K,L|{v?(7L(F(u7}(,uz)—f(u?())2+v21K(F(u7LL,u%)—f(u?<))2}:|

LeN(K)

xE[ Z |UK,L|{U}L(7L(F(u?(,u2)—f(u?())2+v21K(F(uz,u%)—f(u?())2}]

VIOK]|

" k
<l el oo =V

k
-0 as (hv E) - (070)a
where Ci is the constant appearing the first inequality of Proposition [
e Let us now estimate E[14T5"%].

Let C be a constant depending only on ¢,n,Cy,T,uo,&, F1, F> whose value may change from
one line to another. Using Cauchy-Schwarz inequality, Assumption on the mesh and then
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Proposition [2]

(plraTs*))”

—(E[ILA Sy (”“”“ﬁ [ A" (e )i (W (&) - W (k)

n=0 KeTp ¥ "k

2
x> |O’K,L|{1}?(’LF(U?(,U7£) -vr kF(uf, u%)}gp(m, nk)dwdt])
LeN (K)

<E[ D [K|1An"<<z<t>>g<uz>so<m,nk)Qdmt]

n=0 KeTr

[ N-1 (na1)k 2 7
Bl Y S [ W6 Wk Y Jow i P ul) ~of (i ui)} ) de

| n=0 KeTp 77k | ‘ LeN(K) ]

<leleln”l%Cq ”uTJC”iQ(QxQ)

_ 9 1
xEl > / |K\ (W(t)-W(nk)) . ‘UK;LHUK,LF(quUL)_UL,KF(ULyuK)} dt

| n=0 KeTp 77k LeN(K)

=

(n+ 1)k k n n n n n on ’
C f Z |0'K’L|{’UK’LF(’UIK,’U,L)*’UL’KF(’UJ[”UK)} dt
KeTp Ik

LeN(K)

N-1 2
<Oy X ﬁqE[( > IUK,LI{v’;?,L(F(u%u’E)—f(U’z?))—vZ,K(F(u’Lu}?)—f(u%))})]

n=0 KeTR LeN(K)
N-1 k2
<C — ok,L|(VE, L + VL,
n=0 K;‘R |K|(LE./\;(:K)| KL‘( oL LK))
x E[ > Joxcl{vi L (Fuk,uf) - f(ui))” + of we(F(uf,uic) - f<u*;<>)2}]
LeN (K)
k

-0 as (h, E) - (0,0).

I1.2 Convergence of E[14(B"* - B"")]
To begin with, we split B™* and Bf’k into the sum of two terms. Using again the fact that

> ok.n|(vk,n - v r)®(uk) =0,
LeN (K)

we can rewrite

B"* = Z Z ‘K|Lez

n=0 KeTr N (K

ot —‘1>(u7f<))—vﬂK(G(uZ,u’}{)—@(u’}))}f[{go(x,nk)dx
in the following way B"* = T/"* - T/"* where

D YD) |K|\JKL|{UKL(G(uK,uL> (i) - of e (Gluf, ui) - D(i)} [ plonk)da

n=0 (K,L)eTl

and

N k n n n n n n n n
Z T |‘7K,L|{UK,L(G(UK7UL) -®(ug)) - UL,K(G(UL,UK) - @(uL))} f o(z,nk)dx.
n=0 (K,L)eTR |L| L
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Similarly,

hk N-1 (n+1)k "
B T fnk /;{@(uK)v(x,t).Vzgo(z,nk)da:dt

(n+l)k

3
\I
?
\]
:\,

/K D (uk ) div[v(z, t)(z,nk)]dzdt

_ i Z Z /n:nﬂ)k fUKL b (uk)v(z,t).nk,Le(x,nk)dy(z)dt

n=0 KeTg LeN (K)
N-1 (n+l)k "
= f f —p(z,nk)®(ux )o(x,t).nk,Ldy(z)dt
n=0 (K,L )ETR nk OK,L
N-1 (n+1)k
- > / / —o(z,nk)®(ul)i(z,t).nk,rdy(z)dt
n=0 (K,L)exR 7"k IK.L
= Tlh7k - TQh,kv
where
h,k R (n+1)k n n n n n n n oy -
T = f f {UK,LG(UK7 up) — oL,k G(ur, uk ) — ®(uk )v(z, t)-“K,L}@(% nk)dy(z)dt
n=0 (K,L)exR 7"k OK.L
and

(n+1)k: n n n n n ny\ —
Tzhk f f vKYLG(uK,uL)—vLyKG(uL,uK)fCI>(uL)v(x,t).nK,L}<p(x,nk)dfy(x)dt.
n= 0 (K, L)E‘IR nk

Now our aim is to estimate [T}"* = T7"*| and |T2"* ~T4"*|. To do this, we first note that these quantities
can be rewritten in the following way :

-1 =Y Y Koxl{vk n(Guk,ub) - @(uk) - f x(G(uf,uk) - B(uk)) }

n=0 (K,L)eTR
1 1
{|K|f o(y,nk)dy - m/ 80($7Nk)d7(95)}
i OK,L

N-1
. k[ {vkn(Gluicut) - 9(ui) - o e (Glul ukc) - ©(uf) pola nk)d (o)
n=0 (K,L)exR 9K,L
N-1 (n+1)k
[ [ ok Gluiul) - vk Glut, uie) = (i), 5)-nic.s oo, mk) dy (@) ds
n=0 (K,L)eTR nk 7K.L

Z:: Z k‘JK7L| {vkL(G(u?(,u’Z) - ®(uk)) - i xk(G(ur,uk) - <I>(u7f<))}

A e )

" (n+1)k R " n
D) oi) [ [ [ s)ni - (ke - i) el nk)dy (0)ds
n=0 (K,L)exR nk TR, L

and we also have

Tr -1 =3 Y kool {vk L (Gufe,uf) = ®(ul)) - vf x (G(uf, uk) - P(u}))}

n=0 (K,L)eTR

{g‘ [ ety - L ;n i “m,nk)dv(x)}

Yy ey [ [ (62, 8)nsc = (ke — 0F10) ) (k) by () ds.
n=0 (K,L)eTl

hk _ bk Zhok _ phuk
In order to control |T{"* - T{*| and |Ty"" - Ty""|,

G(uk,uL) - ®(uk), G(uk,uL) - (uL),
G(uL,uk) - ®(uk), G(uL,uk) - (uL),

! 1
|UKL| f W(m,nk)dW(ﬂi)—ﬁf}((p(y,nk)d%

)k n n
and Z > P(uk) f f [17(1:, s).nk,rL — (Vg1 - vL7K)] p(x,nk)dy(z)ds.
n=0 (K,L)eTR IK,L
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Let us begin with G(u’k,u}) - ®(uk ), and then similar quantities. Set (K, L) € T,,, we then have
u% > u7 which implies that f(s(ufk,u?)) = [max ]f(t) and hence
te uz,u}l(

G(uk,up) - ®(uk) = ®(s(uk,uL)) - P(ux)

s(uf,ul) , ,
- [ s wat.
UK

s(u',ul)
First case : / e n'(t) f'(t)dt < 0.
vx
Using an integration by parts formula, we get with d such that f(d) = min f(t):

te[s(ul ul),u]

L rar - [T oUoO - @l o0 - (), .,

= (L (k) = F(@)] + 1 (i, wh ) (i uh)) = £(@)]
> =1 el (i) = F(@)] = I ol 5k, w2)) - £(@)]
> =2 el (i, wE)) = ()
> 2l , mix | |F(d,c) = F(d, ),
since f(s(ufe,u)) = max f()= | max | F(0) = F(d sk u).

s(ug ul)
Second case : f et n'(¢) £ (t)dt > 0.
vk

Similarly we have:

n

Lo was [T U0 - ek [ 00 - e, L,

<77’(U711()[f(3(uK7UL))—f(UK)]
< oo F(uk, ukc) = F(ufe, s(uk,ul))]
||77Heo max |F(d»0)*f(d)|,

< c<dg
since f(s(uf,uf)) = max F()= w70 = Pk sk ).
eluf, Upes U
‘We deduce that in both cases we have
Gk ) - DR <21 e, mae  |P(dr0) - (). (36)

Similarly, we can show using the same technics that for any (K,L) ¢ TX

(G i) = @) < 2o, ma | (e,d) () (37)
(Gl = ()| <20 e, mive | |F(d ) = () (38)
(G ui) - @) <20 |, e | (e,d) = F(0)] (39)

We are now going to estimate

s L etk - g [ ek

lox,
Using the regularity of ¢ we get the following bound:

1

|UK,L| OK,L

2h|V2@| o- (40)

ol k)i (x) - o [ olmk)dy <

Let us now bound Z > ®(uk) [ /UK . [0(z, 8).nk.L — (VL — L k)] @(z,nk)dy(x)ds.

n=0 (K,L)eTR
First note that this term is equal to

Z S ey /(n+1)k foK L [ﬁ f(n+1)k [OK ) {v(z,s) - ﬁ(:ﬁ,t)}.nKLd'y(E)dt] p(x,nk)dy(z)ds,

n=0 (K,L)eTh

and thanks to the regularity of ¥, we deduce that there exists a constant ¢(9) only depending on
¥ such that

(n+1)k
In fo {3(z,5) - (2, 1) b,y (F)de| < () (k + h). (a1)

1
klox, L]
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Hence, by denoting x, the center of the edge ok, 1,

(n+l)k
f f {ﬁ(x,s).nK,L - (VgL - vaK)}cp(x,nk)d’y(w)ds
nk oK,L

(n+1)k 1 (n+1)k
- [ (— [ (o) - ﬁ(f,t)}.nxmmdt) [k — (k) iy (),
nk OK,L k|0'K7L| OK,L
and we deduce since
1 (n+1)k (n+1)k
o(xo,nk) (ki f f / f {v(z,s) - v(z,t)} .nK,Ld'y(:c)dsdfy(a":)dt) =0
|O'K,L| nk ok, Ink oKL
that

(n+1)k
‘ [ [ s s - @i - v s} (e, nk)dy(@)ds| < (0| Vaplwh Ko L)
n OK,L

In this way, there exists a constant C' depending only on 9, ¢, uo,T,Cy,&,n and f, whose value
may change from one line to another such that

> > w [ [ - G- oo )e(e k) @ds

n=0 (K,L)eTl

RTET Y (owslol)

n=0 KeTp LeN(K)

IN

N-1
Ch* Y. Y koK |uk|

n=0 KeTr

C N-1 n
zh 2 ) KIKuk]

n=0 KeTgr

IN

IN

< ChHUT,k||L1(B(0,R)x(o,T))~ (42)

Similary we get for some constant C' depending only on v, p,uo,T,Cy,&,n and f, whose value
may change from one line to another that

Z > ®(uf) / +1)k faK ) [0(z,8)nk.L - (Vk L —VF k)] (2, nk)dy(z)ds

n=0 (K,L)eTl

< Chllur il (B0, Ryx(0,1))- (43)

e We are now ready to compare B™* to B{”’k. We first recall that
Sh,k hok _ hik hk bk h,k
B -B" =Ty -T) _(T2 -T577).

Using ,, and we get for some constant C depending only on 9, ¢, uo, T, Cy, @, n, f
and whose value may change from one line to another

h,k h,k
|,I‘17 _Tl,

éCi Z /c|UK,L|h('U?<L max |F(d,c)- f(d)|+vi x max |F(cd)- f(d)|)

n <e<d<uly ul <csdsuly
n=0 (K,L)ei,’f L e d< up <e< d<

+ Chllur k]l L1 (B0, R)x(0,T)) -

And using , , and , we get similarly for some constant C' depending only on
U, @,u0,T,Cy,a,n, f and whose value may change from one line to another

rh,k h,k
|T2 - T2 =

k|aK,L|h(v;z,L ()~ £ o, max | (F(e.d)- f(c)l)
7=0 (K,L)eTR u Sesdsu upsesd

+ ChlluT k] L1 (B0, R)x(0,7)) -

Combining these two inequalities and using Proposition[2] we get for some constant C' depending only
on v,p,uo,T,Cy,&,n, f and whose value may change from one line to another for almost all w

BB <CS Y k|aK,L|h(v;z,L{ max |F(d,c) - f(d)]+  max |F(d,c)- f<c>l}

70 (K, Dyexh 7 <e<d<ul, P <e<d<ul
o s (FGed) - S s n|F<c,d>—f<c)|})+Chnw,knu(B(O,R)x(O,T))
<d<ul

7 <e<dsuly
uf <c<d<u

<Ch'? 4 Chllur kll1 (B0, Ryx(0,T))-
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Therefore we have that for any measurable set A, E[]IA(Bh‘k - B?k)] o 0.

I1.3 Convergence of E[]IA(C’h‘k - Ch’k)]

‘E[HA(éh’k—Chk)]‘ [m > ¥ [ 77(UT,k(t))—n'(u’z?)]g(u}?)cﬁ(%nk)dW(t)dx]

F L;R 5Lt [ 0 o) - @ilaui) (o) - ol 0) dW(t)dx]

g L?TR S o [ s - n'(u?()]g(u%)w(%t)dW(t)dw]

hk | ahk
=577+ 557,

Using successively Cauchy-Schwarz inequality on Q x B(0, R), It6 isometry and Proposition [1| one gets

hik _
Sy =

E[KZTNZ L[ {n'(uwc(t))—n'(u}?)}g(u}?){@(%nk)—Sﬂ(fK’t)}dW(t)dl’]

5 1/2
< VIB(O.B) Z[ > fe|( ), )'“{n'(w,k(t»n'(u&)}gmz){w(mk)so(x,w}dvv(t))]dx]
KeTgr nk

= \/|B(07R i

n=0

1/2
A [{" (arn(®)) =1 (wic)} g (u&@){m,nm—¢<x,t>}2]dtdx]

KeTr

, N-1 n 1/2
<VEVIBO, R)2Cy[lellwll oo Y k(Y [KIE[(uk)*])
n=0 KeTgr
’ 2
<VEVIB(O, R)2C,[l@illolin’ oo Te" o o 2 ey = 0.

Note that here Assumption Hg on the function g is important:

2

CRE

N-1 n+l)k
E[QK;RBA [ ){n’(aT,k(t))—n’(u}z)}ng)mt)dW(t)dz]

2

- ‘E[m S Jo @0 1 G )} gCur ol )W (2)da

co.m) [ ([T 1 - laturete o @) |

B(0,R)

“BOR) [ [ B[ ) -0 (Yo ) o0 Jdrde
" — 2
<IB(O, R)ll el In” % gl a7k = ur k[ 7200y =, 0
using Proposition |3] In this way,

E[14(C™" = ") > 0as h>0.

I1.4 Convergence of E[]IA(E}“'C - Dh’k)]

|B[14(D" - D" M) =

(n+1)k
1 ugc) = 0" (U ? uk )o(z, nk)dzd
[KeTRT;)j f A 77 (uic) = n" (ar, (t))]g (uk)e( ) t:|

nr

\Igllmllwl\m\ln Jeol@T 1 =

IN

(QxB(0,R)x(0,T))

i

*Hgllmllwl\w [ oo a7k = ur k] L2 (0xq)

IN

— 0 as h - 0 using Proposition [3]

In this way,
E[14(D"* - D"*)] > 0 as h>0.
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Conclusion of STEP II:
By gathering the results obtained previously, one gets that for any P-measurable set A,

E[1AR"*]~ 0 as (h, %) - (0,0),

which concludes the proof of the proposition.

Proposition 5 Proposition[{] holds for a general monotone flur F', with the same assumptions.

Proof. Most of the proof is exactly the same as the proof of Proposition [4] since we use only the fact that
F' is a monotone flux, except to show the points I.1 and II.2, where we truly exploit the fact that F' was
the Godunov numerical flux. In order to adapt these two points of the proof, we use then the decomposition
given by Lemma

F(a,b) = 0(a,b)F(a,b) + (1 -0(a,b))F5" (a,b).
First we have to give a definition of the numerical entropy flux G, which uses the above decomposition :
for any a,beR

G(a,b) = 6(a,b)G%(a,b) + (1-6(a,b))G5" (a,b),
D(a) + (b)
K2 ((b) - n(a).

e In order to show that B™* - B"* > 0 almost surely, we split the sum into two terms:

where G (a,b) = ®(s(a,b)) and G5 (a,b) =

B"* _ M (44)
Z > > OCuie,uf ) vk [ (wio) (F (ufe,uf) = F(uk) = (G (ufe, uf) - @ (k)]
n=0 KeTp |K‘ ae£K

-l N ) - £ - (G ) - ()] [ olank)de

+ =OKZ7:’| I Zg) (1- H(UK,uL)){v}%,L[n'(U%)(FéF(U%,uZ)—f(u}Q))—(GLDF(U%,uZ)—‘@(U%))]

o )BT ) (0 - (G5 a0 - 05 [ otwnkydz. (15)

In order to treat the first sum we just have to apply the same argument as in the proof of the point
I.1, whereas the second term can be dealt by using similar argument to the one used in the proof of
Proposition 4 of [BCG], since we recall that the modified Lax-Friedrichs scheme belongs to the family
of flux-splitting schemes.

e In order to show that for any measurable set A we have E[ILA(Bh’k - Bfk)] o 0, we split once again

the sum into two parts:

B" -ppt=3% W [ % > 9(“1«UL)|U|{UK,LGG(UK,UL)*UL,KGG(UL,UK)}W(xvnk)dxdt
n=0 KeTp YNk |K| Jx ol
O=0K, L
DO [ 5 0hkuh)®@i)s(e, 1) Tap(e nk)dad
+ _— uk,ur ) ®(ug)o(z,t).Veo(z, nk)drdt
n=0 KeTp vk C’ard(J\/(K)) UEEK
+ Z f — Z (1—O(uK,uL))|a\{vK’LG%F(uK,uL)—ULJ(GEF(UL,uK)}go(w,nk)dxdt
n=0 KeTg 71k K oe€
R K
0=0K,L
DI [ 00k w5, ). Ve, nk)dd
+ e — 1-0(up,ur ug )(z,t). Vap(x,nk)dzdt.
n=0 KeTg 71k Card(N(K)) o'ESK

To conclude, we deal with the first two terms by applying the same argument as in the proof of the point
I1.2, whereas the last two term can be dealt by using similar argument to the one used in the proof of
Proposition 4 of [BCG].

The following proposition investigates the entropy inequalities which are satisfied by the approximate solu-
tion ur .
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Proposition 6 (Continuous entropy inequality on the discrete solution) Assume that hypotheses
H; to Hg hold. Let T be an admissible mesh in the sense of Deﬁm‘tion@ N eN* and let k = % e R} be the

time step. Then, P-a.s. in €, for any n € A and for any ¢ € D* (Rd x [O,T)):
/md n(uo)p(z,0)dz + fQ n(ur k)t (z, t)dedt + /Q D (ur,k)0.Vap(z,t)dzdt

T ! 1 17
o [ Lo ratur et dedW (@) + 5 [ o (ur g (), Odede
> RMF (46)
where for any P-measurable set A, E[]IARh’k] -0 as (h, ¥) — (0,0).
Proof. The proof of this proposition will be separated in two steps: in the first one we will show that
inequality 1' holds for a convenient R™* and in the second step, we will prove that for any P-measurable
set A, E[ILARh’k] —-0as h—0.

Let T >0, ug € L* (Rd), T be an admissible mesh in the sense of Definition |3, NV €e N* and k = % e R;. We
assume that (h, %) — (0,0), in this way we can suppose that the CFL Condition

. (1-9a’h
h (F1 + F’2)‘/7

holds for some £ € (0,1). In this manner, the estimates given by Proposition [1| and Proposition [2 hold.
Consider 77 € A and ¢ € D*(R? x [0,T)), thus there exists R > h such that suppy c B(0, R - h) x [0, T[. We
also define T = {K € T such that K c B(0,R)}.

STEP I: Let us show that inequality |i holds for a convenient R™*.

Note that the first term of inequality given by Proposition [4| can be rewritten in the following way:

=Y % [niM) -neio)] [, etank)de

n=0 KeTRp

- fkT fRd n(ur k) ee(z, t — k)dzdt + K;_R fK n(u(}()go(x, 0)dx.

Indeed, thanks to the discrete integration by parts formula

N N
Z an(bn - bn—l) =an+1bn —apbo — Z bn(an+l - an)
n=1 n=0

and by using the fact that for all z in K and for k small enough, ¢(z, Nk) = o(x, (N - 1)k) =0 we get

N-1

> ¥ [ nuio) [pnk) - (e, (n-1)k)] da

n=1 KeTr

T
f f n(urk)pe(x, t - k)dedt =
k R4

== 2 fK [n(ui") = n(uk)] ¢ (az, nk)dz

n=0 KeTRr

+K; fKﬂ(u%)so(%(N— k) - n(ul)e(z,0)ds

-3 5 [ i - nio)] e nkds

=0 KeTRp

- u?( z,0)dx.
P RICORED

3

By denoting

art = [7 [ e aeurayee, dzdv (0

1 "
DY = 5 [ (g (e )e(e, Ddads
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one gets from inequality , inequality with R™* defined by

R Rh,k+[dn(uo)cp(a:,())dw— > fn(u?()cp(x,O)dz
R KeTg K

T
+‘/Qn(u7—’k)g0t(a:,t)dxdt—[k /Rd n(ur,k)ee(z, t — k)dxdt

N-1 (n+1)k
+f P (ur k)0.Vep(z, t)dadt — > " / & (uy)0.Vep(x, nk)dxdt
Q n=0 KeTp 2"k K

h,k =l (n+1)k ’ n n
+O7T - > Y n (ug)g(uk )p(z,nk)dW (t)dz
K Jnk
KeTg n=0 n

h,k 1 =l (n+1)k "y n 2/ n
Doy [T [ (uiog” (wic) e (@, nk)dadt.
R

n=0 KeT; k
where R"* is given by (35) in the proof of the previous proposition.

STEP II: Let us show that for any P-measurable set A, E[ILAIN%h’k] —-0as h—0.

Thanks to Proposition 4f we know that for any P-measurable set A, E[ILARW“] — 0 as h - 0. Then it
remains to study the convergence of the following quantities:

Ella (fmd U(uo)w(m,O)dx—KZ; /Kn(u(}()gp(x,O)da:)],

E :]lA (/Q n(ur k) (z, t)dodt - /;T fRd n(uT,k)gpt(x,t—k)dmdt)],

N-1 (n+1)k
E|1a f'1>(u7—,k)17(x,t).Vzga(x,t)dxdt— Y f f<I>(u?<)z7(x,t).Vzga(x,nk)dacdt ,
Q n=0 KeTg 7"k K

E

“(C? -z 2k fn,im)kn’(u’fz)g(u%)w(x,nk)dW(t)dx)] - B[1A(CL* - O]

1 N-1 (n+l)k " " _

Blua(pi* -2 % 5 [ [ 0" wi)g’ (wio)e(e,nk)dedt || = E[La(D} - D)),
n=0 KeTg 7"k K

where C"* and D"* have been defined respectively by and in the proof of Proposition |4 Let us

analyze separately the convergence of these terms as h — 0.

I1.1 Convergence of E

1a (/Rd n(uo)sO(x,O)dx—K; —/Kn(u?()ap(:v,o)dx)]

Since uo € L, (R?), one shows that this term tends to 0 as h — 0.

T
II.2 Convergence of E [ILA (f n(ur,k)pe(z, t)dedt - f /d n(ur k)ee(z,t - k)dwdt)]
Q E JR

‘E [/{; n(ur.k)pe(z, t)dzdt — fkaRd n(uT,k)tpt(%t—k)dﬂﬂdt”
< E[fkT fR“’ n(ur i)l (z,t) —cpt(x,t—k)\dmdt] +E[f0k fRd |n(uT7k)||¢t(x,t)\da:dt]

< @it lleok(In(0)|Isuppg] + [0 oo \/Isuppel [t k| L2 (0xq))
+ k[t oo (170 IB(O, R)| + [0 o/ |B(O, R)||wr k]l Lo (0,712 (2xrty) )-

T
We deduce easily that E []IA (f n(ur k) ee(z, t)dedt — f fd n(ur k) pe(z, t - k:)dxdt)] e 0.
Q k R4 -

N-1 (n+1)k

>y f

I1.3 Convergence of E [ 1 4 f D (ur,k)0.Vap(z,t)dzdt —
Q n=0 KeTp 7"k

fK@(u})ﬁ(w,t).vzgo(x,nk)datdt)]
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’E nA(fQ O(ur )@, t). Vo, Odadt— 5 3 f}inﬂ)k/K@(u})ﬁ(w,t)‘szD(x,nk)dmdt)]‘

n=0 KeTp ¥ ™

5 E[IA [L;n+1)kL@(u%)ﬁ(m,t).[vmcp(w,t)—Vzgo(mnk)]dmdtjl

T
<M |10 ToplVE[ [* [ jualdudt]
0o JB(O,R)

<K@ [oo |0 V2ol oo V/TIB(O, R)lur k] 2 (0x)

- 0.
h—0

I1.4 Convergence of E[ILA(C{LJC _ C’hk)]
Using Cauchy-Schwarz inequality on Q x B(0, R) and It6 isometry one gets

[Eua(er -]

N-1 n+l)k
E[nA Sz L n'(U%)g(u}?){w(w,nk)—w(%t)}dW(t)dw]

IN

> \/7|B(0,R)|( 5 foe|( L s e - o)) ]dx)

n=0 KeTgr

N-

(n+l)k P n 2 12
- “'B(O’R)'(K;R Jo L | (oot et - o0} ]dtdx)

-

n=0

VRIBOBIC o=l ¥ k(3 1KIE[(ui)?])”

n=0 KeTj

’ TC?
VEVIBEO, B)Cyllptlleel o Te™ 4 ol 2 g0y = O,

IN

IN

where we have used Proposition [I| to conclude.

I1.5 Convergence of E[ILA(Df‘k - th)]

N-1

- (n+D)k
‘E‘[ILA(DT’Ic —Dh‘k)]’ = lE > / : f ILAn"(u?()gQ(u?()[np(m,nk)—go(x,t)]dmdt
2 |2z K7y Ik K

1 " 2
< —
< Kl lleellglieellpelloTIB (O, R)| = 0.

To summarize, we proved in this second step that E[]l ARh’k] — 0 as h — 0, which concludes the proof of
the proposition. m

5.3 Proof of the convergence

And we prove now the convergence of the finite volume approximation ur i to the stochastic entropy solution
of Problem .

Theorem 3 (Convergence to the stochastic entropy solution) Assume that hypotheses Hi to He
hold. Let T be an admissible mesh in the sense of Deﬁm’tion@, N eN*, let k = % e R} be the time step.
Let ut 1 be the finite volume approzimation defined by @ Then wr i converges in LY (2x Q) for any
1 < p <2 to the unique stochastic entropy solution of in the sense of Deﬁmtion as h - 0 with % - 0.
We recall that L? (Q x Q) means locally in space.

loc

Proof. Let 7 be an admissible mesh in the sense of Definition [3, N € N* and let k = % € R} be the time
step such that k/h — 0 as h - 0. In this way we can suppose that the CFL Condition

. (1-9a’h
= (F1 + FQ)V7

holds for some £ € (0,1). In this manner, the estimates given by Proposition [1| and Proposition [2 hold.
Consider A a P-measurable set, n € A, ¢ € D" (R? x [0,7")), thus there exists R > h such that suppy c
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B(0,R-h) x[0,T). We also define Tg = { K € T such that K c B(0,R)}.
Let us multiply inequality by 14 and take the expectation. This yields:

E[ILA /Rd n(uo)ap(m,O)d:p]+E[ILA/C;n(u77k)npt(m,t)dmdt]+E[ILA/Q@(ur,k)ﬁ(x,t).Vzgo(x,t)dxdt]
+E[ 14 /;TfRdn’(uT’k)g(uﬂr,k)g@(w,t)dde(t)]+%E[ILA‘/Qn"(uT,k)g2(u7—’k)gp(x,t)dwdt]
> E[14R""]. (47)

To show the convergence of ur  towards the unique stochastic entropy solution of our problem, we aim to
pass to the limit in the above inequality. Thanks to Proposition [6] we know that for any P-measurable set
A, E[ILARh’k] — 0 as h = 0. Thus it remains to study the convergence of the left-hand side of . Recall
that thanks to the a priori estimate stated in Proposition |1} ur , converges (up to a subsequence denoted
in the same way) in the sense of Young measures to an “entropy process” denoted by u in LQ(Q xQ x (0, 1))

(see Section .

1. Study of E[ILAan(uT’k)cpt(x,t)dxdt]

Note that ¥ : (w,z,t,v) € AxQ xR — La(w)n(v)pi(z,t) € R is a Carathéodory function such that W(., w7 i)
is bounded in LQ(Q x @), using the compact support of ¢ it is therefore uniformly integrable, thus

E [ILA ‘/Q n(ur,k(x,t))got(x,t)dxdt] - E [ILA fQ fol n(u(z,t, a))dozgot(x,t)dxdt] as h = 0.

2. Study of E[]lAf <I>(u7—7k)17(m,t).Vwcp(m,t)dmdt]
Q

Since ® (w7 ;) is bounded in L*(Q x @), using the same arguments as previously, we obtain

E[]lA/{;@(uT,k)ﬁ(x,t).ngp(x,t)d:rdt]—>E[]IA/(;/;1<I>(u(a:,t,a))ﬁ(x,t).chp(x,t)dadxdt] as h — 0.

T

3. Study of E[ILA [) [Rd n'(uTyk)g(uﬁk)np(x,t)dxdW(t)]

By denoting ¥ : (w,x,t,v) € AxQ xR~ n'(v)g(v)p(z,t) € R, thanks to Proposition W(.,ur k) is bounded
in L?(Q x Q), and therefore W(.,us ;) converges weakly (up to a subsequence denoted in the same way) in
L*(Qx Q) to an element called .

But, for any ¢ € L*(Qx Q), (w,z,t,v) € Ax Q xR = ¢(w, z,t)¥(w, z,t,v) is a Carathéodory function such
that (¢¥(.,ur )) is uniformly integrable. It is based on the fact that for any subset H of Q x Q,

1/2
fH\qs\I/(.,uT,k)uxdthg\|xI/(.,uT,k)\|L2(H) [fHdedth] .

Thus, at the limit,
1
/ vodrdtdP = f / U(.,u(.,a))da¢drdtdP.
QxQ aQxQ JO

1

By identification, U(.,ur ) — f U(.,u(.,a))da weakly in L?( x Q). Using now the linear continuity of
0

the stochastic integral from L*(Q x Q) to L*(Q x Rd), which implies the continuity for the weak topology:

T T 1
fo 0 () g(urs) pdW (t) — fo fo 7 (u(., @))g(u(., a))pdadW (t) weakly in L*( x RY).
As 1alpo,r) € L*(Q2 x R?) one gets at the limit

B [ " g e, D dadW (1)) B[4 | I | " (u(e,t,a))g(u(a, t, @) (e, ) dadedW (1) |
4. Study of %E[ILA/C;ﬁ//(UT,k)gz(UT,k)‘P(mat)dmdt]

Since ¥ : (w,z,t,v) € Ax QxR = "(1)g*(¥)p(x,t)1a(w) € R is a Carathéodory function such that
U(.,ur ) is bounded in L*(Q x Q), at the limit we get:

%E[]lA_[Qn"(uT,k)gQ(uT,k)go(a:,t)dazdt]—>%E[lA-/(:2_[01n"(u(ac,na))gQ(u(x,t,a))cp(x,t)dadmdt].
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Finally, by passing to the limit in inequality , we obtain:
For any P-measurable set A, for any 7 € A and for any ¢ € D¥(R? x [0,T))

0 < E[ta fRdn(uo)tp(x,O)da:]+E[]lAfQfoln(u(a:,t,a))got(z:,t)dadxdt]
+E[ILAfQfol<I>(u(m,t,a))ﬁ(x,t).Vzap(:v,t)dadxdt]
B[ [ [ [ 0 Gt )gCute, ), Ddadzd i (1)
+E[1A%fQfoln"(u(x,t,a))g2(u(x,t,a))go(x,t)dadxdt].

Hence u is a measure-valued entropy solution in the sense of Definition [2] Thanks to Theorem [I} u is
independent of o and is hence the unique stochastic entropy solution in the sense of Definition [I] and we
denote it by u. Hence, all the sequence of approximate solution w7 x converges to u in L,.(Q x Q). In

addition, since ur ) is bounded in L*(Q x Q), all the sequence converges in LY (2xQ) for any 1 <p<2.
[ ]

A Theoretical background

The aim of this appendix is to prove the well posedness result stated in Theorem The existence of a
solution is based on a parabolic regularization of our stochastic conservation law . The proof of existence
and uniqueness of the associated viscous solution (denoted w. in the sequel) is a classic one but for the sake
of completness we propose to redevelop the proof in Section In Section existence of a measure-
valued entropy solution in the sense of Definition [2] is proved by passing to the limit on the viscosity
parameter (denoted €), using as previously convergence in the sense of Young measures. Section is
then devoted to the proof of uniqueness of such a solution and as a by-product we deduce the existence and
uniqueness of the entropy solution of Problem in the sense of Deﬁnition Note that the following proofs
are adapted from the work of BAUZET-VALLET-WITTBOLD [BVW12] to the case of a time-space dependent
flux-function.

Remark 11 The existence result follows from the convergence of the finite volume approxrimation to the
solution of . Howewver, in order to prove the uniqueness result, we need to know that the solution of
is the limit of the solution of the parabolic regularization .

A.1 On the parabolic regularization

We are interested in this section in a viscous regularization of Problem given by the following formal
stochastic PDE of nonlinear parabolic type for any € > 0:

{ due — eAuedt + div [0(z, t) f (uc)]dt g(u)dW  in QxR x (0,T), (48)

'LLE(UJ,LL’,O) = ’U,E(.T), UJEQ71‘€Rd,

Proposition 7 Setu§ in Hy(R?). Then, for any positive €, there exists a unique process ue € N2 (0,T; Hg (R4))n
t
C([0,T); L*(Q x RY)) weak solution of Problem such that O [ue — / g(uc)dW] and Auc are elements
0
of LZ(Q x Q). Moreover, there exists a positive constant C' such that

2 2
Ve>0, el (o112 nmay) + €llucllLz o, 1y0s g (ray) < C-

Proof. (of Proposition Following [Val08|, we propose a result of existence of a solution based on an
implicit time discretization. Let us first introduce some classical notations needed in the sequel.

Definition 5 For any sequence (x,) c X, where X is any Banach space, let us denote by

8
e
1}
M=z

Tel[(k-1)AL, kAL

X
Il
-

)
L
I
M=z

[Jfk - Tp-1

AL [t-(k-1)At] +xk—1:|]l[(k—1)At,k’At)7

X
Il
—_

Tk — Tk-1
At

3
IS
&

|
M=z

Tik-1)At,kAL),

)
~
ol
Il
A
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and elementary calculus yields

[

N N
At 2 2 2
[ t||L2(O,T;X) = At Z [zklx HLZ(O,T;X) <At Z B

k=1 k=0

N-1

ISP 2
[ Vi) = A Y ok -zl
=0

afifAt 1 N-1 5
|—— ot HL?(OTX) AL 1;0 lzae1 = 2n x5

~A
Es ||L°°<0,T;x>:kgﬁ%NkaHx S 5 tIILw(o,T;X):kg)@fNka\lx-

Then the implicit scheme is the following one:
For given small positive parameter At and u,, in L?(Q, Ha (R%)), Fna;-measurable, find u,,1 in L2(Q2, Ho (R)),
F(n+1)at-measurable, such that P-a.s and for any v in H; (R‘i)

fRd [(un+1 —Un)V + At{eVUn+1.VV — ﬁ(x,nAt)f(unH).Vv}]dx = (Wnpe1 -Wha) fRd g(un)vdz, (49)

where W, = W(nAt).

Lemma 3 If At< such a sequence (un) exists.

2e
(VIf )2’
Proof. (of Lemma
Denote by V = L*(Q, H'(R?), Fini1yas, P), H = L*(Q, L*(R?), F(ns1)as, P) and by T' the application, de-
fined for any S € H, by u = T'(S) is the solution in V of the variational problem

VveV,E [/}Rd [(u = Un )V + At{eVu.Vv - ﬁ(w,nAt)f(S).Vv}]dm] =F [(Wml - W")fRd g(un)vdm] .

Thanks to the theorem of Lax-Milgram, T is a well-defined function. Moreover, for any S1,S2 € H, one has
that

B [[Rd luy — usfPda + AteE fRd V(s —uQ)\de] - AtE[fRd 5z nA) (F(S1) - £(S2)).¥ (ur —uz)daz],

and
B [0 -1 fae]+ S| [ vy -refa] < SB[ [ @@nan) (750 - 552 e

2
Thus, if At < W (where V is given by hypothesis [Hs|), T is a contractive mapping in H and the
result holds. m
Setting the test-function wun+1 in and using the formula ab = %[az +b% - (a- b)z] with a = un+1 —upn and
b = Un+1 yields

%E‘ [fRd[|“"+1|2 —|tn|® + |tns1 — Un|2]dx] + AteE [/Rd |Vun+1|2d$] - AtE [fRd 'D(x’nAt)f(un+1).VUn+1dx]
- B [(Wm1 —W) fRd 9(un)[tns1 — un]d:c] +E [(Wn+1 —W,) fRd g(un)undm] . (50)

Note that since div[o(x,t)] = 0 V(x,t) e R x [0,T], fd 0(z,t) f(u).Vudz = 0 for any ¢ in [0,T] and any
R
uw e D(R?), thus for any u e H*(R?). Then

1
7E[f [ttrs]? = [tn]? + [t —un|2]dac] +AteE[/ \Vun+1|2dx:|
2 Rd R4

< AtE[[Rd gQ(un)dx] + %E[‘[Rd [Un+1 —un]de], (51)

and, if one denotes by |.| the norm in L?*(R%)
2 1'& 2 s 2 1 2 = 2
SE[[un]*]+ 1 Z [lunsr —ue|*] + Ate 3 E[[Vura|*] < 5 luol™ + At > Ellg(un)|?],
k=0 k=0 k=0
The discrete Gronwall lemma asserts then that

1 7= n-1 1 n-1 7
SE[|un]®] + 7 Z [lurer - ur|®] + Ate 3 E[|Vura|?] < 5||UoH2 +Juo 2At]g |2 T el InkAt
k=0 k=0

< C
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Using the notations of Deﬁnition this only gives an L= (0, T, L?(2xR%)) estimate on ! and an L2(2xQ)
estimate on eVu®?
Since ug € Hl(Rd), setting the test-function v = Uun+1 = Un — (Wn1 — Wa)g(un) in yields

[wn+t =t = (Wit — Wn)g(un)HQL2(Rd)
+Ate fRd VUn+1.V [Uns1 — un = (Wha1 = Wa)g(un)] dz

- At fRd [tnst = tin — (Winst = Wi )g(un )] 32, nAL) f (i1 ). Vitner d

1 1 ,
< §||Un+1 = Un = (Whs1 - Wn)g(un)H2L2(Rd) + ic(f :V)(At)QHVUmlHQLZ(Rd)d-
Since F [(Wn+1 -Wh) fd Vun.Vg(un)dx] =0, one gets that
R

E [/ﬂ‘w Vun+1.V [Uns1 = Un — (Whet — Wi)g(un)] dm]

—_

2 2 2
= & [”VUMIHLZ(W)d + [V (tns1 - Un)HL2(Rd)d - [Vun ”LZ(Rd)d]

[\

-FE [(Wn+1 -Wy) /Rd V[tn+1 — un].Vg(un)d:E]

1
> 2B 19un Byt + 319 Cnss = wn) 32 aays = [Vt Faayt 2861 Vg(un) 3 can |

N =

And then
E[|uns1 — tn ~ (Was1 = Wa)g(un) 32 za)]
+AteE [HVUn+1||2L2(Rd)d - HvunH2L2(1Rd)d + %”V(Uml - Un)Hi?(Rd)d]
< 2(A0%€E [[Vg(un)lF2@aya] + C(V, YA E [[Vtner |72 gaye] -

Consequently, for any k,

k k
Un+1 — Un — Wn 1- Wn glun €
Z AtE[” ha ( A; )9( )H2:|+€E[Hvun+1”i2(Rd)d] 5 Z [|V(un+1 _un)HiZ(Rd)d]
n=0 n=0
o kel 2 2
< OV, gAY E[IVunligaye] + eB[|Vuol g2 gaye ] < Cte. (52)
n=0

N
Let us define for any (z,t) e R? x [0,T], 5% (, t) = > 0(@, kA) L [(k-1)at,kat)(t) and denote
k=1

- N rBy - By
BAt = D [%[t - (k-1)At] + Bk—l]]l[(k—l)At,kAt)
k=1 t

n—1 nAt
with B, = Z (W —w*)g(u®) = f g(u®(. - At))dW
k=0 0

Thanks to , one gets that " and @*" are bounded in L™ (0, T, L*(Q, H'(R%))), that &, [ﬁm - EN] is
bounded in LQ(O T, L*(Q, L*(R"))) and that @' — u®" converges to 0 in L*(0,T, L*(Q, H'(R%))).

Denote by u a limit point of u®* and @ for the weak-*convergence in L (0, T, L2(Q H (Rd))) Gu, respec-
tively fu, a limit point of g(u®?), respectlvely f(u”?), for the weak convergence in L*(0,T, L*(Q, H* (R?))).
Since @' — BA! converges weakly in L2(2, W (0,T)) where W (0,T) denotes the set of

L*(0, T, H'(R?))- functlons W such that 8; ¥ e L?(0, T, H *(R%)) with the common identification of L*(R?)
with its dual space, 7" — B2 converges weakly in L*(Q,C([0,T], L*(R?))). Thus, for any t € [0,T],
(@™ - BA*)(t) converges weakly in L?(€2, L?(R%)).

Note that for ¢ € [nAt, (n + 1)At[, one has
t- nAt

B0 - [ gl (s = A0 (s) = (W = )g(u™) L2 - (W (1) - W g,

Then, thanks to the a priori estimates and the properties of the Brownlan motion :

t-nAt
At

B[J7 - Whg(u) =52 - (W () - W)

= E[lg(u )][(t "tAt) 2t_AntAt(t—nAt)+(t—nAt)]SC’At.

*We consider that u®t(s) = ug if s < 0.
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Since g(u™t(.— At)), as g(u™t) converges weakly to some function g, in L2(0, T, L*(£2, L?(R%))), thanks to
the properties of the It6 integral, f g(u™' (s=At)dW (s) converges weakly to f gudW (s) inC([0,T], L*(Q, L? (Rd))),
0 0

and B2 does the same. Thus, the weak convergence of T2 — B2t is toward u - f gudW (s) and, for any
0

t, (L) converges weakly in L?(Q, L*(R%)) to u(t).

Moreover, for any v e H*(R?), by denoting #°(.) = Z (., kKA) L[ (k-1)at,kat) ()

f 0: ['ﬁm - Em] vdx + € / vu vuds - / ™ f(u)Vodz = 0
R4 R4 Rd

and at the limit one gets

t
/ O [u—f gudW(s)]vdx+ef Vqudx—/ U fuVodz = 0.
R4 0 R4 R4

Note that the Ité formula applied to the function W(t,v) = e ||u|]* yields, for any positive ¢ and any
t € [0,T7] the following energy equality

B[] +2¢ [ B[lval®)as-2 [ B / ¢ DL ude ] ds (53)
- Huo||2—c/0 B [lu()P]ds+ [ e B [lgu]]ds

In addition, one has for any positive ¢ and n > 0, by multiplying by e "4t that

E[/ <efant|Un+l|2 _e*C(nfl)At|un|2>dx:| 4 AtzE@iCﬂAtEl:\/‘ |vun+1|2d$:|
R4 R4
< AtefantE [f 92 (un)dx] " (e—ant _ efc(nfl)At) E [/ |un|2d.’,U:| )

R4 R4

Adding from 0 to k, we get

k
B Juer 2] + At2e S e E [|Vune 7]
n=0

k k
< Juol?+ ALY e A E [g(un)|?] - At Y e A E [u |*]. (54)

n=0 n=1

Moreover, by noting that

(k+1)At _ ko
[ “B[Ivet|flds < Y e M E[|Vunal?],
0 n=0
k=1 ~(n+1)At
that —ce CAt/ efcsE[||uAt||2]ds = —ceiCAtZ/- e “E [|luns1]’]
n=0 JnAt
—cAt il —c(n+1)At
- (e ]]
n=0

k
_ —e Z E|:||Un||2] Ate_C(n+1)At,

‘/.(n+1)A —esp [Hg(unJrl)H ]

[|‘g(un+1)‘|2] Ate—c(n+1)At

and that f e “E(|lg (uAt)H Jds =

vV

HM?T :M|

k
= —Atlg(uo)|® + At Y E[llg(un)|P]e "2,
n=0
we deduce from

e FA B Jupan |?] +26f0
kAt kAt
7cs A —cA —cs A
< Juol + Atlg(uo) P+ [ e B [lg@) ] ds - [T e B [ju ] ds.

Now, for ¢ € [kAt, (k + 1)At[, we obtain
t
e*ctE[nuAt(t)n?]wefo e B[ vu®|?] ds

¢ —Ccs —cC. (t_At)+ —Ccs
< Juol + Atlg(uo) |+ [ e Blg(ut)1P)ds—ce [T e B [[ut)] ds,

(k+1)At
—csE |:||vuAt HQ] ds
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t
and, since u”* is bounded in L= (0, T, L*(2, L*(R%))), one gets by noting that [ ) e °F [HuAtH2] ds <
t-At)+

At)2
Atlu t”L""(O,T,LQ(Qde))

t
Bl (O +2¢ [ BIvutPds
t t
< luo|® + CAE+ fo e“FE [Hg(um) HQ] ds — ce 2 ./0 e“FE [HuAtHz] ds.
Using this last inequality and the fact that for any v in H'(R?) and any s in [0,77], fd (z, s) f(v)Vudz =0,
R

one has

B[l W] 2 [T B9 ) ds

2 fote_csE[/Rdﬁ(m,s)[f(um) )]V (A —u)dx] ds

+4ef0te_csE[fRd VuAtVudx] ds—QefOte_csE[HVuHQ]ds

Juol + CA+2 [ te-“E[ [, 5@ f(uAt)Vudx] ds (55)
2 fote_csE[fRdfz(m,s)f(u)VuAtdx] ds

2 j:e_csE[fRdg(uAt)g(u)dm]ds—fote_csE[Hg(u)H2]ds

o [ B o) - ()] ds e [T B [l -l ds

t t
—2ce A / e “°F [/ um’ud:c] ds + ce A" f e “°F [Hu||2] ds.
0 R4 0

Note that there exists ¢ = C(V, f,g,€) > 0 such that, for A¢ small, one has that
—%¢ /OtefcsE[HV(uAt —u)||2]ds+2f0tefcsE[‘/Rd [ﬁ(m,s){f(uAt) —f(u)}V(uAt —u)dm] ds
+ fot e °F [||g(uAt) - g(u)||2] ds — ce A fot e ’F [Hum - u||2] ds
< e [T BlvEAt - wds = [et B[t s) (F) - () 1] ds
+ /Ot e “°FE [||g(uAt) - g(u)||2] ds — ce At fot e “°FE [Hum - uHQ] ds
< —€ ‘/OtefcsE[HV(uAt—u)||]2ds.

IN

1 _
Indeed, for ¢ > 0 satisfying 7(CfV)2 + C; <ce A with At>0 small, one shows that
€
1 t —cs N ¢ —cs —c ¢ —cs
= [ e B3 (5@ = f@) IPds+ [ e Blg®) - g(u)|*]ds—ce A [T B [|ut ul*]ds <0,

Thus, for such a choice of ¢ and by integrating with respect to t from 0 to T one gets:

T T t
f e_CtE[||uAt(t)||2]t+e/ f e B[V (' - u)|?] dsdt
0 0 0
T|uo|® + CAt (56)

T ¢ —cs At T ¢ —cs At
+2/ / e E[/ o(x,8)f(u )Vudm]dsdt+2f f e E[f v(x,s) f(u)Vu dm] dsdt
0 0 Rd 0 0 Rd
T rt A T ot )
+2[ f e “E[f g(u )g(u)dm] dsdt — f f e CSE[Hg(u)H ]dsdt
0 0 R 0 0
Tt T pt
—2ce A f f e_CSE[f umud:c] dsdt + ce™ ™ f f e E[|u]?] dsdt
0 0 Rd 0 0
T rt Ar T ot )
—4ef / e CSE[/ Vu Vud:v] dsdt+2€f f e “E[|vul*]dsdt.
0 0 Rd 0 0

This yields
T
limsupf e_CtE[HuAt(t)”Q] dt
At 0
T 2 ¢ —cs ¢ —cs 2 t —cs 2
< f {Huo” +2/ e E[[ ﬁ(w,s)quudw]ds—Qef e “E[|vu(s)] ]ds—c/ e “E[|u(s)| ]ds}dt
0 0 Rd 0 0

+2 fOT fot B [[Rd gug(u)dx] dsdi - foT /ot e E[lg(w)|*]dsdt,
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and, thanks to the energy equality ,

tmsup [ B[ OF e+ [ [ e B g - gPdsdce [ B [u)*]ar

Thus, one gets that g, = g(u), ut converges to u in L2((0,T) x Q@ x R?) and f, = f(u). This means that
u is a solution and since it depends on € > 0 we will denote it u.. Remark that it is a direct proof to show
that it is unique.

Then, the stochastic energy asserts that (see for example GRECKSCH-TUDOR [GT95| Th. 3.4 p.42):
t
el ageey +2 [ [ [dlvucl = 52, 8)f (ue).TucJdads
t t
= ()22 ggay + 2 fo [Rd Ueg(ue)dzdW (s) + fo fRd ¢ (ue)dads.

t

Since f /d (x, s) f(ue).Vuedzds = 0, taking the expectation and using the lemma of Gronwall, there
R

exists C' > 0 such that for all € >0

2 2
||u6HL°°(O,T;L2(Q><Rd)) + €||ue||L2((o,T)xQ;H5 (Rd)) § C.

t
Finally, as by the existence proof 0 (uE - f g(ue)dW) € L2(Q x @), we get that Auc € L>(Q2 x Q) and the
0
proof of the proposition is complete. m
Proposition 8 If the initial condition u§ € L**(R%), p> 1, then u. € L>(0,T, L**(Q x R?)) as well.

Proof. The proof of this result will not be developed here as it is a straightforward adaptation of the one
given in [BVW12| Proposition A.5 p.702 to the case of a time-space dependent flux-function. m

A.2 Existence and uniqueness of the stochastic entropy solution
A.2.1 Existence result

The aim of this section is to show the existence of a measure-valued entropy solution in the sense of Definition
[2 To do this, we first consider the viscous parabolic case: assume that for any positive €, u. is the solution
of the stochastic nonlinear parabolic problem

{ duc - eAucdt + div [6(z,t) f (uc) ]dt g(u)dW in QxR% x (0,T), (57)

ue(w,m,O) = ’U,g(l‘), werxERd7

where u§ € D(R?). Consider ¢ in D*(R*x [0,7))) and 7 € A. Using the same technics as in [BYW12] (such
as It6 formula, chain-rule for Sobolev functions, integration by parts formula, the convexity of 7 and the
positivity of ), we get, P-a.s in Q

0 < fRd U(UB)@(I’,O)dl"F/L‘gn(ue)atﬁp(z‘,t)dl’dt—6/6;77’(U€)Vuevx(p(x7t)dazdt
+/C;@(ug)f)(x,t)vzgo(x,t)dxdt+/(;T/D‘w 0 (ue)g(ue)o(z, t)dedW (t) (58)
%fQ92(Ue)77"(ue)<p(x,t)da:dt,

where ® denotes the entropy flux defined for any a € R by ®(a) = [0 n' (o) f (o)do.

Now we aim to pass to the limit in this inequality when € — 0. As for the convergence of the finite volume
scheme, the technique is based on the notion of narrow convergence of Young measures. Since u. is a bounded
sequence in N2 (0, T, L?>(R%)), the associated Young measure sequence converges (up to a subsequence still
indexed in the same way) to an “entropy process” denoted by u € L=(0,T, L*(Q x R*x]0,1[)). Using the
same kind of arguments as in the work of [BVW12], one gets at the limit, P-a.s in §2, for any 7 € A and for
any ¢ e D*(R*x [0,7))

0 < fRd"?(UO)@(x,O)d:r+—/Qfoln(u(.,a))@ttp(x,t)dadxdtJrf [1‘I’(U(-,a))ﬁ(w,t)vzgo(x,t)dad:cdt
+/OT[Rd/ n'(u(.,a))g(u(.,a))e(z, t)dadxdW(t)Jr—f f g (u( o))" (u(., a))p(z, t)dadzdt.

Remark 12 Let us state some properties implicitly satisfied by such an entropy process u. We will not give
the details of the proofs of these properties since they are very close to the one developed in [BVWI1Z] and
can be adapted straightforward to the case of a time and space dependent fluz-function.
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e The entropy process u is an element of L™ ((O,T),LQ(Q x R% x (0, 1)))

e Moreover, u satisfies the initial condition in the following sense: for any compact set K c R?

t—0+

esslim E [f lu(z,t,a) - uo(w)\dozd:r] =0.
Kx(0,1)

Hence we get the existence of a measure-valued entropy solution in the sense of Definition [2] The aim of
the following section is to show the uniqueness of such a solution.

A.2.2 Uniqueness result

The aim of this subsection is to prove the uniqueness of the measure-valued entropy solution u of the
previous subsection. We will also show that it is the unique entropy solution in the sense of Definition
In order to do this, we first show that the following Kato inequality holds :

Proposition 9 (Kato inequality)

Let u, G be two measure-valued entropy solution to with initial data uo,to € L? (Rd) respectively and
such that u is obtained as a limit of the sequence of viscous solutions (ue)eso of Problem . Then, for
any nonnegative H' (R x [0,T))-function o with compact support, it holds

0 < E[[Rd |’EL0(HJ)—uO(I)|¢(m70)dm]+E[/q; /01f01|u(x7t7ﬂ)—ﬁ(:c,t,a)|3t<ﬂ($at)d0‘d5dxdt]
B[ [ [ [ F et 8), 0000009 Ddadsdsar]. (59)

where F(a,b) =sgny(a-b) (f(a) - f(b)).

Remark 13 By exploiting the finite propagation speed property for conservation laws with Lipschitz-continuous
fluz function and choosing uo = Go, we will deduce from this Kato inequality that u = 0 and thus any measure-
valued entropy solution is obtained as the limit of solutions ue of viscous parabolic approximations to .
This is stated in the following theorem.

Theorem 4 There exists a unique measure-valued solution in the sense of Definition[3 Moreover, it is the
unique entropy solution in the sense of Definition [}

Proof. (of Theorem [4))

Following [BVW12] and using Proposition El one shows that for any R > 0, u(z,t,8) = a(x,t,«) for al-
most any = € B(0,R), t € (0,T), we Q, a,8 € (0,1). Thus, on the one hand u = @; on the other hand
u(z,t,a) =u(z,t) is independent of a, hence an entropy solution in the sense of Definition [l m

Proof. (of Proposition [9)

Let us denote by u the measure-valued entropy solution from the Subsection (a limit point of (u.))
and U any other admissible measure-valued entropy solution, associated respectively to initial conditions ug
and 4o in L?(R?).

Consider k € R, n € A, ¢ in DY(R? x [0,T)), K c R? a compact set such that suppp(.,t) ¢ K and de-
note by G(z,y,t,5) = ©(y, s)pm(x —y) pn(t — s) where pn, and p,, denote the usual mollifier sequences in R?
and R, respectively, with suppp, c [—%, 0]. Denote also by p; a mollifier sequence in R and for convenience

set p = (x,t,a). Finally let us denote by F"(a,b) = ﬁ n' (o -b)f'(0)do.

Since 1 is a measure-valued entropy solution, it satisfies the entropy inequality given by Definition[2] By con-
sidering the test function G' and the entropy n(.—k) in such a formulation, multiplying it by p;(ue(y, s) — k)
and integrating k over R and with respect to variables (y,s), we get, on the one hand by taking the
expectation that

0 < h+lo+Is+1s+15+ 16+ I7,
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where

o= B[ [ 0@ = e s)p (9o~ p)dapuc(v,5) - k)dkdyds |

o= E[[ [ [ 0(a0) - k(- 9005 - 9)dpor ey, - K)akdyds|
to= B[ [ [ n@0) - 000 (¢ ) o - )dppr ey, ) - K)akdyds|
o= B[ [ [ P05 00 - ) Ve 5)pnt - oy ) - D)dkdyds|

I = E LIS 1 fcgf"(mp),km,t)vzpm(m—y)pnu—s)w(y,s)dpmuc(y,s)—k)dkdyds]
o= SB[ L[ [ o @) @) - k(e - 0ot~ s)olv,5)dop (e (. 5) - K)dkdys]
I = E LIS ’ . ] 1n'<ﬁ<p>—k)g(ﬁ(p))dw(w)pm(x—y)pn(t—s)dwdwwpz(ue(y,s)—k)dkdyds].

On the other hand, since u. is a viscous solution of Problem , by considering also the test function G
and the entropy n(. — k) in the inequality satisfied by ue, multiplying it by p;(t(p) — k) and integrating
k over R, a between 0 and 1 and with respect to variables (z,t), taking the expectation, one gets that

0 < Ji+da+ds+Jda+ds+Jde+ Jr+ g+ Jo,

where

no= B[00 - e00)pn (b - w)dye (@) - Kdkds |

g= BT [ 005 - Kpult - )0u0(0: ) (o - w)u(ae) - kdhdydsds |

J= B[ [ 05 - ke )0:0n(t ) (o~ w)n(ae) - dhdydsds |

Jio= =B [T ][ e = 9o = )9 (0 5) Vo0 5)pa (¢ ) (alp) - Kby
Jso= B[ [T ][ ) - () Ve )V (@ = 1)t ) (alp) - Kby
[ [ LLL F ey, 8R035, )0 (2 = 1) V(3 5)pa (8 = 5)pu((p) - k) ddydsdp|

B| [ LLL F ey, 9) 0050 )20 )V (@ = 9)pa(t = 5)pu(a(p) - k) ddysdp|
o= SB[ [ 8 el el ) = oo - 9)on(t - s)e(y. ) (o) - K)dkdydsd

Jo = E

Jr =

do= B0 05) - R0 50 (2~ y)pn(t - S)dydW ()n(a(p) - k)]

Summing up the preceding two inequalities, our aim is now to pass to the limit in the following order:
n — oo (convolution in time), | - oo, n — ||, € = 0 and finally m — oo (convolution in space). In the
following, as a uniform approximation of the absolute value function, we choose n = 15 € A with n5(r) = 1
for r > &, n5(r) = sin(F5r) if [r] < and ns(r) = -1 for r < =4.

Note that this convergence study has been proved in details in the work of BAUZET-VALLET-WITTBOLD
[BVW12] in the case where the vector ¥ does not depend on the time and the space variable. Thus, we will
only develop here the proof of convergence of terms involving the flux function o(z,t) f(.), i.e. I4 + Js and
15 + .]7.

@ Since supppn © [—%,0],
nea = B[ [ ntio(@) =) -)on (@ - p)dupuc,5) - k)dkdyds |
B[ [ o) - ua(a)| p(,0)dz .

n,l,n,e,m

@ As ¢ is a function of variables (y, s)

I+ Js = E [[01 fQ fR fQ n(ue(y, s) = k)pn(t = $)0se(y, s)pm(z —y) pr(G(p) - k)dydsdkdp]
E[/;2 /01 /01 lu(y, s, B) - ﬁ(y,&a)\85@(y,s)do¢dﬂdyds]‘

n,l,n,e,m
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@ Since 7 and p; are even functions, by setting 7 = u.(y, s) — k and o = —((p) - k) one shows that
13 + J3 = 0.

@ Thanks to Proposition [7} eVu. converges to 0 in L? ((O7T) xQ,L? (Rd)) when € — 0 and so
1
Ja+lJs = —cE [fo fQ fR fQ 1 (ue(y,s) = k) pm(z —y) Vyue(y, s)Vyp(y, s)pn(t = s)dydspi (a(p) - k)dkdp]

—GE[folfQfRan'(ue(%S)—k)so(yﬁ)vyue(y,S)Vypm(m—y)pn(t—S)dydsm(ﬁ(p)—k)dkdp]

— 0.
n,l,m,e

® Since  is a function of variables (y, s)
1
tegs = B[ .00 )= 1), 5)pa(t - )dydspu(a(p) - K)dkds
1,1
l E[/ f f ]—"(u(x,t,ﬂ),ﬁ(x,t,a))ﬁ(m,t)vxgp(a:,t)dﬁdadwdt].
n,l,n,e,m Q 0 0

where F(a,b) := sgng(a - b) (f(a) - £(5)).
Indeed, let us justify the passages to the limit in detail.

e Limit as n — oo:

ar = B[ [T F ) k) = F ) )50 9100 (2 = )t - $)dudspr (ap) - D)k

B[ [ [ w005 5)pm(a - )V 0(0:5) = 0000 (¢ - $)dydspr(a(p) - K)dkds
B[ [ [ w00 [50,5) = 500 00] o = )90 001 (¢~ 5)dydspn () - Kk
B[ [ [ ) 500 - ) Vo0 0pu(a) k) (1= [ po(t - 5)ds)dydhd)].

Since F"(-, k) is a Lipschitz-continuous function with the same Lipschitz constant as f denoted Cj,
T
0 e DY (R [0,T)), and 0< 1 - f pn(t = 8)ds < L(r—2/n,7) a.e. on (0,T) and |n'(r)| = |n5(r)| < 1 for
0

all 7 e R, we get

A < c(Cf,cp,V,ﬁ){E[fOT/K/OTue(y,s)—ue(y,t)|pn(t—s)dsdydt]
+%E[/OT/K/01[|u5(sc,t)\+|ﬁ(x,t7oz)\+1K(x)]dadxdt]

+E[/T:/n/Kf01[|ue(ﬂc,t)|+|ﬁ(x,t,a)|+]1K(x)]dadxdt]}

— 0.
n—oo

o Limit as [ - co:
e = B[ [T L] (F w0, = 7 e, 0,800)) 000 D (- )V 0,8) r(p) - k.

Since F" is Lipschitz-continuous in its second variable, uniformly with respect to the first variable, we
can estimate

i
Vc(lf ) fQ [Vysp(y,t)|dydt

|Az|

IN

— 0.
l—oco

e Limit asn=ns— ||
As for n =ns, we have |F"(r,s) - F(r,s)| < 6Cy for any r,s € R, we can easily estimate

A= B[ [ (), 800) - e t), 6 )i 0o - ) Voo, ]
by
sl < 80V [ 19w, Dlpm (@~ y)dydrdt < 6CsV [ 9u0(y, )ldyt

which goes to 0 as 6 — 0.
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e Limit as € - 0: )
By denoting G(k,y,t) = fd / F(k,a(z,t,a))v(y,t)pm(x-y)Vye(y, t)dadz , which is a Carathéodory
re Jo
function with suppG(k,-,t) c K, one gets at the limit

B[ [ [ #8803 0o - ) Vo0, ]
= E[_[Q g(ug(y,t),y,t)dydt]
— B[ [ [ [ @886 00 (o - )V 8 dyds|.

o Limit as m — oco:
A= B[ [T (P88 a) - Falnt,8), (ot 0) )i (e - ) V(v Odudsdp

| As|

IN

Ve B[ [ [ [ Tut.8) - (et 8)lpn o - y)dydsdod]

— 0.
m—o00

® Now let us consider Is + J7: as Vypm (= y) = —Vaupm (z —y) we get
|I5 + J7|

< ‘E[ Lo L A @0 w5 = B) = 7 1,9, 600) = K)o 000, 5) T p( = )1 (¢ = ) () ks |

+

B[ [ [ F ews) i) - 000 8) - 505)}0:5) 5 = )t 5)eppu(k)ldyds|

Note that since div[@(z,t)] = 0 V(z,t) € R* x [0,T], an integration by part with respect to z allows us to
show that

B[ f [ 7w s). 0w 5,0) = B[ 0) = 50 5) w55 m (@ = ) (¢ - s)dppu(k)akdyds | =
In this way,

|15 + J7|

< ‘E[ Lo L A @0 uew5) = B = 7,9, 600) = R} 000, 5) T p( = )01 (= ) () ks |

+

B[ (P w9600 = ) = P e 9), 6w 50) = ) Y[ £) = (.)]

x@(Y, 8)Vapm(x —y)pn(t - s)dydsdpp: (k)dk]’~

Using the symmetry of F (i.e. F(r,s) = F(s,r)), the fact that for n = ns: |F7(r,s) - F(r,s)| < 6Cy, the
Lipschitz-continuity of F with respect to both of its variables and the estimate |Vzpm (z)] < em® we get

|15+J7|

B[ [ [ 1 G ue,5) = ) = F @), e 5) =50 )Vapin o= )l (¢~ )i, 5)dpp () ks |
B L), 005 ) - F ), 80) - D02 (= Dot 5. ) () vy
B[ [ 1P 9):80) 1) - F(ww:5). 600) - W) 0V = )t = ) (0. ) dpor (k) dkdyds |
eCrB [ [ [ [T [ 1o t.a) - (. s,0)][00:0) - 50 5)192pm (=)ot 5)iw: s)dppu(k) iy
2(Cp.Vopm)3s2e(Cr Vo) [ [ Ve =y)ldady

T T 1
+2¢(Cy, B, 0, m*" M E [/ f f f la(z,t, @) —a(z, s, a)|pn(t - s)dadmdtds]
o Jo JrJo

1 - A+l |n
+Ec(Cf,v,cp,m ’ a”u”Ll (QxQx(O,l)))

loc

T 1
+c(Cf,T),g0)de[f f f f [a(y + z, s, a) —ﬁ(y,s,a)|dadzdyds]
o Jr JB0,1/m) Jo
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hence limsup |I5 + I7| = 0.
n,l,8,e,m

@ As in [BYWI2] one shows that
fods = SB[ [ [ [ @) @) - ko - ot~ s)e(y,s)dop (ue(y.5) - K)dkdyds]
w5 B[ [ 9 e ) (el5) = B (o = )t = ) (o 9)dudsp (ap) ~ W)k

Tden %E[fm fol ngz(ﬁ(p))n"(ﬁ(p) —ue(y,t))pm(w—y)w(y,t)dpdy]
%E[/Rd /01 /;gz(ue(y’t))n"(Ue(yyt) —ﬁ(p))pm(w—y)w(yi)dpdy]-

Note that it is not possible to pass to the limit with n — | . | in the preceding terms lim; lim,, Is + I3, as we
ignore the limit of n”. Instead and as in [BVWI2], we keep this term for the moment. We will combine it

below with corresponding integrals resulting from the stochastic integrals and show that the sum of these
terms vanishes as n — | - |.

We come now to the estimate of the stochastic integrals. Using the same techniques as in [BVWI2]

(p-687), which use properties of the stochastic integral and the Itd formula, one shows that I7 + Jo can be
written in the following way

fds = <m| [ L[ @) - Raa)an. (- W ot (e - o
([, o) - et - aiv 3000 )
v [, oiuclo,) - R0 aW (@) + 5 [ piuely ) - K (el o))do) dkdyds]

::H1 +H2+H3.

And, using again the same techniques as in [BVW12] (p.689-693), we prove that I; and I3 tend to 0 as
n — oo. Let us mention that the regularity eAuc —div[4(.,.)f(uc)] € L*(2 x Q) is exploited to show that
I; - 0 (as n — o) and that the L*(Q x Q) regularity of u. given by Proposition (8| is used to show that
I3 —» 0 (as n - o0). Moreover, thanks to the It6 isometry, we also prove that

b B[ [ @) - s 0)ga)g e (51w D o - )]

Now, combining the preceding estimates yields that

h%nhm[lg, +Js+ I7 + Jg]
1 1 A 2 " A~
= SB[ [ [ [ {s@®) - gtucu. )} 0 (el t) - 80))pon (o - )i D |
o JoJr
—- 0,
n
for n = ns € A, the approximation of the absolute value function as defined above, since suppn” c [-§,d],

and |n"| < 27". Finally, passing to the limits in Iy +.. + I7 + J1 + .. + Jg successively with n, [, n =ns, € and
m, we thus obtain for any function ¢ in D*(R? x [0,T))

0 < E[/Rd |ﬁ0(x)—uo(x)|g0(z,0)d:c]+E[fQ folf01|u(x,t,,3)—ﬁ(m,t,a)|8t<p(x,t)dadﬁdmdt]
+E[/Q fol fol}'(u(x,t,,@),ﬁ(x,t,a))ﬁ(z,t)vzap(x,t)dadﬁdxdt].

Note finally that, thanks to a density argument, this inequality still holds for any nonnegative test-function
we H'(R? x [0,T)) with a compact support and finally we get the Kato Inequality . [
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