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Abstract

This paper is devoted to the study of finite volume methods for the discretization of scalar conservation
laws with a multiplicative stochastic force defined on a bounded domain D of R with Dirichlet boundary
conditions and a given initial data in L™ (D). We introduce a notion of stochastic entropy process solution
which generalizes the concept of weak entropy solution introduced by F.Otto for such kind of hyperbolic
bounded value problems in the deterministic case. Using a uniqueness result on this solution, we prove that
the numerical solution converges to the unique stochastic entropy weak solution of the continuous problem
under a stability condition on the time and space steps.
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1 Introduction

We wish to find an approximate solution to the following nonlinear scalar conservation law with a stochas-
tic multiplicative force, posed over a bounded domain D with initial condition and Dirichlet boundary
conditions:

du+div [0(z, t) f(u)]dt g(uw)dW in Qx D x (0,T),
u(w,z,0) = wo(z), we, zeD, (1)
u(w, T, 1) ub(z,t), weQ, xedD,te(0,T),

where D ¢ R?, d € N* is a polygonal subset with boundary 8D, T > 0 and W = W, Fi;0 <t < T} is
a standard adapted one-dimensional continuous Brownian motion defined on the classical Wiener space
(2,F, P). In order to make the lecture more fluent, we omit in the sequel the variables w,z,¢ and write u
instead of u(w,z,t).

Note that, even in the deterministic case, a weak solution to a nonlinear scalar conservation law is not unique
in general. The mathematical challenge consists in introducing a selection criterion in order to identify a
unique solution. The notion of entropy solution was first introduced in the 70s by S.N. KRUzZKHOV in the
case where the domain was the whole space. In the present work we consider a stochastic version of the
entropy condition proposed by F. OTTo in his PhD (see [Ott96]) to take into account our non-homogeneous
Dirichlet boundary conditions. We assume the following hypotheses:

Hi: wo e L= (D).

Ha: u’ € L=(0D x (0,T)).

Hs: f:R — R is a Lipschitz-continuous function with f(0) = 0.

Ha: g:R — R is a Lipschitz-continuous function.

Hs: o: D x[0,T] - R? is a Lipschitz-continuous function and satisfies div[o(z,t)] =0 ¥ (z,t) € D x [0,T].
Hg: There exists V < oo such that |3(z,t)| <V V(z,t) € D x[0,T].

H7: g is a bounded function.
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Remark 1 (On these assumptions)

. Hy to Hg are used in the present work to prove the well-posedness of Problem ‘ Note that, as it is
classically done for hyperbolic scalar conservation laws, for convenience one can assume that f(0) =0
without loss of generality.

. Note that the present study can be extended to the case div[v(x,t)] # 0 (which brings additional technical
difficulties) following for example the work of [CHOO] in the deterministic case.

. Hp is a technical and sufficient assumption used to show the convergence of the finite volume scheme
(precisely to prove that the terms denoted CMr—C™* and D"*-D™* go to 0 in the proof of Proposition

4.

Remark 2 Note that we can also consider the case where f is only locally Lipschitz-continuous if we make
the additional assumption that g has a compact support. Indeed in this case, by adapting the proof of
VALLET [Val08] Section 6.1, we can show that the stochastic entropy solution w also belongs to L= (D).
More precisely, thanks to the Ito formula, this maximum principle is direct for the viscous solution u., then
it is conserved at the limit for u. Therefore it allows us to treat the cases where f is only locally Lipschitz-
continuous. In particular, all the results stated in this paper hold if one considers the stochastic Burgers
equation (i.e. when f(u)=u?).

1.1 State of the art

Only few papers have been devoted to the theoretical study of scalar conservation laws with a multiplicative
stochastic forcing, let us mention in chronological order the contributions of [FNOS§|, [DV10], [CDK12],
[BVW12|, [BVW14], [BM14], [Hof14], [KobNob|. The last of these papers is the only one which proposes to
study the problem with nonhomogeneous Dirichlet boundary conditions, whereas in the other papers cited,
the problem is studied on R?, on the torus or on bounded domain with homogeneous Dirichlet boundary
conditions. Concerning the study of numerical approximation of these stochastic problems, there is also,
to our knowledge, few papers. Let us cite the work of [HR91| and also its recent generalization to the
multidimensional-case [Bauld] where a time-discretization of the equation is proposed by the use of an
operator-splitting method. Let us also mention the paper of [KRI2| where a space-discretization of the
equation is investigated by considering monotone numerical fluxes. In recent works, [BCG| and [BCG2|
proposed a time and space discretization of the problem in the case where the domain is the whole space R?
and showed the convergence of a class of flux-splitting finite volume scheme (in [BCG|) and more generally of
monotone finite volume schemes (in [BCG2|) towards the unique stochastic entropy solution of the problem
by using the theoretical framework of [BVW12]. For a thorough exposition of all these papers, we refer the
reader to the introduction of [BCG].

1.2 Goal of the study and outline of the paper

The aim of this paper is to fill the gap left by the previous authors by proposing a both time and space
discretization for multi-dimensional nonlinear scalar conservation laws forced by a multiplicative noise on a
bounded domain with nonhomogeneous Dirichlet boundary conditions and studying the convergence of this
scheme.

The paper is organized as follows. In Section [2] we propose the definition of a stochastic entropy solution
for and state the well-posedness result of the problem as a consequence of [KobNob|, which proposes a
kinetic approach. In Section [3| we define the scheme used to approximate the stochastic entropy solution of
. Then, we give the main result of this paper, which states the convergence of the approximate solution
towards the unique stochastic entropy solution of the equation. The remainder of the paper is devoted to
the proof of this convergence result. In Section [] several preliminary results satisfied by the finite volume
approximate solution denoted ur  are stated. Then, Section |§| is devoted to show the convergence of ur i
towards the unique stochastic entropy solution of Problem .

1.3 General notations

First of all, we need to introduce some notations and make precise the functional setting.
. Q=Dx(0,T).
. R* =R~ {0} and N* =N~ {0}.
. Throughout the paper, we denote by Cy and Cj the Lipschitz constants of f and g.
. || denotes the Euclidian norm of z in R? and z.y the usual scalar product of & and y in R,
. Forp=1,dor d+1, |.]|« denotes the L= (R”) norm.
. E[.] denotes the expectation, i.e. the integral over Q with respect to the probability measure P.

. D* (Rd % [0,7")) denotes the subset of nonnegative elements of D(R? x [0,7)).



. For a given separable Banach space X we denote by N2 (0, T, X) the space of the predictable X-valued
T
processes endowed with the norm ||¢|[3 2 o7x)=FE [/ ||¢||§(] (see DA PraTO-ZABOZYK [DPZ92)).
T, 0

w

. A denotes the set of nonnegative convex functions 7 in C**'(R), such that 7 admits 0 as a minimum,
which is reached at a unique point k € R. We also suppose that " and n” are bounded functions.

. ® denotes the entropy flux defined for any a € R and for any smooth function 7 € A by
D(a) = f n'(0)f'(¢)do. Note in particular that ® is a Lipschitz-continuous function.

2 The continuous problem

Let us introduce in this section the definition of a solution for Problem and the existence and uniqueness
result which ensures us the well-posedness of such a problem. This result is obtained under hypotheses H1
to He. We follow [Vov02], which establishs the convergence of finite volume monotone schemes for scalar
conservation laws on bounded domains in the deterministic case. This work uses the concept of entropy
solution introduced by Otto (see [Ott96]) for Dirichlet boundary conditions. Such a notion of solution is
well-suited for numerical approximation (see [Vov02|) and is additionally equivalent to the BLN concept of
solution in the case where the solution is of bounded variation. We adapt this notion of solution to the
stochastic case.

Definition 1 (Stochastic entropy solution)

A function u of N2 (O,T, LQ(D)) nL” (O7 T,L*(Q x D)) is an entropy solution of the stochastic scalar
conservation law with the initial condition uo € L= (D), if P-a.s in Q, for any n € A and for any
peD'(RYx[0,T))

0 < [ nwoyel,0)r+ v [ [ oa 0l 1))y ()

¢ [ (et Odadt+ [ Du)ie,0).9. 0w, ot
+fOTfDn'(u)g(U)w(:r,t)dxdW(t)+%/{;gQ(U)n"(u)w(gjyt)dzdt.

For technical reasons, as in [BCG2] for the case D = R™ and as in [Vov02| for the deterministic case, we
also need to consider a more general notion of solution. In fact, in a first step, we will only prove the
convergence of the finite volume approximate solution ur  to a stochastic measure-valued entropy solution.
Then, thanks to the result of uniqueness stated in Theorem [T} we will be able to deduce the convergence of
uT,, to the unique stochastic entropy solution of Problem .

Definition 2 (Stochastic measure-valued entropy solution)

A functionu of N2 (O,T, L2(D x (0, 1)))nL°° ((),T, L*(Q x D x (0, 1))) is a measure-valued entropy solution
of the stochastic scalar conservation law with the initial condition ug € L= (D), if P-a.s in Q, for any
neA and for any ¢ € D*(Rd x [O,T))

0 < /DU(UO)W(‘T’O)derCfoOTfaD<p(x,t)77(ub(f7t))d7(x)dt
+fQ/01n(u(.,a))@m(m,t)dadwdt+/;/;1@(u(.,a))ﬁ(%t).vww(x’t)dadxdt
+f0TfD/:n’(u(.,a))g(u(.,oz))(p(a:,t)dozdxdW(t)
+%/Qfol92(u(~70‘))77”(11(-:a))@(%t)dadaﬁdt.

Theorem 1 Under assumptions Hi to Hg there exists a unique measure-valued entropy solution for Prob-
lem . Moreover, it is the unique stochastic entropy solution in the sense of Definition .

Proof. According to the uniqueness and reduction result of [KobNob|, there exists a unique generalized ki-
netic solution which is actually a kinetic solution to the first order stochastic conservation law . Moreover,
using the same arguments as in the work of [DV10], we can show that a kinetic solution is an entropy solution
and vice versa. To conclude we just have to exploit the equivalence between the notions of measure-valued
entropy solution and generalized kinetic solution. m

3 Main result

In the sequel, assume that assumptions H; to H7 hold. Let us first give a definition of the admissible meshes
for the finite volume scheme.



3.1 Meshes and scheme

Definition 3 (Admissible mesh) An admissible mesh T of R for the discretization of Problem s
given by a family of disjoint connected polygonal subset of D such that D is the union of the closure of the
elements of T (which are called control volumes in the following) and such that the common interface of any
two control volumes is included in a hyperplane of R®. It is assumed that h = size(T) = sup{diam(K), K €
T} < oo and that, for some & € R, we have

ah® <|K|, and |aK\<ihd*1, VK €T, (2)
«

where we denote by
. OK the boundary of the control volume K.
. |K| the d-dimensional Lebesgue measure of K.
. |0K]| the (d - 1)-dimensional Lebesgue measure of OK.
. N(K) the set of control volumes neighbors of the control volume K.
. ok, the common interface between K and L for any L e N (K).
. nk,r the unit normal vector to interface ok 1, oriented from K to L, for any L € N(K)
. & the set of all the interfaces of the mesh T.
. E"={0€&E:|0nAD| >0} the set of boundary interfaces.
. €k the set of interfaces of the control volume K.

. NKk,o the unit normal to interface o, outward to the control volume K, for any o € Ek.
It follows easily from the following inequality, which will be used several times later :
|OK]| 1
1«

K| ~ a2h’ (3)

Remark 3 Since |D| = > |K|, Assumption yields the following estimate on the mumber of control
KeT

volumes: D
Card(T) < L—'h‘d. (4)

@
We now define the general monotone scheme. Consider an admissible mesh 7 in the sense of Definition [3]

In order to compute an approximation of u on [0,7] we take N € N* and define the time step k = N eR}.

In this way [0,T] = J [nk, (n+1)k].

n=0

The equations satisfied by the discrete unknowns denoted by u, n € {0,...,N -1}, K € T, are obtained by
discretizing Problem . For the discretization of such a problem, we need to define the numerical flux.

Definition 4 (Monotone numerical fluz) We say that o function F:R? - R is a monotone numerical fluz
if it satisfies the following properties:

. F(a,b) is nondecreasing with respect to a and nonincreasing with respect to b.

. There exists F1, F2 >0 such that for any a,b € R we have
|F'(b,a) — F(a,a)| < Fila-b| and |F(a,b) — F(a,a)| < Fzla-b). (5)

. F(a,a) = f(a) for all a e R.
Remark 4
. Note that it is not necessary to suppose F' to be continuous, even with respect to each variable separately.

. It is possible to choose a numerical flur F depending on T,0k,1,n, as soon as the constants Fy, F
can be chosen independently of T,0k,.,n. For the sake of readability we will consider in what follows
a numerical flur F independent of T ok, 1,n.

The set {u%, K € T} is given by the initial condition
1
ul = i /Kuo(x)da:,VKeT. (6)
The equations satisfied by the discrete unknowns uy, n € {0,...,N — 1}, K € T are given by the following
explicit scheme associated to any monotone numerical flux F : for any K € 7, any n € {0,..., N -1}
K n n n n n n,— n n n Wn+1 - Wn
Pt iy o 3 lol{vs Pl wh o) v Pl )} = KTg (i) = ()

el



where, by denoting ng , the unit normal vector to interface o € Ex outward to K:

nt 1 (n+l)k R +
A =1 A ACCOEPSN I

. 1 (n+l)k R B
R =1 A ACCOEPSR I

uz if 0 =0K,L,

n — 1 (n+1)k
YKo ubm = M/nk faub(az,t)d'y(x)dt if  oe&b
W™ = Wi(nk), ¥ne{0,...,N -1}.

_ . n,+ _ , n,+ n,— _ . .
Remark 5 When o = ok,1, we will denote vy = UKvUK,L and VR and using these notations,

o
= i
, K,ox,L’

we have vLK —UKL

The approximate finite volume solution w7, may be defined on ©Q x D x [0,T) from the discrete unknowns
uk, KeT,ne{0,...,N -1} which are computed in by:

ur p(w,z,t) =uk forweQ,ze K and t € [nk, (n+ 1)l€) (8)

Remark 6 Note that for any interface o € £

n,+ n,— 1 (n+1)k -
=l R K CORPRIT

(n+l)k

/U|?7($at)ﬂf<,a|d’y(x)dt.

_ 1
and vl +vRT = —— f
Koo " 7K T o| Jnk
Moreover, since div[v(x,t)] =0 for any (z,t) € D x [0,T], we have

> lol(viel, —vie,) =0. 9)

o
Indeed,
(n+1)k 1 (n+1)k
> lol(vgl —vgl) = f f U(x,t).ni,ody(z)dt = - f / div[d(z,t)]dzdt =0
oefx k ol k Jnk K

Remark 7 By denoting for any o €&, K €T andne{0,..,N -1}
F¥ -(a,b) = o] {vZ’LF(a,b) UK _F(b, a)}
as a consequence of @D we get that:

VaeR,VKeT, Y Fg,(a,a)=0,

oefi
which allows us to rewrite the numerical scheme @ in the following way :

Wn+1 _ Wn

K| .
B e . (10)

—uje) 4 Y {FR o (uli uke o) - Fié o (uie, uie) | = [Kg(uf)

ocefi

Remark 8 (On the measurability of the approxzimate finite volume solution) Let us mention that
using properties of the Brownian motion, for all K in T and all n in {0,...,N -1}, u is Fpi-measurable
and so, as an elementary process adapted to the filtration (Fi)eso, ur .k is predictable with values in L*(D).

3.2 Main result

We now state the main result of this paper.

Theorem 2 (Convergence to the stochastic entropy solution) Assume that hypotheses Hi to Hr
hold. Let T be an admissible mesh in the sense of Deﬁm‘tion@ NeN* and k= % € R} be the time step. Let
ut,k be the finite volume approxzimation defined by the monotone finite volume scheme (7) and @ Then
uT, converges to the unique stochastic entropy solution of in the sense of Deﬁnitio i LP(Q x Q)
for any p <2 as (h,k/h) — (0,0).



Remark 9 Under the CFL Condition
ah

F<O-O7m Ty

(11)

where a € R} is a constant independent of the mesh coming from , we will prove in the sequel firstly for
£=0, the L‘tx’Lz’x stability of uwr i stated in Proposition p@ and secondly for some & € (0,1), the “weak
BV?” estimate stated in Proposition @ p. In the deterministic case, condition for some £ € (0,1)
is sufficient to show the convergence of ur i to the unique entropy solution of the problem, whereas in the
stochastic case this condition doesn’t seem to be sufficient, that is why we assume the stronger assumption
k/h -0 as h - 0.

Remark 10 This theorem can easily be generalized to the case of a stochastic finite dimensional perturba-
tion of the form g(u).d W where g takes values into RP and W is a p-dimensional Brownian motion.

4 Preliminary results on the finite volume approximation

Let us state in this section several results satisfied by the finite volume approximate solution w7y j defined

by and .

4.1 Stability estimates
Proposition 1 (Lf"Li),ﬂ. estimate) Let T > 0, uo € L*(D), T be an admissible mesh in the sense of
Deﬁm’tion@ NeN* and k = % e R} satisfying the Courant-Friedrichs-Levy (CFL) condition

a’h

k < V) (12)

Let ur i be the finite volume approximate solution defined by @ and (@
Then we have the following bound
Hu‘ﬁkHL“(O,T;L?(QxD)) < Cest,
where 12
cir 2 2 b2
Cest = %" (|[uollZ2py + 2TIDIg* (0) + V(F1 + Ba)l[u'[F2(0.ryx0m)) -

As a consequence we get
2 2
||uT7k||L2(QxQ) < Tcest~

Proof. First one has

KgTIK\E[(u?()z] KZE:T|K|E|:(|[1(|/;<UO(I)CZ$) ]

2
||u0||L2(D)'

IN

Set n € {0,..., N —1}. Let us multiply the numerical scheme by u%, we thus get

K _
Wi e = = 3 lol{vfeh Pule i ) — vy F ) Juk
e
K
gy -
And by using formula ab = %[(a +b)? —a® - b*] with a = v —u% and b= u} we obtain
1|K| n+1\2 n \2 n+1 n\27 _ n,+F n n n,—F n n n
2 % LR = () = (R — i) == 33 Jol{oeh F(uks ko) = v, F(ukoui) fuic
33%
K
gy - wr g,
and then
K]

n n K n n n n n n,— n n n
[(UK+1)2 - (UK)Q] =%(UK+1 —uf)? -k > |U|{UK';F(UK»UK,U) - UK’,JF(UK,muK)}uK
o€k

2
+|K|g(uf ) (W™ = W™ )ulk.



Using the finite volume scheme @ we can replace (ur! —u%)? and we take then the expectation. Thanks
to the independance between the random variables (W"+1 W™) and ulf, together with the equality

E[(g(ui) (W™ =w™)*] = E[(9(ui))? [E[(W™*" = W™)?] = kE[(9(u3))], we get

@E[( K- (uk)?]
= |12(E|:(—|Ik;.|UEZ£:K|O'|{UK0F(UK,uK,,) UKJF(uKmuK)}‘Fg(uK)(W"H Wn)):|

—kE[ Z |a|{vKUF(uK,uKU) aF(u%,c,u})}u}‘(] + \K|E[g(u?<)(W"“ 3 Wn)u?(]

oef i

- X E[( S Jol{vit F(uf, o) o ;F<u¢<,mu3’<>}) ] BT B[ (gtuir?]

2|I:(| oef i
_kE[ Z |a|{vK0F(uK,uK(,) v,"g’aF(u%,,,,u%)}u?(]. (13)
o€k
Using (9), which states that Y |o](v,, - v, ) =0, this equality can be rewritten as, after summing over
o€

each control volume K €T,

2 BBl - i) = Bi-Bav ()

where Bj = Z k2 E[( Z \0|{UKJ(F(UK7UKU) f(uK)) UZG(F(U?(U,u?()—f(u%))}):l

KeT 2|K‘ o

BQ: Z kE|: Z |U‘{’UK0-(F(U’K7’UJKU) f(uK)) UKU(F(chTauK) f(uK))} :|

KeT (5%

K
and Bs= Z ‘ |
KeT 2

E[ (9(ui))’ |

e Study of Bi: Using the notations

A= F(uk,uk,o) = f(uk), B = F(uk,o,uk) - f(uk)
n,+ n,—

VK o VR
Cziandlfgzin} Ty

n,—
UK,O’ + UK,O UK,U

since ¢ € (0,1) we get using Cauchy-Schwarz inequality that

(Z |‘7|{U;L<ZA v B}) (Z |U|(UK0+”KU){CA (1- C)B})

o€ oef
< Zg: lol(viey + Vi) Z o (vieh, + v ){CA+ (1= O)(- B)}*
< Zg: |O|(UKU+UKU) Z |U|(UK(T+UKG'){CA +(1- C)B}

Since (viT, + v, )¢ = v, and (v, + v )(1-¢) = vy, we get the following estimate

Bi < Z 2\K|< > |0|(U?5,Z+U?£,;))XE[ > |a|{vKg(F(uK,uKJ) f(UK))

oef i oefk
(P - $0) )|

Using the fact that

> lol(vl +vie,) < VIOK] (15)

oef i



which implies thanks to and to the CFL Condition that

k OK| _ a’h 1 1
— kV 16
|K| agKla‘(vK” Vi) € K| V(R +m) &h F+B (16)
we have
k n,— n n n 2
Bi < > > lolB| vy (Fuk,uk.o) - f(UK)) + 0, (Flug o uk) - f(uk)) | (A7)

2(F1 + FQ) KeT oe€x

By denoting
T, = {(K,L) €eT?:LeN(K) and u} >uf},

we see that the double sum in the right hand side of can be gathered by edges, according to the
following formula (see [Vov02] Lemma 7 p.582):

Z Z P}l(,a = Z an,a + Z (p?(,K\L +PZ,K|L)7 (18)

KeT oe€i oeEd (K,L)e%y,

where p%a=|a|E|ivKo(F(uK,uKJ) f(uK)) +vKU(F(uKJ,uK) f(uK)):| This finally gives:

B < B1,1 +BL2, (19)
where
B = sy 5, P [ei (Pt - )« wie (PO i) - s i) ]
B = ﬁ Wz |aK,L|E[v?e,z{(F<u?<, up) = f(ui))’ + (Fuk,ui) - F(uf))’}

n,— n n n 2 n n n 2
s {(F(u) ~ FQu i) + (F(uf) -~ Fuf ul) }].
e Study of Bz: We introduce the term B> ; defined by

Baa =k Y lolB [uic {vich (F(ufe,ug™) = F(ui)) = iy (F(ul" uie) - F(uio)) ]

oekhb
‘We have then

By-Ba1=k Y, |UK,L|E|:U?,+L{UTIL<(F(U%7U7LL)—f(u?())—UZ(F(U%WTLL)—JC(U?LI))}
(K,L)eT,,

v ke (Fuf, uie) = F(ui)) = ui (F(uf, ui) —f(uﬁ))}].
Denoting by ¢ the function defined for any a € R by ¢(a) = foasf'(s)ds7 an integration by parts
yields, for all (a,b) € R?
b, b
6(b) = 6(a) = [ sf'(8)ds =b(f () = F(a,b)) = a(f(a) = F(a,)) = [ (f(s) = F(a,b))ds

Using this formula, we define By 2 and Bz 3 by

Baa = E[ Y kol {K ( [ ue- F(u%u’i))ds) U ( [ - F(uz7u?())ds)}]

(K,L)e%, L
and

Bys=-E

> Kok ol(vy — v ) {e(uk) - ¢(U’E)}] :

(K,L)e%,,

We have then split Bz into three terms:

BQ = Bz,l + B2,2 + 3273.



Note that since div[v(z,t)] =0 V(z,t) € D x [0,T], one has

(K,L)eTy

:_E[(Kgg {(ﬁi?ﬁl)k LKLﬁ(x’t)nK,Ld’V(ZE)dt)QS(Uy}L{)

( fn“””’“ / - ﬁ(x,t).nL,dex)dt)¢(u?>}]

=E Z klo|(vie, — v J)¢(UK) - E[ > oluk) / f b(x,t).nK Ld’y(m)dt]

Loeel KeT oe€k

BE[ I e A K’L@(x,t).m,m(x)dt){¢<u}z>¢(uz>}]

=E|'Y Klol(vih, - vie,)e(uk —E[KZTgb(u}%)fmim)kfl(div[a(x,t)]dmdt]

-o'Sgb

=E| % k\a|(vKU—vKU)¢(UK) .

Loeeb

Next, we will estimate simultaneously Bz 1 and B 3 which correspond to the terms on the boundary
of the domain. To do this, we first introduce the following technical lemma from [EGHO00] (Lemma
4.5 p.107), which will be used several times in the sequel :

Lemma 1 Let G : R - R be a monotone Lipschitz-continuous function with a Lipschitz constant
Cg >0. Then:

Ucdg(t) —G(e)dt

1
> E(g(d) -G(c))*,Ve,d e R.
Thanks to this lemma, we estimate Bz 1 by treating separately the terms u’ (F(u}l(,uf,’") - f(u?())
and —uf (F(ug™, ug) - f(uk)):
. Study of uk (F(u%, ub™) - f(u}’()) by using the nonincreasing and F>-Lispchitz continuous func-

tion g4 function defined by
wa(s) = F(uk,s),Vs e R,

we have
uhe (F(ufe,uly™) = f(uke)) = uhe (F(ufe,ul™) - Fufe,ufc)) = uie (wa(ul™) - pa(uic)).

We now introduce the function ¢4 defined by ¢a(a) = apa(a) - [;* ¢a(s)ds for any a € R, one has
then for any a,b € R:

Ba(b) - 6() =b(0a(V) ~ pa(@) - [ pa(s) - pa(a)ds

With a = u2™ and b = u7%, we deduce from this last equality that

i (Plufe,us™) = Fuk)) = —uk (paluf) - pa(us™))

= Guuy™) = dului) - [ pas) - pulus™)ds

WV

Ba(uy™) = da(uic) + 3 (alul™) - patuit))

m (Fluteut™) - £(uio)) - (20)

\Y%

ba(ug™) - pa(ufc) +

. Study of —-uyx (F(uf;”,u?() - f(u?()) by using the nondecreasing and Fi-Lispchitz continuous
function ¢4 defined by
QOQ(S) = F(S,’l},?{), Vs e R7

we have
~ule (F(ul™ uie) = f(ufe)) = uie (F(ufe, uie) = F(ug™, uie)) = uie (9g (uke) = 00 (us™))

We now introduce the function ¢4 defined by ¢4(a) = apg(a) - [, py(s)ds for any a € R, one has
then for any a,b € R:

Bg(b) = pg(a) =b(pg(b) - pg(a)) - fab ®g(s) = pg(a)ds.



With @ = u2™ and b = u%%, we deduce from this last equality that
_uK (F(ua 7uK) f(urflf))

uie (99 (i) = o (uy™))

- bk = (M) [ s) ey (uE s

\Y%

ba(uic) = 3y (uy >+—(F(ua )~ f(ui))

' 2(%%) (P uio) - fwio))” @)

A\

bg(uk) — by (UZ’H)

. Thanks to and we get

Baa =k Y lolB [ufec {vich (Fufe,us™) = F(ui)) = vie, (Ful" uie) - f(ui))}]

oeEb
n,+ ,n n 1 n ,n n 2
>kG§b|0E[UK,U{¢d(U2 )—¢d(ux)+m(F(uK7UZ )_f(uK))}
+v?,a{¢g(u}?)—¢g(u )+2(F7F)<F(u” JUR) = f(u?())2}]

Gy 7y 2o i (P = 1050 ) s vi, (G i) - 5G|
kY \a|E[vKJ{¢d(u ") = galuic) | + v, {8a (uic) - dg (ug™)}]

oegb

=Bia+k ¥ lolB[vi, {oa(us™) - da(uic) } + i, { e (uic) - g0 (ue™) }]

oeEb

2Bi1+k Z lo|E [vK od’g(uK)_U?(’Ld’d(u?()] +k Z |U|E[UK o Pa (u UK a¢g(u :|

oegb oeEd

. Let us now estimate B 1 + Ba3:

Boa+B2s > Bui+k Y |o|E[vg,¢e(uk) - v, da(uic)] -k 3 \0|U?€,}E[¢g(ug’” ]

oee? oegd
ok 32 Il B[ gu(us™) |+ Bay
= Bk 3 1olE vy (k) - vicl du(uio)] -k 3 ol B[ o (u™)]
+k e% joloiet B ga(us™ ]+E[ éb k|cr|(vKa—vKg)q5(uK):|
- Bl,:+k: Zg:b lo|E [vie, {¢(uk) - ;d(uk)}ﬂf Hbo(uk) - o(uk)}]
ok 3 lolB[vi o™ ~vics o0z ")

Using the fact that F' is nondecreasing with respect to its first variable and nonincreasing with respect
to its second one, one shows that

and

p(ui) - da(ui) >0, (22)

¢g(uk) = p(uk) > 0. (23)

Indeed, since ¢(a) = /a sf'(s)ds, we have
0

and

¢(uk) - da(ui)

e i)~ [ ss)as - (uier Gt i) [ Pt 0)ds)

= fou?{(F(u}L(,s)—F(s,s))ds
07

WV

Bo(ui) = 9R) = wikF i)~ [ FGs,uids - (uief i) - [ (o))

/uK F(s,s) - F(s,ux)ds
0
0.

\%
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Finally,

Bai+Bas > Biatk Y |o|E[vRhéa(us™) - vii, ¢e(ul™)), (24)

oegb

Let us now turn to an estimate of By 2. To do this, we use again Lemma [lI| which gives us for all
a,b € R the following inequalities:

fabf(t)—F(mb)dtzfa Fa,t) - Fa,a)dt > (f(a) F(a,b))? (25)

and

fbf(t)—F(a,b)dtzf F(4,6) - F(a,b)dt > 1 ( £(0) - F(a,b))™. (26)

F
Multiplying 1’ (respectively lj by (respectively by 7 +1 7 ) and adding the two inequal-
1+ Fy

ities yields:

P
F1 +F2
fabf(t) ~ F(a,b)dt > m [(£(a) - F(a,5)) + (£(8) - F(a,5))’].

We can deduce from this last inequality that

Ba E[ > owal{oi [0 - Faaas) o (06 - F(uz,u;;))ds)}]

(K,L)e%,

> 72(F1k+ ) (K’g):ﬁn lok,L|E [UQZ{(F(U%,UQ) - f(u?())2 + (F(u},uf) - f(uZ))Q}

. v;a;{(f(u;z) _ P} u)) + (Fud) - F(uz,uzz))"’}]

=By (27)

In this way, combining 7 and (27)), one gets
By = DByi1+B22+Bas
Buy+Bia+k Y |o|B[vel ¢a(us™) - vii s éq(ue™)]

oegb

vV

Vv

Birk ¥ |olBvichéa(ul™) = vic o d0 (us™) -

oeEd
In summary, we showed that

> Blefwy)-pi-pe s 3§ B[]

KeT KeT

<Bs+ Z E[(ui)?]+k Y loE[vi b0 (us") - vl da(ul™) ]

KeT oegb

Since for any = € R we have
2

¢g(x):a:F(x,u?()—fozF(s,u?()dszjéz (F(z,ufk) - F(s,ux))ds < Fy foz (ﬂc—s)dstl%,

2
and similarly for any z € R, ¢q(x) > —Fg%, one finally gets that

s Blp < v leI Blo@io’]+ 3 B[] ok S lolB[ v 6a(ah™) - vj datus™) ]
Ker 2 KeT Ker 2 =
< ZT‘ |(1 2kC )E[(UK) :|+k Z |K‘9 (0)+*(F1+F2) Z |J|k(u
Ke Uggb
» \KI(1 2kC;) B [(uk)*] + k|Dlg” (O)+—(F1+F2)f / (W (2, 1)) 2 dy () dt,

KeT

where we have used Jensen inequality. In this way, we deduce from the discrete Gronwall lemma that for
any n€{0,...,N}

S K|E [(uf)?] < e%"cﬁ{

KeT

S K|E[(u%)?] + 2nk|D]g?(0) + V (Fy + F>) fonk faD(ub(:mt))Qd'y(x)dt}

KeT

2 T
< &2TC5 {Huonizw) 1 2T|D|g*(0) + V(F + Fy) fo faD(ub(amt))de(x)dt}.

11



‘We conclude that

(2xD)) <e q \/||UOHL2(D) + 2T|D|g2(0) + V(Fl + F2)||ub||L2((0 T)xdD)"

This gives the Lg” Li,z stability of the approximate solution. As a consequence, we have

N-
|\U7‘,k||2L2(QxQ) = Z > k|K|E[(UK) ]
n=0 KGT

7™ (|luo|[32(p) +2T1DIg>(0) + V(Fi + Fa)|lu’[[32o,1yx01) ) -

IN

4.2 Weak BV estimate

Proposition 2 (Weak BV estimate) Let T be an admissible mesh in the sense of Definition @ T>0,
N eN" and let k = L € R} satisfying the CFL Condition

ah

k< (1—5)7‘/(1;1 et

(28)

for some £ € (0,1).
Let {u?ﬁK eT,ne{0,...,N - 1}} be given by the finite volume scheme @)
Then the following hold:

1. There exists C1 € R}, only depending on T,|D|,uo,u’, &, F1, Fa,C, and g(0) such that

Z k Z Z ‘0—|E|:UKJ{F(UK7UKO') f(UK)} +U {F(UKmUK) f(UK)}]

n=0 KeT ek
2. There exists Cy € Ry, only depending on T, |D|,6¢,uo,ub,£,F1,F2,C’g and g(0) such that

N-1

> |UK,L|E|:U?<’£{ max (F(d,c)- f(d))+ max (F(d,c)- f(c))}

n wn .
n=0 (K,L)eT, u’f <e<d<u, T<e<d<u

+ v?(_L{

(f(d)-F(c,d))+ max (f(c)-F(e, d))}:|<02h—1/2’

ma.
ng n <u”
u’ < c<d< ufp < N <e<dg

where
T, = {(K,L) e T*: Le N(K) and uf > uf }.

Proof. Recall that by multiplying the finite volume scheme by ku'kx, taking the expectation and summing
over K €T yields equality and after summing over n € {0, ..., N}, we have:

Z Z |K| [ n+1)27(ur;<)2]: 2(BlfBQ+B3)7

n=0 KeT n=0

where By= Y, 2|k;(E|:( > ‘O.|{/UKO'(F(UK7UKU) Fu5)) = v, (F(uk o, ulc) = f(UK))}) :|

KeT oef i

By= ) kE[ > |a|{vKJ(F(uK7uK(,) f(uK)) UZU(F(u%U,u}L()—f(u?())}u?(]
KeT oefx

and Bg: Z k‘K|

KeT

E[(9(uk))?].

e Study of Bi: Similarly to , it follows from the CFL Condition and the mesh properties (3)

that
. 3 ol (vih +vis) < <pv 2K 1=¢ (29)
K| &5 Ko T Vo K| ~Fi+F’
Then, by using Cauchy-Schwarz inequality and Jensen inequality, we get similarly to the following
estimate
B < =8 E F F 30
LSS E T Ry KZT ZS: lo|E| vy (F(ufk, uk,o) - f(uK)) + 0 (F(uf o uk) - f(uK)) (30)
€T o€

12



By denoting again
T, ={(K,L) eT?:LeN(K) and u} >uf}
and by reordering the summation in the right hand side of thanks to the formula , one gets:
B1<Bi1+ B, (31)

where

B sty 2 [ (P o) - 1) o (P& ) - 1)) |

JERPRL €t Y |aK,L|E[v;;+L{u max  (F(d,c)- f(d))*+ max (F(d,c)—f(c))Q}

2(F1 + F») (K,D)ex,, T <e<dsuy u <c<d<u

+’U;L<’:L{ max (f(d) F(cd)) max (f(c) F(cd)) }]

ul <e<dsuly uf <e<d<uly

e Study of B: By reordering the summation and using again the notation ¢(a) = [;* sf'(s)ds, Bz can
be decomposed, as in the proof of Proposition [T} in the following way

By = 32,1 + 32,2 + B2,3

where
Baa =k Y |olB [uk {vieh (F(uk,ul™) - F(ui)) - i, (Fub™, ufe) - f(ui)) ],
oeEb
Bs o :E[ > k|0’K,L|{U?(”+L (f:L(f(s)_F(u?{,uﬁ))ds)+y’;’}1 (f:K(f(S)—F(uz,u}?))ds)}],
(K, D)ex,, ulk un
and
B~ B[ S HoluR -oi )t
oegb

Following the proof of Proposition [1| one shows that
b,n n 2 n,— bn n n 2
BQ,l 2 2(F1+F2) Z ‘O-|E|:'UKG(F(UK7 Uy )7.}[(“1{)) +UK,0' (F(ud 7UK)7f(uK)) ]

kY \oiE[vKU{aﬁd(ua ) = da(uio) )+ vie, {6s(uic) - ¢y (u™) ]

oegb

Bk B[ (A -uts)) i (620) - )]

1- é oeEb
2 1= §B11+k z \0|E[vKg¢g(uK) UKquSd(uK)]
oekb
+k Y. |o|E [UK U(;Sd(u U;?’;qﬁg(ug’" ]
ceEb

We still follow the proof of Proposition [I} In particular we use the fact that F' is nondecreasing with
respect to its first variable and nonincreasing with respect to its second variable, and we deduce that

1 mn,— n n n
Bsi+Bas > TBI’I +k > |o|E [vK"U¢g(uK) - UK’:,qbd(uK)] +Bss

g Al
+k Z |U\E[v?(’:7¢d(u?,’ _vKU¢g(u ]
oeEd
€B1 1+k Y |o]E[vg,¢g(uk) — v da(ui)] +E[ > Klo|(v vKU)qﬁ(uK):I
oeEb oeEd
n,+ b,n n,— b,n
+k Z |U‘E|:’UK,U¢CI(U’G' _UK,J¢9(UU ]
aeEb
—Bia+k 3 |J|E[vKa¢d(ub MY v g (ul” ] (32)
1 é’ ceEb

Let us now turn to an estimate of Bz . For this purpose, let a,b e R and define
C(a,b) = {(c,d) € [min(a,b), max(a, D) :(d-c)(b-a)> 0}.

Thanks to the monotonicity of F, the following inequality holds for any (c,d) € C(a,b):

fabf(s) ~ F(a,b)ds > /Cdf(s) ~ F(a,b)ds > fcdf(s)—F(c, d)ds.

13



We now use again Lemma [I] and deduce that for all (c,d) € C(a,b):

fabf(s)—F(a,b)dsz/Cdf(s)—F(c,d)dszjc‘ Fe,s) - Fe,d)ds > — o (F@) - Fle d))°  (33)
and

b d
fa f(s)—F(a,b)ds;[C f(s)—F(c,d)ds;fc F(s,d) - F(e,d)ds > (f(d) F(e,d))>. (34)

taking the maximum for

F: F
Multiplying 1) (respectively ) by . +2F2 (respectively by ﬁle),
(¢,d) € C(a,b) and adding the two inequalities yields:

fa f(s) - F(a,b)ds > 72(F11+F2) [@,J}"i%i{a,b) (f(e) - F(e,d))” + o max (f(d) - F(c,d)) ]

We can deduce from this last inequality that

Bao>k ), ME[U?(E{ max (F(d,c) - f(d)) max (F(d e) - f(c)) }

(K,L)e%n, 2(F1 + F2) u <e<d<uly ul <e<dsu

+v7;(’:L{ max (f(d) F(c, d)) max (f(c) F(e, d)) }]

uf <csd<ufy uf Scsd<ufy
1
B 35
1o b (35)
In this way, using and , one gets
By, = Bz1+322+323
> (Bt Bia)+k B ol [vje da(ub™) = vie, ba (ui™)]- (36)
oeEb

e Study of Bs: Using the constant C.s: introduced in the stability result stated in Proposition

Smo- %y

n=0 KeT

M B o]

TIDI0) + C2 Y k Y [KIB [ (ui)?]

IN

n=0 KeT
< T|D|g*(0) + C3TCL,,. (37)
Finally, since
N |K| . K
> 3 Blefry -] - 3 5el?- @
n=0 KeT KeT
-1

= Z Bl—BQ+B3),

one gets with (31), (36), and
K n n
0< Y %E[(u%y] < |\u0\|L2(D)+k Y JolB [vie, ég(ub™) = vich ga(ul™)]

KeT oegb

+(1- 7) Z (Bi,1 + Bi2) + T|D|g°(0) + C2TCZ,,.
Then, following again the proof of Proposition [I] and using in particular the fact that for any = € R,

2
09(2) < Fi T and ga(a) > %

we get

72@ ooy NZ:k 3 |0|E[vKU (F(ufeub™) _f(u’,;))2 rop (F(ub™ uk) —f(u?()>2]
= oeEb
£ N-1

koS |aK,L|E[v;;+L{u max  (F(d,c) - f(d))*+ max (F(d,c)—f(c))Q}

+7
2(F1 + F») "0 (K,D)eTn T <e<dsuy uf <c<d<u
iy U@ - Fe)’s | max (70 Fea)'}|
L™

(F1 +F2)
7”“ HLZ((O TyxoD) t T|D|g (0) + C’ TC2,,.

IN

2
*||“0||L2(D) +V
2

14



WhiCh, n turn, gives the existence Of Cl € R:’ Only depending on T7 |D|7 V7 0979(0)7 Fl, F27£> ||u0||L2(D) and
b2
”u HL2((O,T)><3D) such that

ZO kY \J\E[UKU(F(W, Z’")_f(u?())Q v (Fub™ uic) —f(u’}())Q]
= oe€b
N-1

* k(KL)-;: |0K,L|E[UZ’L{ max (F(d,¢) - f(d))’ +  max (F(d,c)_f(c)f}

n=0 uf <c<d<ul uf <c<dsu

up n <p<d<u n

+v7;(";{ max (f(d)-F(c, d)) max (f(c)-F(c,d)) }] < C1.(38)
u’i c< <u”
Moreover by reordering the summation and taking ¢ = v}, and d = ux in the maximum, we have in particular
N-1
Y kY X lolB [vih {F(uk,uk ) - Fuie)} +vie  {F (uke o uie) - f(ui)} ] < Cn,

n=0 KeT oe€i

which proves the first point of the proposition.

Let us now turn to the second point of the proposition. To do this, we aim to estimate

SEOY |aK,L|E[v;ny{ max  (F(d,c) - f(d)) + max (F(d,c)-f(c))}

{ n=0 (K,L)eTn ul <e<d<ufy u’p <c<d<u

+v;L<”_L{ max (f(d) F(cd)) max (f(c) F(cd))}]}

u’f <e<d<u, T<e<d<u

Let us denote by
T = max (F(d ) - f(d)) + max (F(d c) - f(0))

u”f <e<d<u U’} <e<dg

and
T

max (f(d)-F(c,d))+ max (f(c)-F(c,a)).

uf <e<d<uf ul <e<dsuly

Using Cauchy-Schwarz inequality, one gets

N-1 2
( Yk Y lowclB[oR T +U;;;T2])

n=0 (K,L)eT,

n,+ n,—
LTV L

s(Nzlk 3 GKL|(UKL+UKL)><(NZ:1k > [(U’IQ*LTHv;@LTg) ])

n=0 (K,L)eT, n=0 (K,L)eT,

[ofet, 1 + vje, T3 ])

(Nzk 5 aKL|<vKL+vKL)x(N21k 5

n=0 (K,L)eT, n=0 (K,L)e%,

where we have used the convexity inequality

n,+ n,— 2 n,+ n,—
(UK,LTl +vy  To ) < VKL 2 VK, L T2

1

TL,+ n,— - mn, n,—
Vk,L YUK L ”K,L +URL Vk,L YUK L

‘We have then, by using the consequence of the mesh properties
N-1
Yk Y okrl(vgl +vL) STV Y |0K]| < TVTh Z K| < TVTh|D\ (39)
n=0 (K,L)eT, KeT

Finally, using and , the fact that

7 < 2{ max (F(dc) f(d)) ril\ax . (F(d,c) - f(c))}

" <eg
uf <c<d<u

5 < 2{ max (f(d) - F(cd)) max (f(c) - F(cd))}

uf <c<d<ul uf <c<d<ul

one finally gets

(szlk Z |0K’L|E|:v%’L{u max (F(d c) - f(d)) max (F(d,c)ff(c))}

n=0 (K,L)eT, 7 <e<dsul u? <o<d<u
2
I 2TV C1|D
oiw{ max  (F@)-Fled)+ | max (7o) F d>)}]) <
L

which concludes the proof of the second point of the proposition. m
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4.3 Convergence of the finite volume approximate solution

First of all, note that the estimates stated in Proposition [I| only provide (up to a subsequence) weak con-
vergences for ur . Moreover, due to the nonlinearity of f and g, one needs compactness arguments to pass
to the limit in the nonlinear terms and these arguments have to be compatible with the random variable.
The concept of Young measures is appropriate here and the technique is based on the notion of narrow
convergence of Young measures (or entropy processes), we refer to BALDER [Bal00] but also to EYMARD-
GarvoutT-HERBIN [EGH95].

In this way, taking a sequence of approximate finite volume solution wur k, it converges (up to a subse-
quence still denoted wr k) in the sense of Young measures to an “entropy process” denoted by u which
belongs to LQ(Q x @ x (0, 1)) Precisely, given a Carathéodory function ¥ : Q x @ x R - R such that
W(.,ur k) is uniformly integrable, one has:

E[fQ xI/(.,uT,k)dxdt] »E[fQ follll(.,u(.,a))dad:cdt].

A proof of this result can be found in [BVW12], Section A.3.2. We recall that a function ¥: Qx QxR - R
is a Carathéodory function if for almost any (w,z,t) € Q x Q the function v — ¥ (w, z,t,v) is continuous and
for all v € R, the function (w,z,t) » ¥(w,x,t,v) is measurable. We also recall that a sequence (1n)ns0 of
functions ¥, : 2 x Q@ — R is said to be uniformly integrable on the domain ) x @ if it satisfies the following
properties:

. (%n)ns0 is bounded in L*(Q x Q).

. (¥n)nz0 is equi-integrable, that is to say that for any € > 0, there exists § > 0 such that for any
measurable set A of Q x Q satisfying (L' ® P)(A) <&, we have for any n ¢ N,

f lhn (w, 2z, t)|dadtdP <
A

(where £**! is the d + 1-dimensional Lebesgue measure).

Remark 11 (On the measurability of u) Since ur y is bounded in the Hilbert space N, (0,7, L*(D)),

by identification one shows that ur , — f01 u(.,a)da weakly in L*(Q2xQ) so that fol u(.,a)da is a predictable
process with values in L2(D)‘ An interesting point is the measurability of u with respect to all its variables
(w,z,t, ). Revisiting the work of PANov [Pan96] with the o-field Pr ® L(D), one shows that u is measur-
able for the o-field Pr @ L(Dx]0,1[), thus u € Ng(O,T, L?*(Dx]0, 1[)) See Appendiz A.3.3 p.707 [BYWI12)].

Remark 12 (L=(0,T;L*(2x D x (0,1)))) regularity of u) Since the sequence of approzimate solutions
uT K is bounded in L°°(0,T; L2 (Q x D)) according to Proposition following [BVW12] Remark 2.4 p.667-
668 we show that u € L”(O,T; L*(Q2x D x (0, 1)))

Note that if one is able to show that u is a measure-valued entropy solution of Problem in the sense
of Definition @, then, using Theorem [1| we will be able to conclude that all the sequence w7 ; converges in
! (2 x Q) to the unique stochastic entropy solution of in the sense of Definition |1 Since u satisfied the
regularities required by Definition [2] it remains to show that u satisfies the following entropy inequalities:
Ve A, Vpe D' (RYx[0,7)) and P-a.s. in Q

0 < _/Dn(uo)@(m,())d:c+-/q;jol{n(u(.,oc))at<ﬁ(x,t)+(I)(u(.7a))ﬁ(w,t)lvch(x,t)}dadacdt
+fOTfD/01n'(U(.,a))g(U(.,a))@(m’,t)dadde(t)+CfV/OT/8D o, )n(u® (z, £))dy(1)dt
+%fo0 g*(u(.,0))n" (u(.,a))¢(z, t)dadzdt.

This is the aim of the next section.

5 Convergence of the scheme

In order to show the convergence of the finite volume scheme , we are going to use the following lemma as
in [BCG2], which states that any general monotone numerical flux can be split into the sum of a Godunov
flux and a modified Lax-Friedrichs flux (also known as Rusanov flux). More precisely, we have the following
result, whose proof can be found in [CHOO] or in [BCG2].
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Lemma 2 Any monotone fluz F' (i.e. any numerical fluz satisfying Deﬁm’tion can be written as a convex
combination of a Godunov flur and a modified Lax-Friedrichs flux as follows:
For any a,b e R there exists 6(a,b) € [0,1] such that

F(a,b) = 0(a,b)FC(a,b) + (1 - 0(a,b))F" (a,b),

where FC is a Godunov fluz, that is to say a flur defined by

. Srer[liri]f(s) ifa<bd
F%(a,b) = e 100 Fash (40)

and FX¥ is a modified Laz-Friedrichs flux with parameter Mp = max(F1, F2) satisfying :
b
FYF (a,b) = w ~ Mp(b-a).

In order to treat the general case of a monotone flux, we will first treat the case of a Godunov one. The
case of the Lax-Friedrichs flux will follow easily since it can be split into the sum ot two monotone fluxes,
which are particular cases of Godunov fluxes. From now on we will hence suppose that F' is a Godunov
flux and at the end of the proof we will extend it to the general case of a monotone one, following the idea
presented above. As we will see later, we will only exploit the fact that the flux is a Godunov one in some
parts of the proof of Proposition : precisely to show that Bf’k —Bg’k > 0in Step 1.2.1, that B;‘bk —Bg”: 20
in Step 1.2.2 and that By\, - B’k goes to 0 in Step I1.2.

‘We propose in this section entropy inequalities satisfied by the finite volume approximate solution and aim
to pass to the limit in these formulations in order to show the convergence of the scheme. For technical
reason, one considers a time-continuous approximate solution constructed from wr  and denoted w7 in
the sequel.

5.1 A time-continuous approximation

Set K € T, n € {0,..,N -1} and consider uk,,(s) the time-continuous stochastic process defined on
Q x [nk, (n+1)k) from the discrete unknowns uy by :

— n s 1 n n n n,— n n s n
UK’n(S):uK_[nkﬁ > |U\{UK’LF(uK,uK7(,)—vK’JF(uK’a,uK)}dt+.[nkg(uK)dW(t)

oefx
n s—-nk n n n n,— n n s n
:UK_W Z ‘U|{U}(7,J:7F(UK7UK,G)_U}{VVUF(UK,LT’UK)}+fkg(uK)dW(t)- (41)
4% n

In this way, we have for almost all w, Gx n(w,nk) = ug and Gk (w, (n+1)k) = ux" and therefore we can

now define a time-continuous approximate solution @7 on 2 x D x [0,T) by

U k(w,x,t) =txn(w,t),weQxe K and t € [nk, (n+1)k]. (42)
Using again the fact that |a|(v?<’:; - vy ) = 0 we can rewrite for any K € T and n € {0,..., N — 1} the
o€

time-continuous approximate solution @7, on Q x K x [nk, (n + 1)k] in the following way:

e (s) = uf - |T’|”“ 52 lol{erh (F(ules uic.o) = F(uR)) = o3, (Fue o ui) = £ (50
v [ gluiaw (). (43)

We now estimate the difference between the continuous approximation %7 and the finite volume solution
UT k-

Proposition 3 Let T be an admissible mesh in the sense of Definition @, N € N* and let k = % eR
satisfying the CFL Condition (@) Let uT 1 be the time-continuous approximate solution defined by
, and uT, be the finite volume approzimate solution defined by @—(@ Then there exists ¢ € R
depending only on T,|D|,V,C,,9(0), F1, F2,&, uo and u® such that

ok T

lur,k — a7 |2L2(QxQ) <c(h+k).
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Proof. Using the equivalent definition of @, the fact that W(s) - W™ and v’k are independent, we
have

_ 2
llur & = 47 kL2 ()

KeTn O/T-L(nﬂ)kf [(g(ux) W(s)-wm" )

i Z | |{UK a(F(uK7uKo') f(uK)) U(F(u?(,o',u?()_f(u?())}) :|dxds

oef i

K]

-5 5 L oo -weo) ]

+K|E[( T EK' ol vl (F (uic,ufe, o) = f (uk )—v;z,;(Fw?mu’é)—f<u?<>)}) ]}d

< NZ |K|k*2(g°(0) + CFE[ (uk)*])

KeT n=0

N- K 2
+ Z Z k |[|(|2E[( Z |U‘{’UKU(F(UK7UK0) f(uK)) UKU(F(UKWUK) f(UK))}) ]

KeT n=0 oef i

We use now Cauchy-Schwarz inequality (similarly to the proof of inequality )7 the consequence of the
assumptions on the mesh , the CFL Condition and then the first estimate given in Proposition
(note that we can apply this proposition since the more restrictive CFL Condition is fulfilled):

_ 2
lur .k = 7 kl[L2 (2x0)
< 2kC§||U7‘,k||iz(QxQ) + 2kT|D|92(O)

N-1 \3K‘ n n n 2 .= n s % 2
+y kY >k |K| lo|E|vigl, (F(uk, uk,o) = f(uk))” + v, (F(uk o, uk) = f(uk))
n=0 KeT o€
a*h
< 2kT(C;C2; +|D|g*(0)) + IS

where we have used the constants Ce.s: and C given respectively by Proposition [I| and |

5.2 Entropy inequalities for the approximate solutions

In this section, entropy inequalities satisfied by the approximate solutions are introduced (Proposition @,
and will be used in the proof of convergence of the numerical scheme (Theorem . In order to obtain
these entropy inequalities, some discrete entropy inequalities satisfied by the approximate solution are first
derived in the following proposition.

For all (a,b) € R? we will denote in the sequel by s(a,b) € [min(a,b), max(a,b)] a real such that F(a,b) =
f(s(a,b)). We define then the associated numerical entropy flux G by G(a,b) = ®(s(a,b)) for any a,be R
which satisfies for all a € R, G(a,a) = ®(a). Let us mention that we exploit here the fact that the numerical
flux is a Godunov flux to get the existence of s(a,b) and therefore to define the numerical entropy flux G.

Proposition 4 (Discrete entropy inequalities) Assume that hypotheses Hy to Hr hold and that F is
the G’odunov flux defined by . Let T be an admissible mesh in the sense of Deﬁmtzon@ N eN* and let
k== € R} be the time step. Then P-a.s in §, for any n € A and for any ¢ € D*(]Rd [0, T))

H

> [ (i) = n(uic)) e nk)dz

OKeT
N-1 (n+1)k
DY f fq’(UK)U(iU t).Vap (@, nk)dzdt
n=0 KeT nk
-1 (n+1)k
2 2 f /U(uk)g(ux)go(ﬂc nk)dzdW (t)
n=0 KeT 71k
1Nl (n+1)k o
5 Z Z f f N (ux)g” (ux)e(z,nk)drdt
n=0 KeT Y1k K
N-L (n+1)k
DY B R CREECR DI
n=0 gegh
> RM, (44)
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where for any P-measurable set A, E[]IARh’k] -0 as (h, §) - (0,0).

Proof. In order to prove this proposition, we are going to show firstly that Inequality . ) holds for a
convenient R™* and in a second time, we will prove that for any P-measurable set A, E[ ARME ] - 0 as

(h, %) = (0,0). We will in particular use some technics from [EGH00], [CH00] and [Vov02] and adapt them

to our case.
Let 7 be an admissible mesh in the sense of Definition 3] N ¢ N* and k = % e R;. Consider 1 € A and

@ e DY (R? % [0,T)). Recall that there exists x € R such that for any ¢ # &, n(t) > n(x) = 0. We assume that
(h,k/h) - (0,0), in this way we can suppose that the CFL Condition

_ (- &a*h
(F1 + FQ)V

holds for some & € (0,1). In this manner, the estimates given by Proposition [I| and Proposition [2| hold.
STEP I: Existence of Ry, 1

The application of It6’s formula to the time-continuous process @k, defined by Equation (41) for some
K €T and the function v € R — n(v) € R on the interval [nk, (n + 1)k] yields P-a.s in Q

n(ﬁK7n((n+ l)k)): n(ﬁKvn(nk))— iflﬂfn;n 0 (tr.x(t)) Z |a\{v CF(ufk,uk,.) - C,F(u?(mu%)}alt

oe€ i

1
Let us multiply Equation by |K|¢%, where ¢ = @ f ¢(z,nk)dx, and sum for all K € 7 and
K
n € {0,...,N —1}. One gets P-a.s in Q

Z > [n(ui™) = m(ui) ] IK el

n=0 KeT
& (n+1)k n, - n n n
== Z Z fk (U‘T k(t)) Z ‘O-|{UK F(quuK O') G'F(uK,ovuK)}dtSDK
n=0 KeT Y7 oef

N-1 (n+k n "
s ¥ [ @ ®)g(ui)dW (OIK|9k
1 Nt (n+1)k "y — 2 n n
c3 2 2 [ @ )g (wi)dtK .

This can be written as A™* = —-BMF 4 ¢"F L DE where

ARE LSS () = n(ul)] 1Kk
n=0 KeT
bk N-1 (n+l)k , n " "
B = X Y [ () ¥ lolvi Pk i) - v F ko i) Jdigic
n=0 KeT Jnk oeEp
hke N-1 (n+1)k ;o n "
o [ @ra@)guio)dw ()| Kk
n=0 KeT YNk
11\’*1 (n+l)k "o " n
Dt - 2 L @ e)g® i)t Kol
n=0 KeT Jnk

Let us analyze separately these terms.

I.1 Study of A™*: we note that —A™" is equal to the first left hand side term of Inequality .

1.2 Study of B™*: we decompose
h k _ (n+1)k 1 n n n,— n n
Z Z f |K\ 77 (uT & (%)) Z |U|{1J F(uK,uK’a)—vK’yaF(uK,(,,uK)}go(x,nk)dmdt
n=0 KeT el

in the following way

h,k h,k h,k h,k h,k h,k h,k h,k
B"* = B"* —BYr e BYY - BYF 4+ BYF - BYF 4 B,
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N-1 (n+1)k 1 , _
B =% f — [ 0 (uk) Y lol{vil Fuk,uk ) - vy, F(uk,q, uk) fo(z, nk)dzdt
n=0 KeT Jnk ‘K| K oefx ' '
h.k N-1 (n+1)k 1 n,+ n n n,— n n
By” = Z Z f — Z \0|{UK’JG(UK7UK,U) —UK’GG(uK,U,uK)}go(:c,nk)dmdt
n=0 KeT Ik K| Jx & ’ ’
N-1 (n+1)k
Bg,k __ > f f ®(uy)v(x,t).Vep(z, nk)dzdt
n=0 KeT Jnk K
N-1 (n+1)k
—ovy B[ [ @ n)e(enk)dy(@)d.
n=0 gegb ¥ i

1.2.1 Study of B{"* — BI'* . we show that P-almost surely in Q, Bi"* — Bl"F > 0.
Firstly, we notice that by @, we have
> lol(uiel, v )®(uk) =0 and 3 |o|(vi, - vie,) f(uk) =0.
oef o€k
Secondly, recall that for any K € T, F(uk,ux) = f(uk) and G(uk,uf) = P(uk) and that @ is
defined by ®(a) = f n' (t)f'(t)dt, Ya € R. Hence we can rewrite B"* — B}"* in the following
way : "
B* - BL*

> % o 3 lol{ui [ ko) (F s i) = £(030) = (G ko) - (k)

n=0 KeT K| ol
i [0 (i) (F (i 03) = F () = (Gt gyu) = ©(ui))]} [ ol nb)da. (46)

Let K €T, 0 € £k and suppose that uf < uf , (note that the case ufk , < uj is similar).
We first determine the sign of
n,(u?()(F(uyIL{,UTIL(,G) - f(u?()) - (G(U?(, u?{,o) - q)(u}L{ )
Using the fact that we are in the particular case where F' is the Godunov numerical flux, we know
that there exists s(ufk,uk ) € [uk,ux ] such that
F(uk,ufk,o) = f(s(uk,uk,,)) = min  f(t).
t [u?(,u}"(ﬁ]

In this way,
1 (i) (F(uk, uke,0) = f(uk)) = (G(uk, uk o) = P(uk))
0 (uhe) (f (s(uke, ko)) = F(uk)) = (®(s(uk, uk,r)) = P(uk))

™ n

.s(u}l(,ull(wo) , ’om s(uK,u?()a) , ,
-/ 7o (i)t~ [ 7o (Dt

n n
K UK

n n
s(“K’“K,o

L, 0 (0 () o (1))t
) ‘/i{(u?{,u?’()a

n

; ) FOn" (@)dt + f(s(ufc, uko)) {0 (uic) =0 (s(ufe, uk.0) }

\Y%

F(s(ufe, ufe o))" (£)dt + f(s(uke, uie o)) {0 (wic) =0 (s(uk, uk o))}

fs(u?@u?(,a)

= 0

n
K

Using the same technics, we get
n/(uTIL()(F(u?(,d7u}l() - f(uTIL()) - (G(UTIL(,OWUTIL() - (I)(U?()) <0.

Finally we obtain the following inequality
v [0 (i) (F(ulie, e o) = F(uk)) = (Gluf, ufe o) = @(ui))]
o [ (i) (F(ufe o uke) = F(ue)) = (G(ulk o ul) - D(uf))] 20,
which allows us to deduce that for almost all w € €2,

B _BIF > 0. (47)
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1.2.2 Study of Bg’k - Bg’k: Using again @, we get

> lol(vigs —vi )@ (uk) =0,

oef i
. hk - .
we can rewrite By"" in the following way

Bg,k: Z_: Z %JZ |a|{UKU(G(uK,uKU) Cb(uK))—v;?U(G(u%g,u?()—@(u%))}/;(cp(a:,nk)dx.

n=0 KeT ek

By separating this summation by edges belonging respectively to the interior of the domain D
and respectively to the boundary of the domain D (see formula (18))), we get
By = Byl + By

where

h,k h,k
B2 int — S2 int T2 int’ with

2mt Z > |[]€(||UKL|{UKL(G(UK7UL) ®(uk)) - v (GuL, uk) - ‘I)(UK))}fKSO(UU»”k)d%

n=0 (K,L)eT,,

ul k n n n n n,— n n n
Tyme = % m|aK,L|{v;e,2(G<uK,uL)—@(uL))—v;e,L(G(uL,uK)w(uL))} [ ea.nkdz,

n=0 (K,L)eT,

3> ||o—|{vKo(G(uK, ab™) = 0(ui)) - vie (Gl ui) - (i)} [ ol nk)da,

n= Oaggb

where we remind to the reader the definition of the set
T, = {(K,L) eT?:LeN(K) and uf >uf}.

Similarly, since

- / O (ug)(z,t).Vep(z, nk)dzdt
n=0 KeT Jnk
N-1 (n+1)k
-y ¥ f f ®(ul) div[d(z, ) o(z, nk)dadt
n=0 KeT Jnk K
N-1

(n+1l)k
=- f /<I>(uK)v(x t).nk,op(x,nk)dy(x)dt,

we have

h,k h,k h
Bk =Bt . B!

k
3,int b

)

ok h.k Rk
where By, =S50 — 1y, with

N-1 (n+1)k
h,k n,— n n
Sihe= 2 > [ [ G~k G k)

n=0 (K,L)e%, ¥ "k

~ ®(uj )o@, 1) nicn bp(w, nk)dy () dt,
N-1 (n+1)k . n n
T?fl,’i]:u = Z Z f f {UK 1 G(uk,ur) - UK,LG(ULaUK)
n=0 (K,L)eT, <"k OK,L
- @(uf)ﬁ(:c,t).nK,L}go(x,nk)d’y(a‘)dt,
and

Z 5 f("“)kfv(x t). k.. ®(ul ) p(z, nk)dy(z)dt

n=0 gegb

v S [l e nkd @

n=0 gegb

Using these notations, we will be able to show that for almost all w € €2,
h,k hok o phik h,k h,k
By = B3™" 2 By it = B3lint + Ba s — B3 (48)

where
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5 N-1
By == el {Ws ~ o200 + CrVaut )} [ ot k).
egb

n=0 ge

Since
R,k R,k ok Shok | Bk ,
By — By B2 Jint ~ B3line * Bz » — B3y + By — B,

‘We have
~ N-1 k n
B;bk —Bg”bk = Z;) Zb @'U‘ {UK CrG(uK, Uy 7’UK UG(ub UK ) +CfV77(u }f}(«p(ﬂc,nk)daz.
n=0 ge&

Since @ is a nonnegative test function, it remains to show that for any n € {0,..., N} and any
o€ K nE, we have

vt Gulfe,ug™) - v LG (ud" ufk) + CpVn(ug™) > 0.

To obtain this last inequality, we will exploit the fact that we are in the particular case where F'
is the Godunov numerical flux. We will split the proof in six cases which correspond to the six
possible positions for u}% and u%™ with respect to the parameter & (k € R is the unique minimizer
of the entropy 7 over R, it satisfies () = 0). Recall that there exists s(u%k,us™) and s(ul™, ux)
belonging to [min(u},ug’"),max(u?{, uf’,")] such that

min  f(¢) if uk<u
te[uf ug "]

max f(t) i ux>ur",
te[ul™ u

F(s(ulc,ug™)) =

max f(t) if wk <ul”

Fls(ug™ uic)) =

min  f(¢) if uk zul”,

bn)

Gl us™) = a(s i) = [ s,

and

G i) = a(s(m i) - [T o e
We show in the following that whatever the position of u%™ and u} with respect to x is, we always
have

G(ufc,ug™) > ~Cpn(ug™) and G(ug", uk) < Cynlug”

As a consequence we get the announced inequality, that is

vKD'G(uK7 Uy _UKJG(uanK) > (”KG+UKU)Cf77(UZ;’n

> -VCm(ud"

Let us mention that in every cases, the proofs to show that the two previous inequalities hold
are due to the three following properties: firstly, the minimization or maximization of the flux
function f by s(up,u™) (respectively by s(u™, ul%)) according to the position of u% and u2™,
secondly the positivity (respectively negativity) of ' on ]k, +oo[ (respectively on ] - oo, x[) and
thirdly the montony of n which is nondecreasing on |x, +oo[ and nonincreasing on | — oo, k[. This
last property implies particularly that n is nonnegative on R.

Case 1: vk <k <ub™
Note that if s(up,u%™) > k, then

s(u'y ,ug’") ug’"
Gluie,us™) = [T @ mdez -y [ o @dt = -Cn(ul™).
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Else, if s(ul,u%™) < &, since n > 0 on R we get

b,n

s(u ulm s(ufeug™) ”
[ s) = - [ 0 () (Dt

G(ul,ul

(K?Q'n

= o (st ul ™) (i, u) = ) 1) = [ oo
= e u NS i)+ [ O @t

> (s ™) (i ™) + S (sCufe ™)) [0 a0

= 0

> —Cpn(uy”

Moreover, if s(u%™, u%) > K

bn  n b,n

s(ug™, ) / 7 Yo ’ n
Gy i) = [T T w@rmd<es [0 (de=Comlul
And if s(ub™, u%) < K, using again 17> 0 on R we obtain

Gl i) = [OIOL R - [ s
SR R A S R L OV OL

< (s RN (5™, w3)) + FsCug™ i) [ s
= 0
< Crn(ug™).

b
Case 2 : ux <ug" <K

In this case, we get that s(ul,u%™) <k and s(ub™, u}) < k. Similarly to Case 1, we obtain
that

Guf,ul™) > -Crn(ul™) and G(u2™, uk) < Crn(ul™
M f

Case 3 : k<ulk <ud™

Since on [k, +oo[ 7 is nondecreasing and 7' nonnegative, one gets

s(u?(,ub
Gluje,ut™) = [ L s -cp [N 0as o)

In the same way,

b,n

cwt iy = [ wacr [ wa < ol

b
Case 4 : k<u)" <uk
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. . . / .
Since on [k, +oo[ 7 is nondecreasing and 1’ nonnegative, one gets

Gy = [ s wm
ug” (g™ ,
= [T wrwa [, o @
s(u U 5 ( K’ g 172
> =y + @SOS E = [T @ sty
> ~Con(ul™) + o (s(uf, b’"))f(S(U’z?,uff’"))—n'(uZ’”)f(uZ‘”)
sucou <’ "
s [, @

> =Cpn(uy™) + ' (") (e uy™)) = S (™)

> Ol
Moreover,

b,n

[ wwroas [ voroa

G(ug", uk)

s(ub ™ ul)

< Omug™) + [n'(t)f(t)]jg‘:’"*“” - [ T wsma
sub’ ( bn n "
< O™+ D OFOYEE T - psim i) [, @
< Omul™) el (™) (F (sl k) - FQug™)
< Cnlug™).

Case 5 : ub" <k <ul
Note that if s(uf,u%™) < &, then since on ] - o0, k] 1’ is nonpositive, we get

Gluicuy™y == [* o @f Wdezcp [T @dt>Cy [, @t > -Con(a™.
s(ul uly™) s(uly uly™) b
Else, if s(ul%,u%™) > k, using the nonnegativity of 1 we have

b,n

s(u ,ulem™ s(u,ug™) ”
Gluf,us™) = [ OFOLED - [ 0" (O (bt

’ n bmn n bmn n bmn S(U%’ug‘n) ”
> (s(uk,us"))f(s(uk,us")) — f(s(uk, ug ))L n (t)dt

= 0
> ~Cpn(ug”
Moreover, if s(ul™, ) < &, since 7 is nonincreasing on ] — o0, ] one gets
b i) = = [ T OF O

IN

cp [, @t
(u uK)

Crn(s(ug™, uf))
Crn(ud”

And in the case where s(ua ,u%) > Kk, we have using again the nonnegativity of n

IN

s(ug’",un) ,
Gy ui) = [T T @

(W™ uf)

" () f(t)dt

IN

[ (1R - [

o ™ i) PGl ) = Fsat o)) [
0
Cpntus”

Il /N

IN

Case 6 : v <ul <k
In this case, s(uf,u%™) < k, using the proof of Case 5, one gets directly

Gluf,ug") > ~Cpn(ug”
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And in the same manner, s(u%™, u%) < & so that using again Case 5,

G(’I,Lb n ’;L{) < Cfn(ub ny

Finally, we have shown, using and that for almost all w € Q,

h,k h,k h,k h,k h,k h,k h,k h,k
B -B""+B;"" -By" + By, -B3g"" + By

B
hk hk hk hk
> B -By +Bzmt BSznt+Bdb_Bdb+B3 .

1.3 Study of C"*: we decompose C"* in the following way
Ok — ghok _ @Ghik | Ghok

where

=k N1 (ko N
o= Y /I;,fk N (ug)g(uk ) e(z,nk)dW (t)dz.
n=0 KeT n

1.4 Study of D™*: we decompose D"* in the following way

R,k hk _ Ahk | FHhk
D> =D""-D""+D

where
~ 1 N=1 (n+1)k
D= SN S [ [ i) g (i e nk)dadt.
2 n=0 KeT nk K

Conclusion of STEP I:
Since P-a.s in Q, A"* = -B™* 4 ¢™F 4 DM* we get by using inequality that

h,k hk ~h,k ~h,k
-A""-By"+C""+ D"

> (B™" - Bfk)+(32mt By'hn) + (Byy = Byy) + (CMF = ")+ (D™ - DM,

In this way

1 /K (n(u™) = n(uk)) oz, nk)dx

n= 0 KeT
N-1 (n+1)k
" f f (uk )V (2, t).Vaip(z, nk)dzdt
KeT Jnk
N-1 (n+1)k "
+ f "(uk)g(uk ) p(z, nk)dzdW (t)
n=0 KeT YNk K
1N (n+1)k o
+§ Z f f N (ug)g” (uk)e(z,nk)dzdt
n=0 KeT 71k K
N-1 (n+1)k
+CyV > f fn(u (z,t))(z, nk)dy(x)dt
n=0 gegb
> RM,

which is exactly Inequality , where

RN = (BMF = BYR) + (BYh, ~ By + (B - BY) + (O = M) + (DM - D),

2,int

STEP II: Convergence of Rj i

In what follows, we consider A a P-measurable set of €. In this second step, we show that

E[ﬂARh,k] h_)() 0.

To do this, we show that the following quantities converge to 0:

E[1a(B"* = B/"")], E[La(By,, ~ Bil)ls E[La(Byy - Byy)], E[1a(C™* -~ C™")] and

E[14(D™* - D"*)].
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I1.1 Convergence of E[14(B"* - B/"")]
For almost all we Q, ¢t € (nk,(n+1)k), any K € T and any n € {0, ..., N — 1}, there exists (g (w,t) € R
such that
' (ar () = n'(uic) = 1" (Ck (w, t)) (@7 (t) — k).
Note that n”(¢x(w,t)) is measurable with respect to w and ¢ since it depends continuously from
a7 ,(t) and uk. In this way, by denoting (x (w,t) = (x (t)

(n+l)k 1 B "
B"* - > [ [ @) - (k)]
nOKET nk | | K
X Z |a|{1)?<’;F(u}L<,u}l<7(,) - U;L(’;;F(u?(,a, u?()}cp(x, nk)dxdt
oef i
S [ G - k)]
= N (Cx (1)) (a7 k(1) — ulkc
n=0 KeT Jnk |K|
x Z |U|{U?(:,UF(UK7UK,G)_v?,;F(u%,c7u?()}@(x7nk)dxdt
oefi
= Q1T+ Q5"
where
N-1 (n+1)k 1 "
Qt = - [ 0" (G (0) 2 o, k) dat
n=0 Key Jnk |K| | |

X ( > lol{vis (F(uf, ko) = f(uk)) = v (F(uk,q, uk) - f(u;?))})

oef i
and
=l (n+1)k "y en n
=% 3 [ g L k@i @ - wemk)
x Yo lo{vgn Fluk, uk.o) = v F(uk o, uk) fo (2, nk)ddt.
oef i

e Study of E[1.4Q""]
Note that here the assumption k/h — 0 as h — 0 is crucial. Similarly to the proof of , we use
Cauchy-Schwarz inequality, the consequence of the assumptions on the mesh and finally the
first estimate of Proposition [2| to get that

(n+1)k

\E[nAQ¢k|_’ [mz > [

n=0 KeT

|K|/ 1" (Cr(t )) | ‘ w(w nk)dzdt

X( ZS: |U|{UKG(F(UK7UKU) Flug)) = v (F(uk o, uk) - f(UK))})]

N-1

k2 _
<" lesllllo ZTIKI( > al(v?s;w}?,a))

n=0 K o

x E[ > Jol{vis (F(uie, uic o) = F(ui)” + i, (F(uforuic) - f(u;z)f}]

el

N-1
<nleolelloe 35 30 KVlaKl
n= 0KET| |

E[ ¥ lol{viel (F(ufe, uk o) = f(ukc))” +v?s,U(F<u?(,g,u’fz>—f(u?a)?}]

oef i
<Gl ool oo =5
k
- 07 as (h7 E) - (070)7

where C; is the constant given by Proposition

e Study of E[1.4QF"]
Let C be a constant depending only on ¢,n,Cy,g(0),|D|, T, uo,u’, &, Fi, Fs whose value may
change from one line to another. With the same arguments and by using additionally for any
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t > nk, the independence between W (t) — W(nk) and any F,,-measurable process, we obtain:
2
(E[ILAQZ’IC])
(n+)k 1 "y an n
G z D B RULCONCICIORCON

k

e

x Y \U|{UKUF(uK,uKU) Vg F(uf oy uk )}go(m,nk)dxdt])

IN

n=0

E[ZK; [ |1An"<<?<)g<u’;<>so<x,nk>|2dmt]

N-1 (n+1)k 2
E[ > | |K|(<W(t) W(nk) 3 |a|{v?g,zF<uz7u?{,a>—v;z:gF(u?(,g,uz)}) dt]

n=0 KeT o€
N-1 (n+1)k 2
ccely v f (WD) = W) 5 lol{olet i) = v, F(ueo,ui)} | d
n=0 Ke7 Jnk |K‘ el
2
N-1 (n+1)k k n n
< C Z f [( |0|{v CF(uk,uke) - GF(uK’U,uK)}) :|dt
n=0 KeT Jnk aesK

N-1 k2

n
Q
it
]

E ( Zg: Ial{v?s,ff(F(U%u%o)—f(u}?))—U}?,}(F(U'z?,mu}%)—f(U’;?))}) ]

N-1 k2
< c == (X el + o))
n=0 KET| | ocef i
XE[ |U|{UKJ(F(UK7UKO') f(UK)) +UKJ(F(UKJ»UK) f(UK)) }]
oef
¢ ovk

- 0, as (h, E) - (0,0).

I1.2 Convergence of E[IIA(Bh ko phk ]

2,int 3,int
Recall that thanks to STEP I, we can decompose this term as

h,k h,k _ ah,k h,k h,k
B2,int - B3,int - SQ,int - 53 int (T2 int T3,int .

Let us estimate separately [Sh" it S;”Z’;t| and ‘Tth]:Lt Tk

be rewritten in the following way:

mt| Firstly, note that these quantities can

hk Rk ghk bk
S it = 53 int = S int — S t + Smt = S30ints

Stk = k[ {oRh (Gl ul) - @(uic) = v (Glul ui) = (i) bo(a nk)da (o).
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“% 3 el G ) - () i (G i) - 205)) [ by

- E{ue (G ) - (k) - v (GGl ui) - 0wi))} [ ol k) (a)

n=0 (K,L)e%,,

= k|0K7L|{vZ’fL(G(u?<,u7LL) - <I>(u’}<)) - U?(’:L(G(uz,u?() - <I>(u?())}

n=0 (K,L)e%p
1 1
{ f@(y,nk)dy f w(%nk)dv(w)}
|K| K,L‘ OK,L

and
oh,k h,k
S’Lnt - S3,'Lnt
N-1

™

k /UK ) {v?(’i(G(u?(,u’Ll) - @(u%)) - vz’fL(G(uz,u}l{) - @(u}))}g&(@nk)d’y(r).

n=0 (K,L)e%,, >

|
i

(n+l)k
fk / {vz’fLG(u?@ uy) - U;?,_LG(UE, ug) — P(uk)v(z, s).nK,L}go(a:, nk)dy(z)ds
(K,L)ex, 77 OK.L

=

-1

" (n+1)k R " .
- oi) [ [ [ s)nu - 3k - o) | el nk)dy(@)ds,
n=0 (K,L)eTp, nk OK,L

In this way,

hk hk
So it — 93

2,int 3,int
N-1

=y ¥ k)|O'K7L|{U2’72(G(U?<,u2) - ®(uk)) - v?{’,_L(G(uTLL,u?{) - @(u}))}

n=0 (K,L)e%n
1
{ Jostwnitn- e [ gtk )
|K lor.L| Jox L

(I)(u?() (n+1)k LK . (x 8).nK,L — ('UK 7, UK L)] o(z, nk)d’y(ac)ds

N-1
2
n=

0 (K,L)eTy,

With a similar decomposition, we have

Tzh,;{flt 3 'Lnt Z Z

n=0 (K,L)e%,

{U;;i(G(UK,uL) ®(ur)) - v L (Glug, uk) - @(uf))}

{IL\/ w(y,nk)dy |U;L|fdmw(x,nk)dv(w)}

+ d(ul) f o / vz, s)nk.r - (Vi — v )] ez, nk)dy(z)ds.

n=0 (K, L)eT

Secondly, in order to control |S2 it Sg * | and \Tzh Z’;;T; » |, we aim to bound the following quantities:

G(uk,ur) - ®(uk), G(uk,ur) - ®(ur),G(ur,uk) - ®(uk), G(ul,uk)-P(ul),
1 1
@/ @(%”k)d’Y(w)—ﬁf o(y, nk)dy,

N-1 +1)k
and ) > ®(uk) f f oz, s)nk L - (Vi — v )] ez, nk)dy(z)ds.
n=0 (K,L)e%,
e Study of G(ufk,ul) - P(uk):
Set (K, L) € T, we then have u}% > u7 which implies that f(s(uk,u7)) = [max f(t) and hence
L’ K

G(uf,ur) - ®(uk) = ®(s(uk,ur)) - ®(uk)
s(u',uT) , ,
- . n (O f (t)dt.
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S )
First case : f e n'(t) f'(t)dt < 0.
wi

Using an integration by parts formula, we get with m such that f(m) = " min ]f(t):
te[s u?(,uz ,u"I'(

sl
/. 0 (8)f(t)dt
Uk

:fs(uni O = )= [f (@) = Fom)]

—W,(U%)(f(UK) —f(m)) +n (S(UK,UL))[f(S(uK,UL)) - f(m)]
> =0’ leol f (uFc) = F (M) |- ool £ (s(uk, uz ) = f(m)]

> =2[n ||| f (s(ufe, ul)) = f(m)]

=2 max \F(dyc)—F(d,d)l,

u’f <e<d<u

s(uly

\V

indeed, since f(s(uk,ul)) = maX f(t) = max F@®)=F(m,s(ufk,ur)), we thus have
tels(uly ul),m]

0< f(s(uk,ur)) - f(m) = F(m,s(uk,ur)) - F(m,m) < max |F(d,c)- F(d,d)|.

u” <c<d< "

s(uf,ul) , ,
Second case : / n (t)f (t)dt > 0.
v

Similarly we have:

s(upe) ,
/ n(OF (Dt

n

N

[ s(uf,uf) /I(t)[f(t) f(S(UKﬂ,LL))]dt—['r] (t)(f(t) f(s(uK7uL)))]

U(UK)[f(S(UKWL)) flug)]
Hn ||°°|F(uKauK) _F(qus(uKﬂ//rLL/))‘
<l , max IF(d,C)—f(d)\,

s(ulf,uf

ul <e<ds<
since f(s(ufe,u}) = mox f(0= om0 = Fiks(ik i),
U e[s(uf,ul)u
‘We deduce that in both cases we have
|G (uk,ul) - @(uk)| <20 ||oo , max |F(d c) - f(d)l. (53)

By using the same technics, we show that for any (K,L) € T,

GO u5e) ~ @) <2l , mix | (e )= (d) (54)
(Gl ) = ()| <20 e, mive | |F(d ) = () (55)
(GO ) ~ P < 20 |, e [P (e,d) = £ ()] (56)

1 1
o Study of —— [ (@ nk)dr(@) - — [ e(ynk)dy
|UK,L‘ OK,L |K‘ K
Using the regularity of ¢ we get the following bound:

1

th o0 - 57
- IVl (57)

[ enkyin) - g [ ewnbydy) <

+1)k
e Study of Z > D(uk) / / [ﬁ(m,s).nK,L - (U;L{z UL ]@(m,nk)d’y(ﬂc)ds
OK,L

n=0 (K,L)e%,,
First note that this term is equal to

N-1 (n+1)k 1 (n+1)k
> ¥ ewo [ [ [ {B@s) ~ 5.0 b cdy(y)dt | o, nk)dy (@)ds,
n=0 (K,L)e%n, oxr | Klox.o| oKL

and thanks to the regularity of ¥, we deduce that there exists a constant ¢(¢) only depending on
¥ such that
1

— <c(@)(h+k). (58)

(n+l)k
fnk /UK . {T;(:v,s) - ﬁ(yat)}-nK,Ld’Y(y)dt
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Hence by denoting x, the center of the edge ok, we have

fn(n+1)k /JK L (k|UK - /;K ) fn(nﬂ)k {v(z, s) - B(y, t)}.nK,Ld’Y(y)dt) o(zo,nk)dy(z)ds

(n+1)k (n+1)k
—sﬁ(wa,nk)[ [ @ mesdi@yas- [ [ ﬁ(y,w.nK,Ldv(y)dt]
n oL Jn

=0,

OK,L

and so

(n+1)k ot .
[ [ {p@s) s - il - v fe(@ nk)da (x)ds
OK,L

j;(nﬂ)k fUK i (k|aK T o fn(wl) {ﬁ(m,s) —ﬁ(y,t)}.nK,Ld'y(y)dt) [(p(x,nk) - cp(a:g,nk)]d'y(a:)ds.

Thus, we deduce from this equality, and the CFL condition that there exists c(¥)
depending only on ¥ such that

[L(n+1)k .[;K L ’U(m S) NK,L — (UK L U }Ap(m nk)d(x)ds

2

V(Fl + FQ))

<o) Vapleslocloh?(1+ (1)

In this way, there exists a constant C' depending only on @, V, ¢, uo, u’, T, Cy,&,a,n, F1, F> and f,
whose value may change from one line to another such that

> wi) [ [ [ - g =) el k) ) ds

n=0 (K, L)ETn

CESEY S loxliel)

n=0 KeT LeN(K)

N-1
Ch* Y Y kloK]|luk]|

IN

IN

n=0 KeT
< *h Z Y KIK|luk]
n=0 KeT
< Chllur il (px(o,m))- (59)

Similarly we get for another generic constant C' independent of k£ and h that

> 3 i) [ [ s - 0k i) ek (a)ds

n=0 (K, L)eT
< ChHuT,k”Ll(Dx(O,T))' (60)
h,k hk :
We are now ready to compare By, , to By, ,. Since
R,k hk  _ qhk ok phok
BQ,int - BB,int - SQ,int 3 znt (T2 vint 3 znt

using ,, and we get for some constant C' independent of k£ and h that

Syt = S CZ > klaK,Llh(v}?,znmax F(dc) = f(d)| +viy,  max |F(c d) - f(d)l)
L~ L

n=0 (K,L)eTn Se<dsu

+ Ch||UT,k||L1(Dx(0,T))~

And using , , and , we get similarly for some constant C' independent of k£ and h that

kTS CS P el (v ma P@0 - SO ma (P Gd) - 1)
L

’Vl ’Vl
n=0 (K,L)e%,, uy <c e<dsu

+ Chllut kllL1 (Dx(0,1))-
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Combining these two inequalities and using the second inequality of Proposition [2] we get for some
constant C' depending only on 9, V, ¢, uo, ub, T, Cyq,9(0),&,@,n, F1, Fa, f, D and whose value may change
from one line to another that for almost all w

BB <0y R k\oK,mh(vm{ max  [F(d,¢)- F(@)]+  max |F(d,c)- f<c>|}

n n un n
n=0 (K,L)e%,, uf Sesdsu Sesdsu

K{ max  \F(e.d) - S(@)]+ | o [Fe.d)- f<c>|})+Ch\|um\|L1<Dx<o,T>>

uf <c<dsuly
<Cx 02h1/2 + ChHuT,k”LI(DX(O,T)N
where C is the constant given by Proposition [2] Therefore, for any P-measurable set A,

[]lA(Bg int Bg,’z‘it ] o 0.

I1.3 Convergence of E[]IA(BS!’I:c - Bg:)]

N-1
"h,k:_ _ n,— n b,n
1Bl > % el {@h - v )@k + V) [ etrnkye

n=0 gegb

(n+1)k
- B(y,t).nK o P(ux ,nk)d dt
ZZE L [0 mm i), nk)dy(y)
(n+1)k ,
-CyV u (y,t ,nk)d dt
¥ T;]gbf fan( (y, 1)) (y, nk)dy(y)

h,k h,k
< U3b +U3,b7

where
N-1 n
U;’bk— Z @(u}?){Ik{||a(v?{’;—vgg)/ch(w,nk)dx—f; +1)kfﬁ(y7t).nK,[,ap(y,nk)dfy(y)dt}‘
n=0 gegb n o
and
— N-1 (n+1)k b
bt -lov S T i) [ o= [ [ 0ye k]|

o Study of UMY
In what follows, C is a constant depending only on 4,7, |D|, ¢, uo, ub, Cy,a,n and f, whose value
may change from one line to another. For almost all w € {2 we have

1> @(u}%){| el k) [ eabyde= [ oo, nmo(ymk)dw(y)dt}

n=0 gegb

|5 5 et [ [ o0 ([, eabyae - 1ot armyar)

n=0 gegb

z S o [ [ leGnk) = oty k)l dods ()

n=0 gegb
N-1
C > kY hlofjuk-sl.
n=0 gegb
We deduce from and the stability estimate stated in Proposition |1| that
n 2 2
> hlo|E[(uic—r)*] < Z KB (ufc=r)*] < =5 (R*1D]+ [ur il 1= 0,712 ) )-

oeEb

Therefore, using Cauchy-Schwarz inequality, we deduce that

N-1
E[1AU1<C S k'Y hlo|E[julk—+|]

n=0  gegb
1 1
N-1 N ) 2 2
< k( > hlo|E[(uk k) ]) ( > h|a)
n=0 oeEd oekb
N-1
<C Y kvVh/|oD|
n=0
<CVh =0
h—0




e Study of U;’bk
Firstly we note that for any « € R we have |[n(z)| < |n'|e|2 - £|. Using this inequality and (57),
we deduce that for almost all w € 2 we have

oV Y ¥ {|K||a|n(u " [ etnmyiz- [T [ n(ub(y,mw(y,nk)dv(y)dt}

n=0 gegb

Jev’s © {k|a|n(u’z;" (Vlﬂ Jetwnbyiz = [ otk + o f e@(y,nk)dv(y))

n=0 gegb

_/n,iw)k/Jn(ub(:%t))SO(y,nk)dv(y)dtH
=|CyV Z_: > {k|a|77(ug’" (|Il(\ f o(z,nk)dx - |f<p(y,nk)dfy(y))
n=0 gegb -

+/n;””)’“/U(n(uﬁ;v")—n(u”(y,t)))w(yynk)dv(y)dt}

N-1 " (n+1)k "
CVlle T 3 {19clabloli =+l [ [ 1087 - 0k a0

n=0 gegb

N-
scfvmw{hnvzsooo||ub—n||L2«0,T>an)+|so| Z [ " [ u"<y,t>|dv<y>dt}

- 0as h—0.

Therefore, for any P-measurable set A, E[14(By} - By)] =, 0

I1.4 Convergence of E[]IA(C'MC - Ch’k)]

R,k hkNT| _ - (nrDk i -’ (u¥ up z,m T
B - )HE[ 3 o [ o) o kot 1y |

x

<

x

B[S s [ [0 n(m(t»—n’(u}%)}g(a’;{){so(mk)—so(x,t)}dvv(t)dx]

n=

N-1 (n+ B , " "
+ E[ZK > o [ n(um(t»—n<uK>Jg<uK)so<x,t>dW(t>dm]
_ lh,k+Y2h,k7
where
yrk ‘E[ S [ (”*1>’“{n'(a7,k(t))-n'(u’;)}gw’;){@(w,nk)—so(x,t)}dW(t)dw]
n=0 KeT nk
and
yiE - ‘E[Z S f [ ("”)'“{n’(aT,k(t))—n'(uz)}gmﬁzw(at)dW(t)dx].
n=0 KeT nk

Using successively Cauchy-Schwarz inequality on € x D, 1td isometry (see [DPZ92]) and the constant
Cest given by Proposition [I] one gets

N-1 n+l)k 2 1/2
“<VIDI Z{KZTfKE[(f( | {n’<aT,k<t)>—n’(u@}g(u?(){@(az,nk)—w(x,t)}dvv(t)) ]dx}
5 ) 1/2
=VIDl Z{KZ /. f [{n'(ﬁm(t))—n'(u}?)} ) (k) - o(a. 1)) ]dtd:c}
n+1k 1/2
<oV Dlleelile 3 {5 [ [ Bla* i) oo

<2VBVRVIDlleleli - € 3 1 3 IKIELR)%) ™ + Tlao)VT)

<2V2VEVIDICy |||l [l oo { TCest + T]g(0)\/IDI}
-0 as (h,k/h) - (0,0).
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Note that here Assumption Hg on the function g is important:

2

(YQh,k)2 _ ‘E |:nz=_:01 KZE:T]IA /;{ /;Zzﬂ)k {n’(ﬁT,k(t)) _ n’(u%)}g(u?{)@(gj,t)dW(t)dl':I

2

- |E[1LA [ o ) =l e bgCur ) ) (1) |

<ot fe|( )t - rolatur e nav)

|D|_[ f {77 (a7rk) -7 (uTk)} g (ur 1) (2, t)]dtdm

<Dl In” % gl I
— 0 as (h,k/h) - (0,0), using Proposition [3|

In this way,
E[nA(éh”“ - c“)] -0 as (h,k/h) - (0,0).

I1.5 Convergence of E[ILA(f)h’k - Dh’k)]
Note that here, again, Assumption Hg on the function g is important

|E[14(D"" - D")]| - = ‘2 [KTZ%“ I [ - ’<u%>—n"<a7,k<t>>]g2<u’fz)¢<x7nk>dzdt”

1 _

< glallelle Il = ur il oney
VI o i

S g S A I L e P

— 0as (h,k/h) - (0,0), using Proposition [3]

In this way,
E[]lA(Dh”‘ - th’“)] -0 as (h,k/h) — (0,0).

Conclusion of STEP II:
By gathering the results obtained previously, one gets that for any P-measurable set A,

E[1AR"*] - 0 as (h,k/h) - (0,0),

which concludes the proof of the proposition.

Proposition 5 Proposition[f] holds for a general monotone flur F', with the same assumptions.

Proof. The proof of Proposition [i] holds for any monotone numerical flux F, except when we deal with the
terms

Byt - By* By - Byy and By, - Byl
respectively in the steps 1.2.1 p[20] I1.2.2 p[2T] and I1.2 p[27 where we truly exploit the fact that F is a
Godunov numerical flux. In order to adapt these three points of the proof to the case of any monotone
numerical flux F', we use then the decomposition given by Lemma 2}

F(a,b) = 0(a,b)F°(a,b) + (1-0(a,b))F"" (a,b).

Let us begin with a definition of the entropy numerical flux GG, which uses the above decomposition: for any
a,beR
G(a7 b) = e(av b)GG(av b) + (1 - 9(a7 b))GLF(a7 b):
where
D(a) + D(b)

G%(a,b) = ®(s(a,b)) and G"*(a,b) = 5

- Mp(n(d) -n(a)),

with s(a,b) € [min(a,b), max(a,b)] and Mr = max(Fi, F2).
Now let us analyse separately

h,k h.k phk h,k h,k h,k
By =By, By, — By, and By, — Byl
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Study of B{L‘k - Bg’k: let us show that P-almost surely in €2,
B* — By > 0.
ik hk
We split B;"" — B,’" into the sum of two terms:

R,k h,k
By - B,

> |K| > G(u%u}?,a)la{vZ,L[n’(U’%)(FG(u%u’kg)—f(u}?))—(GG(u%u’kg)—@(U’é))]

n=0 KeT o

- v?g,;[n'(u%)(FG(uﬁ,mu%) - Fui)) = (G (ufk o, uic) - <I>(u’;<>)]} | e nk)de

LY ‘K| > <1—0(u7<,u§z,o)>|a|{vm[n (i) (P2 (ufe, ule o) = (i) = (G (ue, uie, ) = @ (uik))|

n=0 KeT oef i
= o [ Qi) (P (e o) = F(ufo)) - (G”<u’;<,a,uz>—<1><u?<>)]} | e nk)da.
(61)

Note that the first sum (which involves the Godunov flux) is P-almost surely nonnegative by using
the same arguments as the one used in the Step I.1.2 p[20} each term of the sum was almost surely
nonnegative, which remains true when we multiply each term of the sum by (u%k,u% ), which is
nonnegative. In order to show that the second sum (which concerns the Lax-Friedrichs flux) is also
nonnegative, we write the flux f as the sum of a nondecreasing function f; and a nonincreasing function
fo with

fi(z) = @ + Mpz and fo(z) = @ - Mpzx
We can then consider the upwind schemes associated to each of these fluxes: respectively

F(a,b) = f(;) + Mpa and Fy" (a,b) = @ — Mpb

and notice that the Lax-Friedrichs flux FX¥ is the sum of the two fluxes FLF and FET associated to
upwind schemes (in other words, the Lax-Friedrichs scheme belongs to the class of the flux-splitting
schemes). We denote by GEF and GEF the associated entropy numerical fluxes:

¢a) + Mrn(a) o GEF (a,b) = #(b) - Mpn(b)
2 2\ 2 :

We split the second sum in the right hand side of into two parts:

G (a,b) =

Z Z |K| 2 (1_9(1@7;(7“?(,0)”0‘{”1(0[77 (UK)( (U?(,U?(,a)—f(u?())—(GLF(u?(,u}L(’U)—QJ(u?())]

n=0 KeT oefx

— e[ (i) (B (i i) = (i) = (G (o) = @(ui)) ]} [ ol nk)da

-3 ¥ g T (=0 Dlel{ui [ i) (P (e ) = £05)) = (GFF (e e ) - 2(i))]

n=0 KeT el

— v (ui) (P (Wi oy ulie) = fufe)) - (GfF(U%,munK)*q’(u}?))]}f}(%ﬁ(xank)dx

LSS S -0t Dl [0 k) (FE (ke ko) - £ (k) - (GET (e uke o) - @(ukc)]
n=0 KeT ‘K| oef i

—U;L(’,U[W (UK)( (chr7uK) f(UK)) (GzLF(uTIL(,mU?()—q’(u?{))]}f}(@(%nk)dﬁ

We note then that each of the two sums corresponds to the term appearing when we consider a
monotone flux (FlLF or Ff¥ ) and the corresponding upwind schemes, except that each term of the
sum is multiplied by (1 - 6(u%,ufk ,)) which is nonnegative. Such schemes are particular cases of
Godunov schemes and hence it follows from the step I.1.2 p[20] that each term of each sum is almost
surely nonnegative and therefore the sum is almost surely nonnegative.

Study of B B iy k : similarly, using the decomposition result given by Lemma |2| and the step 1.2.2
p[21] of the proof of Proposmon [4] we show that P-almost surely in €,

By - Byy 0.

Study of Bg - B; F .+ as previously, by using again the decomposition result given by Lemma
and the step I1.2 p. 27 of the proof of Proposition [4], we show that for any P-measurable set A,
R,k
[II'A(BQ int B3,int :| h:)() 0.
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The following proposition investigates the entropy inequalities which are satisfied by the approximate solu-
tion ur k.

Proposition 6 (Continuous entropy inequality on the discrete solution) Assume that hypotheses
H, to H7 hold. Let T be an admissible mesh in the sense of Deﬁm’tion@ N eN* and let k = % e R} be the
time step. Then, P-a.s. in ), for any ne A and for any ¢ € D* (Rd x [O,T)):

fDn(uo)gp(a:,O)da:+ an(uT,k)gpt(x,t)dacdt+ /Q<I>(u7—,k)17(a:,t).V;,;Lp(ac,t)da:dt
T ’ 1 4
v [ n @r gty ete ndeaW (t) 5 [ 0" (ur g (ur (e, et
T
oV [0 et (e,0)dy ()t
0 D
> R", (62)

where for any P-measurable set A, E[ILARh’k] -0 as (h,k/h) - (0,0).
Proof. The proof of this proposition will be separate in two steps: in a first time we will show that
Inequality l) holds for a convenient R™* and in a second time, we will prove that for any P-measurable
set A, E[1aR""] -0 as (h,k/h) - (0,0).

Let T > 0, up € L*(D), T be an admissible mesh in the sense of Definition , N eN* and k = % e R;.We
assume that (h,k/h) — (0,0) in this way we can suppose that the CFL Condition

. (1-9a’h
= (F1 + FQ)V’

holds for some £ € (0,1). In this manner, the estimates given by Proposition [1| and Proposition [2 hold.

Consider 77 € A and ¢ € D*(R? x [0,T)). ~
Step I: Let us show that Inequality ll holds for a convenient R™*.

Note that the first term of Inequality given by Proposition 4| can be rewritten in the following way:

- Z_l )y [77(“}?1)—U(u?()]/;(cp(x,nk)dx

n=0 KeT

:/I;T/;)n(uT,k)apt(x,t—k)dmdt+KZE:TLW(U%)%O(%OMI-

Indeed, thanks to the discrete integration by part formula

N-1 N-1
Z an(bn - bn—l) = aNbN—l - aObO - Z bn(an+1 - an)
n=1 n=0

and by using the fact that for all z in D and for k small enough, ¢(z, Nk) = o(z, (N - 1)k) =0 we get

/kaDn(ur,k)got(x,t—k)dxdt: 2 > /Kn(u’}()[ap(m,nk)—go(az,(n—1)k)]da7

n=1 KeT

N-1 L
- % [ I = nwio] e, nkyde

n=0 KeT

i KZT /K n(uz)e(z, (N - 1)k) - n(uk )e(z,0)dz

=" i 2 /}([77(“?1)—n(u?()]so(w,nk)dx

n=0 KeT

- ¥ [ n(u)e(e,0)dz.
KeT YK
By denoting
hok T /
ot = [0 o wrag(ura)e(a, dzdw (2)

1 "
D ian (ur 1)g* (ur ) (x,t)dwdt
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one gets from Inequality , Inequality with R™* defined by
R = R [ e, 00de - S [ n(uf)e(a,0)de
D KeT VK

T
+fQ77(u77k)<,0,5(9§,t)d:r:dtf<[IC fDn(uTyk)got(m,tfk)d:cdt

(n+
k

+fQ@(uT,k)a(x,t).vzgo(x,t)dxdt- ST f l)kfK@(u’;)ﬁ(x,t).vw(x,nk)dxdt

n=0 KeT Y71

h,k = (n+1)k rrom n
ot = 5 3 [ [ g (ke nk)dW (t)da
KeT n=0 n

Dh,k lN_l (n+1)k "y n 2/, n k)dzxd
D=5 ) 2, 0" (ufc)g” (ui ) (x, nk)dedt
n=0 Key Jnk K

+cfv( [T [ e eow@a- 5 s [ f n(u"<x7t>>w<x,nk)dw(x)dt),

n=0 gegb
where R™* is given by (52) in Proposition

Step II: Let us show that for any P-measurable set A, E[]IAI:?h‘k] -0 as (h,k/h) - (0,0).
Thanks to Proposition , we know that E[ILARh’k] — 0 as (h,k/h) - (0,0). Then it remains to study the
convergence of the following quantities:

Blua( [t 0de- [ aue0s) |
E:ILA(an(uT,k)apt(x,t)dxdtfATfDn(uTyk)apt(m,tfk)d:cdt)],

(n+
k

E VILA(/Q @(uT,k)T)(:v,t).Vzgo(x,t)dxdt_Nil Z /

1k
/ @(u%)@(m,t).vzgo(a:,nk)dwdt)],
n=0 KeT /7 K

E

]lA(CHh’k - KZTNZ:_; /K /n:nﬂ)k n'(u}?)g(u%)«p(m,nk)dW(t)dm)] = E[La(ClF - ™™,

E[nA(D?”C;NZI > [T n"(u}z)f(uwmnk)dwdt)]:E[mw?”“D“)J,

n=0 Ke Jnk

(n+1

E

1Acfv(f0TfaD o (@ ) @) dt - 3 3 /

n=0 gegb 71k

" n(ub(w»t))s@(wmk)dv(x)dt)],

where C™* and D™* have been defined respectively by and (51) in the proof of Proposition |4 Let us
analyze separately the convergence of these terms as (h,k/h) — (0,0).

I1.1. Convergence ofE|:]lA (f n(uo)e(z,0)dz - > f n(u%)cp(x,())dx)]
D KeT VK

Since ug € L' (D), one shows that this term tends to 0 as h — 0.
Indeed we have

2|1 ( [ rwrstaorac- 3 [ ntusrete 0|

KeT

uo(x) - Z u%

KeT

dx,

<l l=lele [

which goes classically to 0 when h tends to 0 (see [CHOQ] p.135 for example).

T
II.2. Convergence of £ [ILA (/ n(ur k) pe(z, t)dedt - f f n(ur,k)ee(z, t - k)da:dt)]
Q k D

|E|:[Q7](UT,19)SOt(l',t)dl'dt_/I;T/;U(UT’k)th(Z"t—k)dl‘dt”
<E[fkaDW(uT,k)H@t(x,t)—cpt(x,t—k)\dmdt]+E[f0kfD|n(u7,k)‘|¢t(x,t)|dxdt]

<lpelookln' oo VIDIT w1 = Kl L2 (0xq)
+ klpellos 0" [0 VIDIur k = £l oo 0,7:22(2x)) -

T
We deduce easily that E []IA (/ n(ur k) ee(z, t)dedt - f f n(ur k)oe(z, t - k)dmdt)] o 0.
Q k D —
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N- (n+1)k
11.3. ConvergenceofE[ﬂA(/ O (ur,k)v(x,t).Vap(z,t)dzdt — Z / / @(u})f;(az,t).Vch(m,nk)d:cdt):I
Q nk K

n=0

‘E[]IA([Q@(uT,k)T)(ac,t).ngo(x,t)dxdt NZKZ f(””) /K@(u?()ﬂ(a:,t).thp(x,nk)dacdt)]‘

5 Dk )P - x,n i
-1z K;E[L,f /K<I>(U,K)U(x,t).[vzap(x,t) Vag(w,nk)]d dt]

T
< ool TaaiploeVE[ [ [ Jur s = eldacl]

<h[® oo [Vaaploe V/TIDur i = £l L2(0x0)

- 0.
h—0

II.4. Convergence of E[]lA(C'{“’C - C’h’k)]
Using Cauchy-Schwarz inequality on €2 x D and [t6 isometry one gets

efn.(ct o)

Bl s 5 [ [ ot et - ot 0)aw (e

< ]:;O\/ﬁ(ngKE[( [n;nu)kn'(u?()g(u?(){ga(x,nk)—go(x,t)}dw(t))Q]dx)uz
= n+l1 ) 1/2
- SB[z [ L | st et - o)) i)

IN

K3\IDIC H@tnwnnank{\g(o»W (X ImiElio) )"

< kVaVDICsleellolln T {lgO VD] + llur il o.7:02x0) )

— 0,
h—0

where we have used Proposition [1| to conclude.

I1.5. Convergence of E[ILA(D?»k _ [)hk)]

(n+l)k

‘E[]IA(th Dh‘k)]‘ = ‘;E[ ;KZT/ / 1an" (ug)g (uK)[<p(a: nk) — o(x, t)]dwdt:H
< %an"HwH9||§o||<ﬂt||ooT|D|

- 0.
h—0

I1.6. Convergence of E

nAcfv( [ [ et @mnma-y > [T ] n(ub(%t))sﬂ(%nk)dv(w)dt)]

n=0 gegb

n=0 gegb

[h(f |, e O’ @.0)d ()t - Ty f )kfdn(ub(:c,t))go(x,nk)d’y(:r)dt)”
< Hede S 3 [ [l )iy

n=0 gegb

b
< Eledle 'l TIODI[w” - K o= (0,7)x0D)

To summarize, we proved in this second step that E[ILARh’k] -0 as (h,k/h) — (0,0), which concludes the
proof of the proposition. m
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5.3 Proof of the convergence

And we prove now the convergence of the finite volume approximation ur j to the stochastic entropy solution
of Problem .
Theorem 3 (Convergence to the stochastic entropy solution) Assume that hypotheses Hi to Hz

hold. Let T be an admissible mesh in the sense of Deﬁm‘tion@ N eN*, letk = % e R be the time step. Let

uT,, be the finite volume approximation defined by @ Then ut, converges in LP(2x Q) for any 1 <p<2
to the unique stochastic entropy solution of in the sense of Definition[] as (h,k/h) — (0,0).

Proof. Let 7 be an admissible mesh in the sense of Definition [3, N € N* and let k = % € R} be the time

step such that k/h — 0 as h - 0. In this way we can suppose that (at least for h small enough) the CFL
Condition

. (1-9a’n

k\ 3
V(F1 +F2)

holds for some £ € (0,1). In this manner, the estimates given by Proposition [I| and Proposition [2| hold.
Consider A a P-measurable set, n € A, ¢ ¢ DY (R? x [0,T)).
Let us multiply Inequality by 14 and take the expectation. This yields:

E[ILA fRd n(uo)ap(w,O)d:p]+E[ILAan(uﬁk)@t(m,t)dxdt]+E[ILA/Q@(ur,k)ﬁ(x,t).VIgo(x,t)dxdt]
+E[ 14 fOTfDn’(m—’k)g(ur,k)ga(x,t)dxdW(t)]+%E[ILA/Qn"(uT’k)g2(u7—’k)gp(a¢,t)dxdt]

+E[1Aofv fOT [, <p(:c,t)n(ub(x,t))dfy(x)dt]
> B[1LRM]. (63)

To show the convergence of ur ; towards the unique stochastic entropy solution of our problem, we aim to
pass to the limit in the above inequality. Thanks to Proposition [f] we know that for any P-measurable set A,
E[]lARh’k] — 0 as (h,k/h) - (0,0). Thus it remains to study the convergence of the left-hand side of .
Recall that thanks to the estimate stated in Proposition uT,, converges (up to a subsequence denoted in
the same way) in the sense of Young measures to an “entropy process” denoted by u in LQ(Q x @ x (0, 1))

(see Section .

1. Study of E[ILA/Qn(uﬁk)cpt(x,t)dazdt]

Note that ¥ : (w,z,t,v) € AxQ xR —» L a(w)n(v)pi(z,t) € R is a Carathéodory function such that W(., w7 i)
is bounded in LQ(Q x @), it is therefore uniformly integrable, thus

E [ILA /c; n(uT,k(x,t))got(x,t)dxdt] - E [IIA ‘/Q <[01 n(u(z,t, a))dagoz(x,t)dxdt] as h - 0.

2. Study of E[ILAf @(uT,k)ﬁ(x,t).Vznp(x,t)dxdt]
Q

Since ®(ur k) is bounded in L2(Q x @), using the same arguments as previously, we obtain

E[]lA/{:?@(uT,k)ﬁ(x,t).Vgcgp(x,t)dxdt]—>E[]lA/;?f01@(u(x,t,a))T)(x,t).Vmap(w,t)dadxdt] as b — 0.

T
3. Study of E[ILA fo fRd n'(uT,k)g(uT’k)ap(x,t)dde(t)]

By denoting ¥ : (w,z,t,v) e A x Q xR = 5/ (v)g(v)p(x,t) € R, U(.,ur ) is bounded in L*(Q x Q), and
therefore W(.,u7 ) converges weakly (up to a subsequence denoted in the same way) in L?( x Q) to an
element called .

But, for any ¢ € L*(Qx Q), (w,z,t,v) € A x Q xR = ¢(w, z,t)¥(w,x,t,v) is a Carathéodory function such
that (¢¥(.,ur,)) is uniformly integrable. It is based on the fact that for any subset H of 2 x Q,

1/2
fHW(.,uT,k)wxdtdps\|\11(.,uT,k)\|L2(H) [/H|<z>\2dacdth] .

Thus, at the limit,
1
/ \GdzdtdP = f / U(.,u(.,a))daddzdtdP.
QxQ aQxQ JO

1

By identification, U(.,ur ) — f U(.,u(.,a))da weakly in L?(Q x Q). Using now the linear continuity of
0

the stochastic integral from LQ(Q x Q) to L2(Q x D), which implies the continuity for the weak topology:

[ rgturedv @)~ [ [ (a(a)g(al a))pdadiV (6) weakdy in L@ x D).

38



As 14 € L*(Q x D) one gets at the limit

E[14 /OTfDn'(uT,k)g(uT,k)gp(x,t)dxdW(t)]ﬂE[nA fOTfDfoln’(u(x,t,a))g(u(x,t,a))gp(m,t)dadxdW(t)].

4. Study of %E[]l,qf n"(uryk)g2(uT,k)<p(a:,t)da:dt]
Q

Since ¥ : (w,z,t,v) € x Q xR = 7"(1)g*(¥)p(x,t)14(w) € R is a Carathéodory function such that
U(.,ur 1) is bounded in L*(Q x Q), at the limit we get:

%E[]IA/;2T)”(UT,k)g2(u7—7k)<p(x,t)dmdt]—>%E[]IAfQ/(;1n"(u(az,t,a))gz(u(ac,t,a))gp(x,t)dadmdt].

Finally, by passing to the limit in Inequality , we obtain:
For any P-measurable set A, for any 7 € A and for any ¢ € D (R? x [0,T))

0 < E[]lA/Rdn(uo)cp(a:,())dx]+E[]lA/Q/01n(u(ac,t,a))g@t(w,t)dada:dt]
+E[]lA/Q[01(I)(u(x,t,a))q‘;(a:,t).thp(w,t)dada:dt]
(14 fonRdfoln’(u(a;,t,a))g(u(m,t,a))@(x,t)dadxdW(t)]
esB[ta [ [0 (e t.0)g* (alast, 0o, dadadt]

B[1aCyV fonaD o On(u’ (2, 6))dy ()t |

Hence u is a measure-valued entropy solution in the sense of Definition [2] Thanks to Theorem [I u is
independent of o and is hence the unique stochastic entropy solution in the sense of Definition [1| and we
denote it by u. In this way, all the sequence of approximate solution w7 converges to u in L'(Qx Q). In
addition, since w7 i is bounded in LQ(Q x @), all the sequence converges in LP(2x Q) for any 1 <p<2. m
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