COMPACTNESS OF MINIMIZING SEQUENCES

LUCIO BOCCARDO AND THIERRY GALLOUET

Abstract

We consider a minimization problem of a functional in the space $W_{0}^{1, p}(\Omega)$, where $1<p<+\infty$ and Ω is a bounded open set of \mathbb{R}^{N}. We prove the compactness, in the space $W_{0}^{1, p}(\Omega)$, under convenient hypotheses, of a minimizing sequence. The main difficulty is to prove the convergence in measure of the gradient of the minimizing sequence. Furthermore, considering a sequence of minimization problems in the space $W_{0}^{1, p}(\Omega)$, we prove some convergence results of the sequence of minimizers to the minimizer of the limit problem.

Dedicado al Patriarca por su primavera ${ }^{1}$

1. Introduction and main results

We deal with integral problems where the functional are defined as

$$
\begin{equation*}
J(v)=\int_{\Omega} j(x, v, \nabla v)-\int_{\Omega} f v \tag{1}
\end{equation*}
$$

where Ω is a bounded domain of $\mathbb{R}^{N}, N \geq 1$, and $j: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ is a Carathéodory function, that is, measurable with respect to x in Ω for every $(s, \xi) \mathbb{R} \times \mathbb{R}^{N}$, and continuous with respect to (s, ξ) in $\mathbb{R} \times \mathbb{R}^{N}$ for almost every x in Ω.
We assume that there exist $g \in L^{1}(\Omega)$ and real positive constants α, β such that for almost every x in Ω, for every s in \mathbb{R}, for every ξ and η in \mathbb{R}^{N} we have

$$
\begin{gather*}
\alpha|\xi|^{p} \leq j(x, s, \xi), \tag{2}\\
j(x, s, \xi) \leq \beta\left(|\xi|^{p}+|s|^{p}\right)+g(x), \tag{3}\\
f(x) \in L^{m}(\Omega), \quad m \geq\left(p^{\star}\right)^{\prime}, \tag{4}
\end{gather*}
$$

where $1<p,\left(p^{\star}\right)^{\prime}$ is the Sobolev conjugate of p, if $1<p<N$, it is any number greater than 1 if $p=N$, and $m=1$ if $p>N$.
Thus $J(v)$ is well defined in $W_{0}^{1, p}(\Omega)$.

[^0]Theorem 1. We assume (2), (3), (4) and

$$
\begin{equation*}
j(x, s, \xi) \text { is strictly convex with respect to } \xi, \tag{5}
\end{equation*}
$$

for a.e. $x \in \Omega$ and all $s \in \mathbb{R}$. Then the minimizing sequences of J, defined in (1), are compact in $W_{0}^{1, p}(\Omega)$. Furthermore, if u is a limit of a minimizing sequence, then it is a minimizer of J.

The situation, described in Theorem 1 is known in the Calculus of Variations, in some simple cases, where it is easy to prove that a weakly convergent minimizing sequence is also strongly convergent (see Remark 4). Our approach use deeply Real Analysis techniques and it is slightly close a method used in [4].
Moreover, we point out some relationships with the results of the papers [5], [8], [7]. In [5], is proved that, under some assumptions on the strictly convex function $j: \mathbb{R}^{M} \rightarrow \mathbb{R}$, if $\left(u_{n}\right)_{n \in N}$ and u are functions in $L^{1}\left(\Omega, \mathbb{R}^{M}\right)$, the sequence $\left(u_{n}\right)$ converges weakly in \mathcal{D}^{\prime} (convergence assumption weaker than the assumption of the previous papers) and $\limsup \int_{\Omega} j\left(u_{n}\right) \leq \int_{\Omega} j(u)$, then $\left(u_{n}\right)$ converges strongly in $L^{1}\left(\Omega, \mathbb{R}^{M}\right)$. Theorem 1 is also true if Hypothesis (4) is replaced by $f \in W^{-1, p^{\prime}}(\Omega)$ with $p^{\prime}=p /(p-1)$ and, in (1), $\int_{\Omega} f v$ is replaced by the duality product between f and v. We prove Theorem 1 in Section 2.
An adaptation of the proof of Theorem 1 gives the following result on the convergence of the sequence of minimizers associated to a sequence of data $\left(f_{n}\right)_{n \in \mathbb{N}}$. We denote by $<\cdot, \cdot>$ the duality product between $W^{-1, p^{\prime}}(\Omega)$ and $W_{0}^{1, p}(\Omega)$.

Theorem 2. We assume (2), (3) and (5). We assume furthermore that j does not depend of its second argument. Let $\left(f_{n}\right)_{n \in N}$ be a sequence of $W^{-1, p^{\prime}}(\Omega)$ and f such that

$$
\begin{equation*}
f_{n} \text { converges to } f \text { in } W^{-1, p^{\prime}}(\Omega) \text {, as } n \rightarrow \infty \text {. } \tag{6}
\end{equation*}
$$

Let u be the minimizer (in $W_{0}^{1, p}(\Omega)$) of $\int_{\Omega} j(x, \nabla v)-<f, v>$ and, for all n, let u_{n} be the minimizer (in $\left.W_{0}^{1, p}(\Omega)\right)$ of $\int_{\Omega} j\left(x, \nabla u_{n}\right)-<f_{n}, v>$. Then the sequence $\left\{u_{n}\right\}$ converges to u in $W_{0}^{1, p}(\Omega)$.

In Theorem 2, the existence of u (and of u_{n} for all n) is an easy consequence of (2), (3), (5). In order to prove the uniqueness of u (and of u_{n} for all n) we also use the fact that j does not depend on its second argument. Indeed, let $v, w \in W_{0}^{1, p}(\Omega)$ such that $v \neq w$. Let $A=\{\nabla v \neq \nabla w\}$. One has, thanks to (5),

$$
j\left(\cdot, \frac{1}{2} \nabla v+\frac{1}{2} \nabla w\right)<\frac{1}{2} j(\cdot, \nabla v)+\frac{1}{2} j(\cdot, \nabla w) \text { a.e. on } A,
$$

Then, since the measure of A is positive, this gives $J\left(\frac{1}{2} \nabla v+\frac{1}{2} \nabla w\right)<$ $\frac{1}{2} J(v)+\frac{1}{2} J(w)$ and proves the uniqueness of the minimizers in Theorem 2.

Finally, the proof of the convergence of u_{n} to u in $W_{0}^{1, p}(\Omega)$ is given in Section 3.
A natural question consists to replace in Theorem 2 the hypothesis 6 by the hypothesis

$$
\begin{equation*}
f_{n} \text { converges to } f \text { weakly in } W^{-1, p^{\prime}}(\Omega) \text {, as } n \rightarrow \infty \tag{7}
\end{equation*}
$$

If $p=2$, the conclusion of Theorem 2 becomes that $u_{n} \rightarrow u$ weakly in $W_{0}^{1, p}(\Omega)$. This is quite easy to prove, thanks to fact that the EulerLagrange equation of this minimization problem is linear. If $p \neq 2$, this result is not true. A counter example is given in Section 4. However, we have a convergence result of u_{n} to u, with an additional hypothesis on the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$. This is given in Theorem 3, whose proof is also in Section 3.

Theorem 3. We assume (2), (3), (5) and that j does not depend of its second argument. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $W^{-1, p^{\prime}}(\Omega)$ and f satisfying Hypothesis (7). We assume furthermore that f_{n} and f are functions satisfying (4) and

$$
\begin{equation*}
f_{n} \text { converges to } f \text { weakly in } L^{1}(\Omega) \text {, as } n \rightarrow \infty \tag{8}
\end{equation*}
$$

Let u be the minimizer (in $W_{0}^{1, p}(\Omega)$) of $\int_{\Omega} j(x, \nabla v)-\int_{\Omega} f v$ and, for all n, let u_{n} be the minimizer (in $\left.W_{0}^{1, p}(\Omega)\right)$ of $\int_{\Omega} j\left(x, \nabla u_{n}\right)-\int_{\Omega} f_{n} v$.
Then the sequence $\left\{u_{n}\right\}$ converges to u in $W_{0}^{1, s}(\Omega)$ for all $1 \leq s<p$ (in particular $\nabla u_{n} \rightarrow \nabla u$ in measure) and weakly in $W_{0}^{1, p}(\Omega)$.
Theorem 3 is interesting only in the case $p \leq N$. Indeed, in the case $p>N$, Hypothesis (7) gives the convergence of f_{n} to f in $W^{-1, p^{\prime}}(\Omega)$ and therefore Theorem 2 gives that u_{n} converges to u in $W_{0}^{1, p}(\Omega)$.

2. Compactness of minimizing sequences

In this section we prove Theorem 1. The assumptions (2), (4) imply that, for all $v \in W_{0}^{1, p}(\Omega)$,

$$
\begin{equation*}
J(v) \geq \alpha \int_{\Omega}|\nabla v|^{p}-C_{1}\|v\|_{W_{0}^{1, p}(\Omega)} \tag{9}
\end{equation*}
$$

for some positive constant $C_{1}>0$, only depending on f. Since $p>1$, $J(v)$ is bounded from below. Let $I=\inf \left\{J(v), v \in W_{0}^{1, p}(\Omega)\right\}$. Thus $I \in \mathbb{R}$.

Let $\left\{u_{n}\right\}$ be a minimizing sequence, that is $J\left(u_{n}\right) \rightarrow I$ as $n \rightarrow \infty$. The inequality (9) and $p>1$ imply that the sequence $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$. This ensures the existence of a subsequence (not relabelled) and a function $u \in W_{0}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
u_{n} \text { converges weakly to } u \text { in } W_{0}^{1, p}(\Omega) \text {. } \tag{10}
\end{equation*}
$$

Moreover, thanks to the assumptions on the function $j(x, s, \xi)$, a classic semicontinuity result, due to Ennio De Giorgi (see [6], [3]), we have

$$
\int_{\Omega} j(x, u, \nabla u) \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} j\left(x, u_{n}, \nabla u_{n}\right) .
$$

Then, since $\lim _{n \rightarrow \infty} \int f u_{n}=\int f u$, one has $J(u)=I$ (and u is a minimizer of J) and also

$$
\int_{\Omega} j\left(x, u_{n}, \nabla u_{n}\right) \rightarrow \int_{\Omega} j(x, u, \nabla u) .
$$

Moreover, once more, the semicontinuity theorem says that

$$
\begin{equation*}
\int_{\Omega} j(x, u, \nabla u) \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} j\left(x, u_{n}, \frac{\nabla u_{n}+\nabla u}{2}\right) . \tag{11}
\end{equation*}
$$

Furthermore, since $u_{n} \rightarrow u$ in $L^{p}(\Omega)$, assumption (3) imply

$$
\begin{equation*}
\int_{\Omega} j\left(x, u_{n}, \nabla u\right) \rightarrow \int_{\Omega} j(x, u, \nabla u), \tag{12}
\end{equation*}
$$

so that

$$
\begin{array}{r}
\limsup _{n \rightarrow+\infty} \int_{\Omega}\left[\frac{1}{2} j\left(x, u_{n}, \nabla u_{n}\right)+\frac{1}{2} j\left(x, u_{n}, \nabla u\right)-j\left(x, u_{n}, \frac{\nabla u_{n}+\nabla u}{2}\right)\right] \\
\leq 0
\end{array}
$$

Thus, using the convexity of j with respect to its third argument, we have

$$
\begin{align*}
\lim _{n \rightarrow+\infty} \int_{\Omega}\left[\frac{1}{2} j\left(x, u_{n}, \nabla u_{n}\right)+\frac{1}{2} j(\right. & \left.x, u_{n}, \nabla u\right) \tag{13}\\
& \left.-j\left(x, u_{n}, \frac{\nabla u_{n}+\nabla u}{2}\right)\right]=0 .
\end{align*}
$$

Now, following [4], we will prove that

$$
\begin{equation*}
\nabla u_{n} \rightarrow \nabla u \text { in measure. } \tag{14}
\end{equation*}
$$

Let $\lambda>0$ and $\varepsilon>0$. We want to prove that there exists ν such that

$$
\begin{equation*}
n>\nu \Rightarrow \text { measure }\left(\left\{x \in \Omega:\left|\nabla u_{n}(x)-\nabla u(x)\right|>\lambda\right\}\right) \leq 2 \varepsilon . \tag{15}
\end{equation*}
$$

Since the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$, we first remark that there exists $k>0$ such that

$$
\text { measure }\left(\mathcal{G}_{n}\right) \leq \varepsilon, \quad \forall n \in \mathbb{N}
$$

where

$$
\mathcal{G}_{n}=\left\{\left|\nabla u_{n}(x)\right|>k\right\} \cup\{|\nabla u(x)|>k\} \cup\left\{\left|u_{n}(x)\right|>k\right\} .
$$

We now define

$$
\mathcal{K}=\left\{(s, \xi, \eta) \in \mathbb{R}^{2 N+1}:|s| \leq k,|\xi| \leq k,|\eta| \leq k,|\xi-\eta| \geq \lambda\right\}
$$

The set \mathcal{K} is compact and the function

$$
\gamma(x)=\min _{(s, \xi, \eta) \in \mathcal{K}}\left[\frac{1}{2} j(x, s, \xi)+\frac{1}{2} j(x, s, \eta)-j\left(x, s, \frac{\xi+\eta}{2}\right)\right],
$$

which is defined in Ω, satisfies the assumptions of Lemma 5 , thanks to (5). Setting
$\mathcal{L}_{n}=\left\{\left|\nabla u_{n}(x)\right| \leq k,|\nabla u(x)| \leq k,\left|u_{n}(x)\right| \leq k,\left|\nabla u_{n}(x)-\nabla u(x)\right| \geq \lambda\right\}$, we note that, if $x \in \mathcal{L}_{n}$,

$$
\gamma(x) \leq\left[\frac{1}{2} j\left(x, u_{n}, \nabla u_{n}\right)+\frac{1}{2} j\left(x, u_{n}, \nabla u\right)-j\left(x, u_{n}, \frac{\nabla u_{n}+\nabla u}{2}\right)\right]
$$

Then, we have

$$
\begin{aligned}
& \int_{\mathcal{L}_{n}} \gamma(x) \leq \int_{\mathcal{L}_{n}}\left[\frac{1}{2} j\left(x, u_{n}, \nabla u_{n}\right)+\frac{1}{2} j\left(x, u_{n}, \nabla u\right)-j\left(x, u_{n}, \frac{\nabla u_{n}+\nabla u}{2}\right)\right] \\
& \quad \leq \int_{\Omega}\left[\frac{1}{2} j\left(x, u_{n}, \nabla u_{n}\right)+\frac{1}{2} j\left(x, u_{n}, \nabla u\right)-j\left(x, u_{n}, \frac{\nabla u_{n}+\nabla u}{2}\right)\right]
\end{aligned}
$$

and it now follows from (13) that $\int_{\mathcal{L}_{n}} \gamma(x) \rightarrow 0$, which implies that measure $\left(\mathcal{L}_{n}\right) \rightarrow 0$ (thanks to assumption (5) and Lemma 5). Then, there exists $\nu \in \mathbb{N}$ such that

$$
n \geq \nu \Rightarrow \text { measure }\left(\mathcal{L}_{n}\right) \leq \varepsilon
$$

and, for $n>\nu$,

$$
\begin{aligned}
\text { measure }\left(\left\{x \in \Omega: \mid \nabla u_{n}(x)-\right.\right. & \nabla u(x) \mid>\lambda\}) \\
& \leq \operatorname{measure}\left(\mathcal{G}_{n}\right)+\operatorname{measure}\left(\mathcal{L}_{n}\right) \leq 2 \varepsilon
\end{aligned}
$$

So we proved (15) which gives

$$
\begin{equation*}
\nabla u_{n}(x) \text { converges in measure to } \nabla u(x) \tag{16}
\end{equation*}
$$

Now we follow the classical proof of the Lebesgue Theorem (with the convergence in measure). Since

$$
\begin{equation*}
\left|\nabla u_{n}-\nabla u\right|^{p} \leq \frac{2^{p}}{\alpha}\left[j\left(x, u_{n}, \nabla u_{n}\right)+j(x, u, \nabla u)\right], \tag{17}
\end{equation*}
$$

we have

$$
\frac{2^{p}}{\alpha}\left(j\left(x, u_{n}, \nabla u_{n}\right)+j(x, u, \nabla u)\right)-\left|\nabla u_{n}-\nabla u\right|^{p} \geq 0 .
$$

We can apply Fatou's Lemma (with respect to the convergence in measure) and we obtain

$$
\frac{2^{p+1}}{\alpha} \int_{\Omega} j(x, u, \nabla u) \leq \frac{2^{p+1}}{\alpha} \int_{\Omega} j(x, u, \nabla u)-\limsup _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{p}
$$

This gives

$$
\limsup _{n \rightarrow+\infty} \int_{\Omega}\left|\nabla u_{n}-\nabla u\right|^{p} \leq 0
$$

so that $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$, as $n \rightarrow+\infty$, and concludes the proof of Theorem 1.

Remark 4. If $j(x, s, \xi)=|\xi|^{p}$, the proof of Theorem 1 follows easily from the Clarkson inequality and (13).

3. Convergence of a sequence of minimizers

In this section, we first give a proof of Theorem 2. It follows closely the proof of Theorem 1. We first remark that the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ is bounded in $W_{0}^{1, p}(\Omega)$. Then, up to subsequence, $u_{n} \rightarrow u^{\star}$ weakly in $W_{0}^{1, p}(\Omega)$, as $n \rightarrow+\infty$.
We now prove that $u^{\star}=u$ (this will give in particular that the whole sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$ converges to u, thanks to the uniqueness of the minimizer).
As in Theorem 1, the semicontinuity result gives

$$
\int_{\Omega} j\left(x, \nabla u^{\star}\right) \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} j\left(x, \nabla u_{n}\right)
$$

Furthermore, thanks to (6), one has $\int_{\Omega} f_{n} u_{n} \rightarrow \int_{\Omega} f u^{\star}$ as $n \rightarrow+\infty$ and then

$$
\int_{\Omega} j\left(x, \nabla u^{\star}\right)-\int_{\Omega} f u^{\star} \leq \liminf _{n \rightarrow+\infty} \int_{\Omega} j\left(x, \nabla u_{n}\right)-\lim _{n \rightarrow+\infty} \int_{\Omega} f_{n} u_{n} .
$$

Since u_{n} is the minimizer associated to f_{n}, one has, for all $v \in W_{0}^{1, p}(\Omega)$,

$$
\begin{equation*}
\int_{\Omega} j\left(x, \nabla u_{n}\right)-\int_{\Omega} f_{n} u_{n} \leq \int_{\Omega} j(x, \nabla v)-\int_{\Omega} f_{n} v . \tag{18}
\end{equation*}
$$

Passing to the liminf in this inequality, we obtain that $u^{\star}=u$ (recall that u is the minimizer of the functional J). Taking $v=u$ in (18), we also obtain that

$$
\begin{equation*}
\int_{\Omega} j\left(x, \nabla u_{n}\right)-\int_{\Omega} f_{n} u_{n} \rightarrow \int_{\Omega} j(x, \nabla u)-\int_{\Omega} f u \tag{19}
\end{equation*}
$$

and then

$$
\int_{\Omega} j\left(x, \nabla u_{n}\right) \rightarrow \int_{\Omega} j(x, \nabla u) .
$$

We now follow exactly the proof of Theorem 1. It gives that

$$
\nabla u_{n}(x) \text { converges in measure to } \nabla u(x)
$$

and finally that $u_{n} \rightarrow u$ in $W_{0}^{1, p}(\Omega)$ as $n \rightarrow \infty$. This concludes the proof of Theorem 2. Note that, in this proof, a main tool was the fact that $\int_{\Omega} f_{n} u_{n} \rightarrow \int_{\Omega} f u^{\star}$. A tool which is no longer true if Hypothesis (6) on the sequence $\left(f_{n}\right)_{n \in N}$ is replaced by Hypothesis (7).

We now give the proof of Theorem 3. We begin as in the previous proof, The sequence $\left\{u_{n}\right\}$ is bounded in $W_{0}^{1, p}(\Omega)$. Then, up to a subsequence, we have $u_{n} \rightarrow u^{*}$ weakly in $W_{0}^{1, p}(\Omega)$, as $n \rightarrow+\infty$. We can also assume that $u_{n} \rightarrow u^{\star}$ a.e.. The new difficulty with respect to the previous proof is that we do not have $\int_{\Omega} f_{n} u_{n} \rightarrow \int_{\Omega} f u^{\star}$.
We fix $h \in \mathbb{R}^{+}$and let $T_{h}(s)=\max \{\min \{k, s\}-k\}, s \in \mathbb{R}$. Using the minimality of u_{n} and u_{m}, we get (here and in (24) we follow some techniques of [1])

$$
\int_{\Omega} j\left(x, \nabla u_{n}\right) \leq \int_{\Omega} j\left(x, \nabla\left(u_{n}-\frac{T_{h}\left(u_{n}-u_{m}\right)}{2}\right)\right)+\int_{\Omega} f_{n} \frac{T_{h}\left(u_{n}-u_{m}\right)}{2}
$$

and

$$
\int_{\Omega} j\left(x, \nabla u_{m}\right) \leq \int_{\Omega} j\left(x, \nabla\left(u_{m}-\frac{T_{h}\left(u_{m}-u_{n}\right)}{2}\right)\right)+\int_{\Omega} f_{m} \frac{T_{h}\left(u_{m}-u_{n}\right)}{2} .
$$

Adding these equations, this gives

$$
\begin{aligned}
\int_{\left|u_{m}-u_{n}\right| \leq h}\left(j\left(x, \nabla u_{m}\right)+j\left(x, \nabla u_{n}\right)-\right. & \left.2 j\left(x, \frac{\nabla u_{m}+\nabla u_{n}}{2}\right)\right) \\
& \leq \frac{1}{2} \int_{\Omega}\left(f_{m}-f_{n}\right) T_{h}\left(u_{m}-u_{n}\right)
\end{aligned}
$$

Since $f_{n} \rightarrow f$ weakly in $L^{1}(\Omega)$ and $u_{n} \rightarrow u^{\star}$ a.e., for all $\delta>0$ there exists $\bar{\nu}(\delta)>0$ such that $n, m>\bar{\nu}(\delta)$ implies (recall that h is fixed)

$$
\begin{equation*}
\int_{\left|u_{m}-u_{n}\right| \leq h}\left\{\frac{1}{2} j\left(x, \nabla u_{m}\right)+\frac{1}{2} j\left(x, \nabla u_{n}\right)-j\left(x, \frac{\nabla u_{m}+\nabla u_{n}}{2}\right)\right\}<\delta \tag{20}
\end{equation*}
$$

Let $\lambda>0$ and $\epsilon>0$. We want to prove that there exists $\nu(\epsilon, \lambda)$ such that

$$
\begin{equation*}
m, n>\nu(\epsilon, \lambda) \Rightarrow \text { measure }\left(\left\{\left|\nabla u_{n}-\nabla u_{m}\right|>\lambda\right\}\right)<\epsilon \tag{21}
\end{equation*}
$$

First of all, there exists $k>0$ such that

$$
\text { measure }\left(\left\{\left|\nabla u_{n}\right|>k\right\}\right)<\epsilon, \text { measure }\left(\left\{\left|\nabla u_{m}\right|>k\right\}\right)<\epsilon,
$$

uniformly w.r.t. n, m (thanks to the $W_{0}^{1, p}(\Omega)$ bound on $\left.\left(u_{n}\right)_{n \in \mathbb{N}}\right)$. We define

$$
\begin{aligned}
& \mathcal{K}=\left\{(\xi, \eta) \in \mathbb{R}^{2 N}:|\xi| \leq k,|\eta| \leq k,|\xi-\eta| \geq \lambda\right\}, \\
& \gamma(x)=\min _{(\xi, \eta) \in \mathcal{K}}\left[\frac{1}{2} j(x, \xi)+\frac{1}{2} j(x, \eta)-j\left(x, \frac{\xi+\eta}{2}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
A_{n, m} & = \\
\left\{\left|\nabla u_{n}\right|\right. & \leq k\} \cap\left\{\left|\nabla u_{m}\right| \leq k\right\} \cap\left\{\left|u_{n}-u_{m}\right| \leq h\right\} \cap\left\{\left|\nabla u_{n}-\nabla u_{m}\right| \geq \lambda\right\} .
\end{aligned}
$$

Thanks to (20), one has, for $n, m>\bar{\nu}(\delta)$,

$$
\begin{aligned}
& \int_{A_{n, m}} \gamma(x) \leq \\
& \int_{\left|u_{m}-u_{n}\right| \leq h}\left\{\frac{1}{2} j\left(x, \nabla u_{m}\right)+\frac{1}{2} j\left(x, \nabla u_{n}\right)-j\left(x, \frac{\nabla u_{m}+\nabla u_{n}}{2}\right)\right\}<\delta
\end{aligned}
$$

Now, thanks to Lemma 5 , we choose δ such that

$$
\int_{A} \gamma(x) \leq \delta \text { implies measure }(A)<\epsilon
$$

Thus

$$
\begin{equation*}
\text { measure }\left(A_{n, m}\right)<\epsilon \text { if } n, m>\bar{\nu}=\bar{\nu}(\delta) \tag{22}
\end{equation*}
$$

Now we note that the convergence in measure of the sequence $\left\{u_{n}\right\}$ implies that there exists $\tilde{\nu}>0$ such that, for $n, m>\tilde{\nu}$,

$$
\text { measure }\left\{\left|u_{n}-u_{m}\right|>h\right\} \leq \epsilon
$$

On the other hand we have

$$
\begin{aligned}
& \left\{\left|\nabla u_{n}-\nabla u_{m}\right| \geq \lambda\right\} \subset \\
& \qquad\left\{\left|\nabla u_{n}\right|>k\right\} \cup\left\{\left|\nabla u_{m}\right|>k\right\} \cup\left\{\left|u_{n}-u_{m}\right|>h\right\} \cup A_{n, m}
\end{aligned}
$$

Then for $n, m>\nu=\max (\bar{\nu}, \tilde{\nu})$ one has

$$
\text { measure }\left\{\left|\nabla u_{n}-\nabla u_{m}\right| \geq \lambda\right\} \leq 4 \epsilon
$$

This gives that the sequence $\left(\nabla u_{n}\right)_{n \in \mathbb{N}}$ converges in measure. Then, there exists a function $\xi(x)$ such that

$$
\begin{equation*}
\nabla u_{n} \text { converges in measure to } \xi \text {. } \tag{23}
\end{equation*}
$$

Since we already know that ∇u_{n} converges weakly to ∇u^{\star} in $L^{p}(\Omega)$, we then conclude that $\xi(x)=\nabla u^{\star}(x)$ and ∇u_{n} converges to ∇u^{\star} in $L^{q}(\Omega)$ for all $1 \leq q<p$.
It remains to show that $u^{\star}=u$. The minimality of u_{n} gives for all n and all $w \in W_{0}^{1, p}(\Omega)$

$$
\int_{\Omega} j\left(x, \nabla u_{n}\right)-\int_{\Omega} f_{n} u_{n} \leq \int_{\Omega} j(x, \nabla w)-\int_{\Omega} f_{n} w
$$

Let $v \in W_{0}^{1, p}(\Omega)$, Taking $w=u_{n}-T_{i}\left[u_{n}-v\right]$ we obtain

$$
\begin{equation*}
\int_{\left|u_{n}-v\right|<i} j\left(x, \nabla u_{n}\right) \leq \int_{\left|u_{n}-v\right|<i} j(x, \nabla v)+\int_{\Omega} f_{n} T_{i}\left[u_{n}-v\right] . \tag{24}
\end{equation*}
$$

Here we pass to the limit with Fatou Lemma, the weak convergence of f_{n} to f in $L^{1}(\Omega)$ and the convergence in measure of u_{n} to u^{\star}. This gives

$$
\int_{\left|u^{*}-v\right|<i} j\left(x, \nabla u^{*}\right) \leq \int_{\left|u^{*}-v\right|<i} j(x, \nabla v)+\int_{\Omega} f T_{i}\left[u^{*}-v\right] .
$$

Let $i \rightarrow \infty$. Then

$$
\int_{\Omega} j\left(x, \nabla u^{*}\right) \leq \int_{\Omega} j(x, \nabla v)+\int_{\Omega} f\left[u^{*}-v\right]
$$

which implies that $u^{*}=u$. Finally, Thanks to the uniqueness of the minimizer, all the sequence u_{n} converges to u.

4. Counter example

We give in this section a counter example to Theorem 3 if the sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ does not satisfy Hypothesis (8).
We take $N=1, \Omega=] 0,1\left[, p=3\right.$ and $j(x, \nabla v)=\left|v^{\prime}\right|^{3}$. The functional to minimize in $W_{0}^{1, p}(\Omega)$ if defined for $f \in W^{-1, p^{\prime}}(\Omega)$ by

$$
J(v)=\int_{\Omega} j(x, \nabla v)-<f, v>
$$

For any f in $W^{-1, p^{\prime}}(\Omega)$, the minimizer of J in $W_{0}^{1, p}(\Omega)$ is the function u in $W_{0}^{1, p}(\Omega)$ such that $-\left(\left|u^{\prime}\right| u^{\prime}\right)^{\prime}=f$ in the sense of distribution in $(0,1)$.
For $n \in N^{\star}$, we define the function u_{n} as follow. The function u_{n} is a continuous function satisfying $u_{n}(0)=0$ and $u_{n}(1 / 2+x)=u_{n}(1 / 2-$
$x)$ for all $x \in[0,1 / 2]$. On the interval $[0,1 / 2]$ it is defined, for $i \in$ $\{0, \ldots, n-1\}$, by

$$
\begin{gathered}
\left.u_{n}^{\prime}(x)=+1 \text { if } x \in\right] \frac{i}{2 n}, \frac{i}{2 n}+\frac{1}{3 n}[, \\
\left.u_{n}^{\prime}(x)=-1 \text { if } x \in\right] \frac{i}{2 n}+\frac{1}{3 n}, \frac{i}{2 n}+\frac{1}{3 n}+\frac{1}{6 n}[.
\end{gathered}
$$

The sequence $\left(u_{n}\right)_{n \in \mathbb{N}^{\star}}$ is bounded in $W_{0}^{1, \infty}(\Omega)$. It converges weakly in $W_{0}^{1, p}(\Omega)$ (and even weakly in $W_{0}^{1, q}(\Omega)$ for all $q<+\infty$) to the function u defined by

$$
\begin{gathered}
u(x)=\frac{x}{3} \text { if } x \in\left[0, \frac{1}{2}\right] \\
u(x)=-\frac{x-1}{3} \text { if } x \in\left[\frac{1}{2}, 1\right] .
\end{gathered}
$$

Since u is continuous and $u^{\prime}(x)=\frac{1}{3}$ if $x \in\left(0, \frac{1}{2}\right)$ and $u^{\prime}(x)=-\frac{1}{3}$ if $x \in\left(\frac{1}{2}, 1\right)$, one has

$$
-\left(\left|u^{\prime}\right| u^{\prime}\right)^{\prime}=\frac{2}{9} \delta_{\frac{1}{2}} .
$$

We now take $f_{n}=-\left(\left|u_{n}^{\prime}\right| u_{n}^{\prime}\right)^{\prime}$. We set $g_{n}=\left|u_{n}^{\prime}\right| u_{n}^{\prime}$. It is quite easy to see that g_{n} weakly converges in any $L^{q}(\Omega)$-space, $q<+\infty$, to the function g defined by

$$
\begin{aligned}
& g(x)=\frac{1}{3} \text { if } x \in\left(0, \frac{1}{2}\right) \\
& g(x)=-\frac{1}{3} \text { if } x \in\left(\frac{1}{2}, 1\right)
\end{aligned}
$$

This gives that $f_{n} \rightarrow f$ weakly in $W^{-1, p^{\prime}}(\Omega)$ (and even weakly in $W^{-1, q}(\Omega)$ for any $\left.q<+\infty\right)$ with

$$
f=\frac{2}{3} \delta_{\frac{1}{2}} .
$$

Since $-\left(\left|u^{\prime}\right| u^{\prime}\right)^{\prime} \neq f$, this concludes our counter example.

Appendix A

Lemma 5. Let (X, μ) be a measurable space, μ a positive measure with $\mu(X)<+\infty$,

$$
\gamma: X \longrightarrow[0,+\infty]
$$

a measurable function such that $\mu(\{x \in X: \gamma(x)=0\})=0$. Then, for every $\epsilon>0$ there exists $\delta>0$ such that the statement

$$
\text { A measurable subset of } X, \quad \int_{A} \gamma(x) d \mu<\delta
$$

implies $\mu(A)<\epsilon$.

Proof. For every $B>0$, we have

$$
B \mu(\{A \cap\{B<\gamma(x)\}\})=\int_{A \cap\{B<\gamma(x)\}} B d \mu \leq \int_{A} \gamma(x)
$$

Then

$$
\begin{equation*}
\mu(\{A \cap\{B<\gamma(x)\}\}) \leq \frac{1}{B} \int_{A} \gamma(x) . \tag{25}
\end{equation*}
$$

On the other hand, since the sequence $\left\{x \in X: \gamma(x) \leq \frac{1}{m}\right\}$ is decreasing, we have

$$
\begin{equation*}
\mu\left(\left\{\gamma(x) \leq \frac{1}{m}\right\}\right) \rightarrow \mu(\{\gamma(x)=0\}) \tag{26}
\end{equation*}
$$

Fix $\epsilon>0$. Thus, there exists m_{ϵ} such that

$$
\mu\left(\left\{\gamma(x) \leq \frac{1}{m_{\epsilon}}\right\}\right) \leq \frac{\epsilon}{2}
$$

Then, with $B=\frac{1}{m_{\epsilon}}$

$$
\begin{aligned}
\mu(A) \leq \mu(A \cap & \{\gamma(x)>B\})+\mu\left(\left\{\gamma(x) \leq \frac{1}{m_{\epsilon}}\right\}\right) \\
& \leq \frac{1}{B} \int_{A} \gamma(x)+\frac{\epsilon}{2}
\end{aligned}
$$

We choose $\delta=B \frac{\epsilon}{2}$ to conclude.

References

[1] L. Boccardo: T-minima: An approach to minimization problems in L^{1}. Contributi dedicati alla memoria di Ennio De Giorgi. Ricerche di Matematica, 49 (2000), 135-154.
[2] L. Boccardo: Marcinkiewicz estimates for solutions of some elliptic problems with nonregular data; Ann. Mat. Pura Appl. 188 (2009), 591-601.
[3] L. Boccardo and G. Croce: Elliptic partial differential equations. Existence and regularity of distributional solutions; De Gruyter Studies in Mathematics 55, De Gruyter, Berlin, 2014.
[4] L. Boccardo and T. Gallouët: Nonlinear elliptic equations with right hand side measures; Comm. Partial Differential Equations 17 (1992), 641-655.
[5] H. Brezis: Convergence in \mathcal{D}^{\prime} and in L^{1} under strict convexity; Boundary value problems for partial differential equations and applications, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993.
[6] E. De Giorgi: Semicontinuity theorems in the calculus of variations. With notes by U. Mosco, G. Troianiello and G. Vergara and a preface by Carlo Sbordone. Dual English-Italian text. Quaderni dell' Accademia Pontaniana [Notebooks of the Accademia Pontaniana], 56. Accademia Pontaniana, Naples, 2008.
[7] D.R. Moreira, E.V. Teixeira: On the behavior of weak convergence under nonlinearities and applications; Proc. Amer. Math. Soc. 133 (2005), 16471656.
[8] A. Visintin: Strong convergence results related to strict convexity; Comm. Partial Differential Equations 9 (1984), 439-466.
L. B., Dipartimento di Matematica, Sapienza Università di Roma, Piazza A. Moro 2, Roma, Italia
E-mail address: boccardo@mat.uniroma1.it
T. G., Institut de Mathematiques de Marseille 39 Rue Joliot Curie, 13453 Marseille cedex 13, France
E-mail address: thierry.gallouet@univ-amu.fr

[^0]: Key words and phrases. minimizing sequences, compactness.
 ${ }^{1}$ (see also [2])

