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Abstract. We consider a minimization problem of a functional
in the space W 1,p

0 (Ω), where 1 < p < +∞ and Ω is a bounded

open set of IRN . We prove the compactness, in the space W 1,p
0 (Ω),

under convenient hypotheses, of a minimizing sequence. The main
difficulty is to prove the convergence in measure of the gradient
of the minimizing sequence. Furthermore, considering a sequence
of minimization problems in the space W 1,p

0 (Ω), we prove some
convergence results of the sequence of minimizers to the minimizer
of the limit problem.

Dedicado al Patriarca por su primavera 1

1. Introduction and main results

We deal with integral problems where the functional are defined as

(1) J(v) =

∫
Ω

j
(
x, v,∇v

)
−
∫

Ω

fv,

where Ω is a bounded domain of IRN , N ≥ 1, and j : Ω×IR×IRN → IR
is a Carathéodory function, that is, measurable with respect to x in
Ω for every (s, ξ) IR × IRN , and continuous with respect to (s, ξ) in
IR× IRN for almost every x in Ω.
We assume that there exist g ∈ L1(Ω) and real positive constants α, β
such that for almost every x in Ω, for every s in IR, for every ξ and η
in IRN we have

(2) α|ξ|p ≤ j
(
x, s, ξ

)
,

(3) j
(
x, s, ξ

)
≤ β(|ξ|p + |s|p) + g(x),

(4) f(x) ∈ Lm(Ω), m ≥ (p?)′,

where 1 < p, (p?)′ is the Sobolev conjugate of p, if 1 < p < N , it is any
number greater than 1 if p = N , and m = 1 if p > N .
Thus J(v) is well defined in W 1,p

0 (Ω).

Key words and phrases. minimizing sequences, compactness.
1 (see also [2])
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Theorem 1. We assume (2), (3), (4) and

(5) j
(
x, s, ξ

)
is strictly convex with respect to ξ,

for a.e. x ∈ Ω and all s ∈ IR. Then the minimizing sequences of J ,
defined in (1), are compact in W 1,p

0 (Ω). Furthermore, if u is a limit of
a minimizing sequence, then it is a minimizer of J .

The situation, described in Theorem 1 is known in the Calculus of Vari-
ations, in some simple cases, where it is easy to prove that a weakly
convergent minimizing sequence is also strongly convergent (see Re-
mark 4). Our approach use deeply Real Analysis techniques and it is
slightly close a method used in [4].
Moreover, we point out some relationships with the results of the papers
[5], [8], [7]. In [5], is proved that, under some assumptions on the
strictly convex function j : IRM → IR, if (un)n∈IN and u are functions
in L1(Ω, IRM), the sequence (un) converges weakly in D′ (convergence
assumption weaker than the assumption of the previous papers) and
lim sup

∫
Ω
j(un) ≤

∫
Ω
j(u), then (un) converges strongly in L1(Ω, IRM).

Theorem 1 is also true if Hypothesis (4) is replaced by f ∈ W−1,p′(Ω)
with p′ = p/(p−1) and, in (1),

∫
Ω
fv is replaced by the duality product

between f and v. We prove Theorem 1 in Section 2.
An adaptation of the proof of Theorem 1 gives the following result on
the convergence of the sequence of minimizers associated to a sequence
of data (fn)n∈IN . We denote by < ·, · > the duality product between
W−1,p′(Ω) and W 1,p

0 (Ω).

Theorem 2. We assume (2), (3) and (5). We assume furthermore
that j does not depend of its second argument. Let (fn)n∈IN be a se-
quence of W−1,p′(Ω) and f such that

(6) fn converges to f in W−1,p′(Ω), as n→∞.

Let u be the minimizer (in W 1,p
0 (Ω)) of

∫
Ω
j(x,∇v)− < f, v > and, for

all n, let un be the minimizer (in W 1,p
0 (Ω)) of

∫
Ω
j(x,∇un)− < fn, v >.

Then the sequence {un} converges to u in W 1,p
0 (Ω).

In Theorem 2, the existence of u (and of un for all n) is an easy con-
sequence of (2), (3), (5). In order to prove the uniqueness of u (and
of un for all n) we also use the fact that j does not depend on its
second argument. Indeed, let v, w ∈ W 1,p

0 (Ω) such that v 6= w. Let
A = {∇v 6= ∇w}. One has, thanks to (5),

j(·, 1

2
∇v +

1

2
∇w) <

1

2
j(·,∇v) +

1

2
j(·,∇w) a.e. on A,



COMPACTNESS OF MINIMIZING SEQUENCES 3

Then, since the measure of A is positive, this gives J(1
2
∇v + 1

2
∇w) <

1
2
J(v)+ 1

2
J(w) and proves the uniqueness of the minimizers in Theorem

2.
Finally, the proof of the convergence of un to u in W 1,p

0 (Ω) is given in
Section 3.
A natural question consists to replace in Theorem 2 the hypothesis 6
by the hypothesis

(7) fn converges to f weakly in W−1,p′(Ω), as n→∞.
If p = 2, the conclusion of Theorem 2 becomes that un → u weakly
in W 1,p

0 (Ω). This is quite easy to prove, thanks to fact that the Euler-
Lagrange equation of this minimization problem is linear. If p 6= 2, this
result is not true. A counter example is given in Section 4. However,
we have a convergence result of un to u, with an additional hypothesis
on the sequence (fn)n∈IN . This is given in Theorem 3, whose proof is
also in Section 3.

Theorem 3. We assume (2), (3), (5) and that j does not depend of
its second argument. Let (fn)n∈IN be a sequence of W−1,p′(Ω) and f
satisfying Hypothesis (7). We assume furthermore that fn and f are
functions satisfying (4) and

(8) fn converges to f weakly in L1(Ω), as n→∞.
Let u be the minimizer (in W 1,p

0 (Ω)) of
∫

Ω
j(x,∇v)−

∫
Ω
fv and, for all

n, let un be the minimizer (in W 1,p
0 (Ω)) of

∫
Ω
j(x,∇un)−

∫
Ω
fnv.

Then the sequence {un} converges to u in W 1,s
0 (Ω) for all 1 ≤ s < p

(in particular ∇un → ∇u in measure) and weakly in W 1,p
0 (Ω).

Theorem 3 is interesting only in the case p ≤ N . Indeed, in the case
p > N , Hypothesis (7) gives the convergence of fn to f in W−1,p′(Ω)
and therefore Theorem 2 gives that un converges to u in W 1,p

0 (Ω).

2. Compactness of minimizing sequences

In this section we prove Theorem 1. The assumptions (2), (4) imply
that, for all v ∈ W 1,p

0 (Ω),

(9) J(v) ≥ α

∫
Ω

|∇v|p − C1‖v‖W 1,p
0 (Ω)

,

for some positive constant C1 > 0, only depending on f . Since p > 1,
J(v) is bounded from below. Let I = inf{J(v), v ∈ W 1,p

0 (Ω)}. Thus
I ∈ IR.
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Let {un} be a minimizing sequence, that is J(un)→ I as n→∞. The
inequality (9) and p > 1 imply that the sequence {un} is bounded in
W 1,p

0 (Ω). This ensures the existence of a subsequence (not relabelled)
and a function u ∈ W 1,p

0 (Ω) such that

(10) un converges weakly to u in W 1,p
0 (Ω).

Moreover, thanks to the assumptions on the function j
(
x, s, ξ

)
, a classic

semicontinuity result, due to Ennio De Giorgi (see [6], [3]), we have∫
Ω

j
(
x, u,∇u

)
≤ lim inf

n→+∞

∫
Ω

j
(
x, un,∇un

)
.

Then, since limn→∞
∫
fun =

∫
fu, one has J(u) = I (and u is a mini-

mizer of J) and also∫
Ω

j
(
x, un,∇un

)
→
∫

Ω

j
(
x, u,∇u

)
.

Moreover, once more, the semicontinuity theorem says that

(11)

∫
Ω

j
(
x, u,∇u

)
≤ lim inf

n→+∞

∫
Ω

j
(
x, un,

∇un +∇u
2

)
.

Furthermore, since un → u in Lp(Ω), assumption (3) imply

(12)

∫
Ω

j
(
x, un,∇u

)
→
∫

Ω

j
(
x, u,∇u

)
,

so that

lim sup
n→+∞

∫
Ω

[1

2
j
(
x, un,∇un

)
+

1

2
j
(
x, un,∇u

)
− j
(
x, un,

∇un +∇u
2

)]
≤ 0.

Thus, using the convexity of j with respect to its third argument, we
have

(13) lim
n→+∞

∫
Ω

[1

2
j
(
x, un,∇un

)
+

1

2
j
(
x, un,∇u

)
− j
(
x, un,

∇un +∇u
2

)]
= 0.

Now, following [4], we will prove that

(14) ∇un → ∇u in measure.

Let λ > 0 and ε > 0. We want to prove that there exists ν such that

(15) n > ν ⇒ measure ({x ∈ Ω : |∇un(x)−∇u(x)| > λ}) ≤ 2ε.
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Since the sequence (un)n∈IN is bounded in W 1,p
0 (Ω), we first remark

that there exists k > 0 such that

measure (Gn) ≤ ε, ∀ n ∈ IN,

where

Gn = {|∇un(x)| > k} ∪ {|∇u(x)| > k} ∪ {|un(x)| > k}.

We now define

K = {(s, ξ, η) ∈ IR2N+1 : |s| ≤ k, |ξ| ≤ k, |η| ≤ k, |ξ − η| ≥ λ}.

The set K is compact and the function

γ(x) = min
(s,ξ,η)∈K

[1

2
j
(
x, s, ξ

)
+

1

2
j
(
x, s, η

)
− j
(
x, s,

ξ + η

2

)]
,

which is defined in Ω, satisfies the assumptions of Lemma 5, thanks to
(5). Setting

Ln = {|∇un(x)| ≤ k, |∇u(x)| ≤ k, |un(x)| ≤ k, |∇un(x)−∇u(x)| ≥ λ},

we note that, if x ∈ Ln,

γ(x) ≤
[1

2
j
(
x, un,∇un

)
+

1

2
j
(
x, un,∇u

)
− j
(
x, un,

∇un +∇u
2

)]
.

Then, we have∫
Ln

γ(x) ≤
∫
Ln

[1

2
j
(
x, un,∇un

)
+

1

2
j
(
x, un,∇u

)
− j
(
x, un,

∇un +∇u
2

)]

≤
∫

Ω

[1

2
j
(
x, un,∇un

)
+

1

2
j
(
x, un,∇u

)
− j
(
x, un,

∇un +∇u
2

)]
and it now follows from (13) that

∫
Ln γ(x) → 0, which implies that

measure (Ln) → 0 (thanks to assumption (5) and Lemma 5). Then,
there exists ν ∈ IN such that

n ≥ ν ⇒ measure (Ln) ≤ ε.

and, for n > ν,

measure ({x ∈ Ω : |∇un(x)−∇u(x)| > λ})
≤ measure (Gn) + measure (Ln) ≤ 2ε.

So we proved (15) which gives

(16) ∇un(x) converges in measure to ∇u(x).
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Now we follow the classical proof of the Lebesgue Theorem (with the
convergence in measure). Since

(17) |∇un −∇u|p ≤
2p

α

[
j
(
x, un,∇un

)
+ j
(
x, u,∇u

)]
,

we have
2p

α

(
j
(
x, un,∇un

)
+ j
(
x, u,∇u

))
− |∇un −∇u|p ≥ 0.

We can apply Fatou’s Lemma (with respect to the convergence in mea-
sure) and we obtain

2p+1

α

∫
Ω

j
(
x, u,∇u

)
≤ 2p+1

α

∫
Ω

j
(
x, u,∇u

)
− lim sup

n→+∞

∫
Ω

|∇un −∇u|p.

This gives

lim sup
n→+∞

∫
Ω

|∇un −∇u|p ≤ 0,

so that un → u in W 1,p
0 (Ω), as n → +∞, and concludes the proof of

Theorem 1.

Remark 4. If j
(
x, s, ξ

)
= |ξ|p, the proof of Theorem 1 follows easily

from the Clarkson inequality and (13).

3. Convergence of a sequence of minimizers

In this section, we first give a proof of Theorem 2. It follows closely
the proof of Theorem 1. We first remark that the sequence (un)n∈IN
is bounded in W 1,p

0 (Ω). Then, up to subsequence, un → u? weakly in
W 1,p

0 (Ω), as n→ +∞.
We now prove that u? = u (this will give in particular that the whole
sequence (un)n∈IN converges to u, thanks to the uniqueness of the min-
imizer).
As in Theorem 1, the semicontinuity result gives∫

Ω

j(x,∇u?) ≤ lim inf
n→+∞

∫
Ω

j(x,∇un)

Furthermore, thanks to (6), one has
∫

Ω
fnun →

∫
Ω
fu? as n→ +∞ and

then∫
Ω

j(x,∇u?)−
∫

Ω

fu? ≤ lim inf
n→+∞

∫
Ω

j(x,∇un)− lim
n→+∞

∫
Ω

fnun.

Since un is the minimizer associated to fn, one has, for all v ∈ W 1,p
0 (Ω),

(18)

∫
Ω

j(x,∇un)−
∫

Ω

fnun ≤
∫

Ω

j(x,∇v)−
∫

Ω

fnv.
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Passing to the lim inf in this inequality, we obtain that u? = u (recall
that u is the minimizer of the functional J). Taking v = u in (18), we
also obtain that

(19)

∫
Ω

j(x,∇un)−
∫

Ω

fnun →
∫

Ω

j(x,∇u)−
∫

Ω

fu

and then ∫
Ω

j(x,∇un)→
∫

Ω

j(x,∇u).

We now follow exactly the proof of Theorem 1. It gives that

∇un(x) converges in measure to ∇u(x),

and finally that un → u in W 1,p
0 (Ω) as n → ∞. This concludes the

proof of Theorem 2. Note that, in this proof, a main tool was the fact
that

∫
Ω
fnun →

∫
Ω
fu?. A tool which is no longer true if Hypothesis

(6) on the sequence (fn)n∈IN is replaced by Hypothesis (7).

We now give the proof of Theorem 3. We begin as in the previous proof,
The sequence {un} is bounded in W 1,p

0 (Ω). Then, up to a subsequence,
we have un → u∗ weakly in W 1,p

0 (Ω), as n→ +∞. We can also assume
that un → u? a.e.. The new difficulty with respect to the previous
proof is that we do not have

∫
Ω
fnun →

∫
Ω
fu?.

We fix h ∈ IR+ and let Th(s) = max{min{k, s} − k}, s ∈ IR. Using
the minimality of un and um, we get (here and in (24) we follow some
techniques of [1])∫

Ω

j(x,∇un) ≤
∫

Ω

j
(
x,∇(un −

Th(un − um)

2
)
)

+

∫
Ω

fn
Th(un − um)

2
,

and∫
Ω

j(x,∇um) ≤
∫

Ω

j
(
x,∇(um −

Th(um − un)

2
)
)

+

∫
Ω

fm
Th(um − un)

2
.

Adding these equations, this gives∫
|um−un|≤h

(
j(x,∇um) + j(x,∇un)− 2j(x,

∇um +∇un
2

)
)

≤ 1

2

∫
Ω

(fm − fn)Th(um − un).

Since fn → f weakly in L1(Ω) and un → u? a.e., for all δ > 0 there
exists ν̄(δ) > 0 such that n,m > ν̄(δ) implies (recall that h is fixed)

(20)

∫
|um−un|≤h

{1

2
j(x,∇um)+

1

2
j(x,∇un)−j

(
x,
∇um +∇un

2

)}
< δ.
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Let λ > 0 and ε > 0. We want to prove that there exists ν(ε, λ) such
that

(21) m, n > ν(ε, λ)⇒ measure ({|∇un −∇um| > λ}) < ε.

First of all, there exists k > 0 such that

measure ({|∇un| > k}) < ε, measure ({|∇um| > k}) < ε,

uniformly w.r.t. n, m (thanks to the W 1,p
0 (Ω) bound on (un)n∈IN).

We define

K = {(ξ, η) ∈ IR2N : |ξ| ≤ k, |η| ≤ k, |ξ − η| ≥ λ},

γ(x) = min
(ξ,η)∈K

[1

2
j(x, ξ) +

1

2
j(x, η)− j

(
x,
ξ + η

2

)]
,

An,m =

{|∇un| ≤ k}∩{|∇um| ≤ k}∩{|un−um| ≤ h}∩{|∇un−∇um| ≥ λ}.

Thanks to (20), one has, for n,m > ν̄(δ),∫
An,m

γ(x) ≤∫
|um−un|≤h

{1

2
j(x,∇um) +

1

2
j(x,∇un)− j

(
x,
∇um +∇un

2

)}
< δ.

Now, thanks to Lemma 5, we choose δ such that∫
A

γ(x) ≤ δ implies measure (A) < ε.

Thus

(22) measure (An,m) < ε if n,m > ν̄ = ν̄(δ).

Now we note that the convergence in measure of the sequence {un}
implies that there exists ν̃ > 0 such that, for n,m > ν̃,

measure {|un − um| > h} ≤ ε.

On the other hand we have

{|∇un −∇um| ≥ λ} ⊂
{|∇un| > k} ∪ {|∇um| > k} ∪ {|un − um| > h} ∪ An,m.

Then for n,m > ν = max(ν̄, ν̃) one has

measure {|∇un −∇um| ≥ λ} ≤ 4ε.
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This gives that the sequence (∇un)n∈IN converges in measure. Then,
there exists a function ξ(x) such that

(23) ∇un converges in measure to ξ.

Since we already know that ∇un converges weakly to ∇u? in Lp(Ω), we
then conclude that ξ(x) = ∇u?(x) and ∇un converges to ∇u? in Lq(Ω)
for all 1 ≤ q < p.
It remains to show that u? = u. The minimality of un gives for all n
and all w ∈ W 1,p

0 (Ω)∫
Ω

j(x,∇un)−
∫

Ω

fnun ≤
∫

Ω

j(x,∇w)−
∫

Ω

fnw

Let v ∈ W 1,p
0 (Ω), Taking w = un − Ti[un − v] we obtain

(24)

∫
|un−v|<i

j(x,∇un) ≤
∫
|un−v|<i

j(x,∇v) +

∫
Ω

fnTi[un − v].

Here we pass to the limit with Fatou Lemma, the weak convergence
of fn to f in L1(Ω) and the convergence in measure of un to u?. This
gives ∫

|u∗−v|<i
j(x,∇u∗) ≤

∫
|u∗−v|<i

j(x,∇v) +

∫
Ω

fTi[u
∗ − v].

Let i→∞. Then∫
Ω

j(x,∇u∗) ≤
∫

Ω

j(x,∇v) +

∫
Ω

f [u∗ − v],

which implies that u∗ = u. Finally, Thanks to the uniqueness of the
minimizer, all the sequence un converges to u.

4. Counter example

We give in this section a counter example to Theorem 3 if the sequence
(fn)n∈IN does not satisfy Hypothesis (8).
We take N = 1, Ω =]0, 1[, p = 3 and j(x,∇v) = |v′|3. The functional
to minimize in W 1,p

0 (Ω) if defined for f ∈ W−1,p′(Ω) by

J(v) =

∫
Ω

j(x,∇v)− < f, v > .

For any f in W−1,p′(Ω), the minimizer of J in W 1,p
0 (Ω) is the function

u in W 1,p
0 (Ω) such that −(|u′|u′)′ = f in the sense of distribution in

(0, 1).
For n ∈ N?, we define the function un as follow. The function un is a
continuous function satisfying un(0) = 0 and un(1/2 + x) = un(1/2 −
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x) for all x ∈ [0, 1/2]. On the interval [0, 1/2] it is defined, for i ∈
{0, . . . , n− 1}, by

u′n(x) = +1 if x ∈]
i

2n
,
i

2n
+

1

3n
[,

u′n(x) = −1 if x ∈]
i

2n
+

1

3n
,
i

2n
+

1

3n
+

1

6n
[.

The sequence (un)n∈IN? is bounded in W 1,∞
0 (Ω). It converges weakly in

W 1,p
0 (Ω) (and even weakly in W 1,q

0 (Ω) for all q < +∞) to the function
u defined by

u(x) =
x

3
if x ∈ [0,

1

2
],

u(x) = −x− 1

3
if x ∈ [

1

2
, 1].

Since u is continuous and u′(x) = 1
3

if x ∈ (0, 1
2
) and u′(x) = −1

3
if

x ∈ (1
2
, 1), one has

−(|u′|u′)′ = 2

9
δ 1

2
.

We now take fn = −(|u′n|u′n)′. We set gn = |u′n|u′n. It is quite easy
to see that gn weakly converges in any Lq(Ω)-space, q < +∞, to the
function g defined by

g(x) =
1

3
if x ∈ (0,

1

2
),

g(x) = −1

3
if x ∈ (

1

2
, 1).

This gives that fn → f weakly in W−1,p′(Ω) (and even weakly in
W−1,q(Ω) for any q < +∞) with

f =
2

3
δ 1

2
.

Since −(|u′|u′)′ 6= f , this concludes our counter example.

Appendix A

Lemma 5. Let (X,µ) be a measurable space, µ a positive measure with
µ(X) < +∞,

γ : X −→ [0,+∞]

a measurable function such that µ({x ∈ X : γ(x) = 0}) = 0. Then, for
every ε > 0 there exists δ > 0 such that the statement

A measurable subset of X,

∫
A

γ(x) dµ < δ

implies µ(A) < ε.
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Proof. For every B > 0, we have

B µ({A ∩ {B < γ(x)}}) =

∫
A∩{B<γ(x)}

B dµ ≤
∫
A

γ(x)

Then

(25) µ
(
{A ∩ {B < γ(x)}}

)
≤ 1

B

∫
A

γ(x).

On the other hand, since the sequence {x ∈ X : γ(x) ≤ 1
m
} is decreas-

ing, we have

(26) µ
(
{γ(x) ≤ 1

m
}
)
→ µ

(
{γ(x) = 0}

)
.

Fix ε > 0. Thus, there exists mε such that

µ
({
γ(x) ≤ 1

mε

})
≤ ε

2
.

Then, with B = 1
mε

µ(A) ≤ µ
(
A ∩

{
γ(x) > B

})
+ µ
({
γ(x) ≤ 1

mε

})
≤ 1

B

∫
A

γ(x) +
ε

2
.

We choose δ = B ε
2

to conclude.

References

[1] L. Boccardo: T–minima: An approach to minimization problems in L1. Con-
tributi dedicati alla memoria di Ennio De Giorgi. Ricerche di Matematica, 49
(2000), 135–154.

[2] L. Boccardo: Marcinkiewicz estimates for solutions of some elliptic problems
with nonregular data; Ann. Mat. Pura Appl. 188 (2009), 591–601.

[3] L. Boccardo and G. Croce: Elliptic partial differential equations. Existence
and regularity of distributional solutions; De Gruyter Studies in Mathematics
55, De Gruyter, Berlin, 2014.

[4] L. Boccardo and T. Gallouët: Nonlinear elliptic equations with right hand
side measures; Comm. Partial Differential Equations 17 (1992), 641–655.

[5] H. Brezis: Convergence in D′ and in L1 under strict convexity; Boundary value
problems for partial differential equations and applications, RMA Res. Notes
Appl. Math., 29, Masson, Paris, 1993.

[6] E. De Giorgi: Semicontinuity theorems in the calculus of variations. With notes
by U. Mosco, G. Troianiello and G. Vergara and a preface by Carlo Sbordone.
Dual English-Italian text. Quaderni dell’ Accademia Pontaniana [Notebooks
of the Accademia Pontaniana], 56. Accademia Pontaniana, Naples, 2008.

[7] D.R. Moreira, E.V. Teixeira: On the behavior of weak convergence under
nonlinearities and applications; Proc. Amer. Math. Soc. 133 (2005), 1647–
1656.



12 LUCIO BOCCARDO AND THIERRY GALLOUET

[8] A. Visintin: Strong convergence results related to strict convexity; Comm.
Partial Differential Equations 9 (1984), 439–466.

L. B., Dipartimento di Matematica, Sapienza Università di Roma,
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