COMPACTNESS OF MINIMIZING SEQUENCES
LUCIO BOCCARDO AND THIERRY GALLOUET

ABSTRACT. We consider a minimization problem of a functional
in the space VVOL]”(Q)7 where 1 < p < 400 and Q is a bounded
open set of IRY. We prove the compactness, in the space Wol’p(Q),
under convenient hypotheses, of a minimizing sequence. The main
difficulty is to prove the convergence in measure of the gradient
of the minimizing sequence. Furthermore, considering a sequence
of minimization problems in the space WO1 P(Q), we prove some
convergence results of the sequence of minimizers to the minimizer
of the limit problem.

Dedicado al Patriarca por su primavera *

1. INTRODUCTION AND MAIN RESULTS

We deal with integral problems where the functional are defined as

(1) J(v):/gj(x,v,VU) —/va,

where (2 is a bounded domain of RY, N > 1,and j : Ox Rx RN — IR
is a Carathéodory function, that is, measurable with respect to x in
Q for every (s,€) IR x RN, and continuous with respect to (s,€) in
IR x RN for almost every z in .

We assume that there exist g € L'(Q) and real positive constants «, 3
such that for almost every x in 2, for every s in IR, for every & and n
in RN we have

(2) algl” < j(,s,),
(3) i@, s,6) < B +IsI”) + g(2),
(4) flx) € L™(Q), m=(p),

where 1 < p, (p*) is the Sobolev conjugate of p, if 1 < p < N, it is any
number greater than 1if p= N, and m=1if p > N.
Thus J(v) is well defined in W, 7(Q).
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THEOREM 1. We assume (2), (3), (4) and
(5) j(x, s, f) is strictly convex with respect to &,

for a.e. x € Q and all s € IR. Then the minimizing sequences of J,
defined in (1), are compact in Wol’p(Q). Furthermore, if u is a limit of
a minimizing sequence, then it is a minimizer of J.

The situation, described in Theorem 1 is known in the Calculus of Vari-
ations, in some simple cases, where it is easy to prove that a weakly
convergent minimizing sequence is also strongly convergent (see Re-
mark 4). Our approach use deeply Real Analysis techniques and it is
slightly close a method used in [4].

Moreover, we point out some relationships with the results of the papers
5], [8], [7]. In [5], is proved that, under some assumptions on the
strictly convex function j : RM — IR, if (u,)nev and u are functions
in L'(Q, IRM), the sequence (u,) converges weakly in D’ (convergence
assumption weaker than the assumption of the previous papers) and
limsup [, j(u,) < [, j(w), then (u,) converges strongly in L'(Q, RM).
Theorem 1 is also true if Hypothesis (4) is replaced by f € W~ (Q)
with p’ = p/(p—1) and, in (1), [, fv is replaced by the duality product
between f and v. We prove Theorem 1 in Section 2.

An adaptation of the proof of Theorem 1 gives the following result on
the convergence of the sequence of minimizers associated to a sequence
of data (f,)nenw. We denote by < -+ > the duality product between
W-17(Q) and W, 7(Q).

THEOREM 2. We assume (2), (3) and (5). We assume furthermore
that j does not depend of its second arqument. Let (fn)nenw be a se-

quence of W= (Q) and f such that
(6) fn converges to f in WP (Q), as n — oo.

Let u be the minimizer (in Wy (Q)) of Joi(@, Vv)— < f,v > and, for
all n, let u, be the minimizer (in W, *(Q)) of Jo i@, Vu,)— < fo,v>.
Then the sequence {u,} converges to u in Wy ().

In Theorem 2, the existence of u (and of w, for all n) is an easy con-
sequence of (2), (3), (5). In order to prove the uniqueness of u (and
of u, for all n) we also use the fact that j does not depend on its
second argument. Indeed, let v,w € W,*(Q) such that v # w. Let
A = {Vv # Vw}. One has, thanks to (5),

1 1
—j(-, Vv) + §j(-,Vw) a.e. on A,

1 1
g, QVU + §Vw) < 2]
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Then, since the measure of A is positive, this gives J (%V"U + %Vw) <
$J(v)+3J(w) and proves the uniqueness of the minimizers in Theorem
2.

Finally, the proof of the convergence of u, to u in W, () is given in
Section 3.

A natural question consists to replace in Theorem 2 the hypothesis 6
by the hypothesis

(7) fn converges to f weakly in W~ (Q), as n — oc.

If p = 2, the conclusion of Theorem 2 becomes that u,, — u weakly
in W,*(€). This is quite easy to prove, thanks to fact that the Euler-
Lagrange equation of this minimization problem is linear. If p # 2, this
result is not true. A counter example is given in Section 4. However,
we have a convergence result of u,, to u, with an additional hypothesis
on the sequence (fy,)nerv. This is given in Theorem 3, whose proof is
also in Section 3.

THEOREM 3. We assume (2), (3), (5) and that j does not depend of
its second argument. Let (f,)nen be a sequence of W5 (Q) and f
satisfying Hypothesis (7). We assume furthermore that f, and f are
functions satisfying (4) and

(8) fn converges to f weakly in L'(SY), as n — oo.

Let u be the minimizer (in Wy () of [, (x,Vv) — [, fv and, for all
n, let u, be the minimizer (in Wy (Q)) of Jo i@, Vu,) — [, fav.
Then the sequence {u,} converges to u in Wy*(Q) for all 1 < s < p
(in particular Vu, — Vu in measure) and weakly in W, ().

Theorem 3 is interesting only in the case p < N. Indeed, in the case
p > N, Hypothesis (7) gives the convergence of f, to f in W1 (Q)
and therefore Theorem 2 gives that u, converges to u in Wy”(Q).

2. COMPACTNESS OF MINIMIZING SEQUENCES

In this section we prove Theorem 1. The assumptions (2), (4) imply
that, for all v € W, ?(Q),

() I0) = a [ 1907 = Cilll

for some positive constant C; > 0, only depending on f. Since p > 1,
J(v) is bounded from below. Let I = inf{J(v), v € Wy"(Q)}. Thus
IelR.
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Let {u,} be a minimizing sequence, that is J(u,) — I as n — oco. The
inequality (9) and p > 1 imply that the sequence {u,} is bounded in
I/VO1 P(€). This ensures the existence of a subsequence (not relabelled)
and a function u € W, *(Q) such that

(10) u,, converges weakly to u in Wy (€).

s, §), a classic

Moreover, thanks to the assumptions on the function j (x,
, [3]), we have

semicontinuity result, due to Ennio De Giorgi (see [6]

/j(x,u,Vu) Sliminf/j(a:,un,Vun).
Q Q

n—-+4o0o

Then, since lim,, o0 [ fu, = [ fu, one has J(u) = I (and u is a mini-
mizer of J) and also

/](xaunavun) %/](m,U,VU)
Q Q

Moreover, once more, the semicontinuity theorem says that

(11) /j(:c,u,Vu) ghmmf/ j(;mumw)‘
@ Q

n—-+oo 2

Furthermore, since u,, — u in LP(2), assumption (3) imply

(12) /Qj(:c,un,Vu) —>/j(af,u,Vu),

Q
so that
hmsup/ [lj(x,un, Vun) + 1j(a:,un, Vu) — j(:x,un, M)}
n——+oo Q 2 2 2
<0.

Thus, using the convexity of j with respect to its third argument, we
have

(13)  lim i [%j(z,un,Vun) + %j(x,un,Vu)

n—-+o0o

Now, following [4], we will prove that

(14) Vu, — Vu in measure.

Let A > 0 and € > 0. We want to prove that there exists v such that
(15)  n>v = measure ({x € Q: |Vu,(x) — Vu(z)| > A\}) < 2.
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Since the sequence (uy,)nev is bounded in WyP(Q), we first remark
that there exists £ > 0 such that

measure (G,) <e, VnelN,
where
Gn = {|Vun(z)| > k} U{[Vu()] > k} U {[un(2)] > K}
We now define
K={(s.&n) € R |s| <k, [¢] <k, |n| <k, |€—n| = A}
The set K is compact and the function
L. 1 : §+n
’Y(I) — (S,Igl;)IéIC [éj(x’ S,f) + 5](1‘7 5777) - j(l’,S, T):| )

which is defined in €2, satisfies the assumptions of Lemma 5, thanks to
(5). Setting

Ly, ={|Vu,(2)| <k, [Vu(@)| <k, [un(2)] <k, [Vug(z) = Vu(z)| = A},
we note that, if z € L,,,

, I . Vu, +V
Then, we have

L. 1 . Vi, +V
/ ") £ / 5@, V) + 5 5, V) = g, )|

n Ln

Vu,, + Vu)}
2
and it now follows from (13) that | P v(z) — 0, which implies that

measure (£,) — 0 (thanks to assumption (5) and Lemma 5). Then,
there exists v € IN such that

s/ Pa’(m,umwn) 4530, V) = (0,0,
Q 2 2

n > v = measure (L,) < e.
and, for n > v,
measure ({z € Q : |Vu,(z) — Vu(z)| > A\})
< measure (G,) + measure (£,) < 2e.
So we proved (15) which gives

(16) Vu,(z) converges in measure to Vu(z).
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Now we follow the classical proof of the Lebesgue Theorem (with the
convergence in measure). Since

(17) |Vu, — Vu|P < %[j(x,un,Vun) +j(:1:,u, Vu)],
we have

20 ,
E(‘j ($7un, Vun) +j(x,u,Vu)) — |Vu, — Vul? > 0.

We can apply Fatou’s Lemma (with respect to the convergence in mea-
sure) and we obtain

2P+1 2p+1
/j(x,u,Vu) < /j(x u, Vu —hmsup/ |Vu, — VulP.
(67 Q (07 Q n—+400
This gives

limsup/ |Vu, — VulP <0,
0

n—-+0o

so that u, — u in W,?(Q), as n — 400, and concludes the proof of
Theorem 1.

REMARK 4. Ifj(x,s,f) = [£|P, the proof of Theorem 1 follows easily
from the Clarkson inequality and (13).

3. CONVERGENCE OF A SEQUENCE OF MINIMIZERS

In this section, we first give a proof of Theorem 2. It follows closely
the proof of Theorem 1. We first remark that the sequence (uy)nemn
is bounded in I/VO1 P(€)). Then, up to subsequence, u,, — u* weakly in
WyP(), as n — 400.

We now prove that u* = u (this will give in particular that the whole
sequence (Uy)nen converges to u, thanks to the uniqueness of the min-
imizer).

As in Theorem 1, the semicontinuity result gives

/j(x,Vu ) < hmlnf/ (2, Vuy,)
Q 0

n——+o0o

Furthermore, thanks to (6), one has [, fyu, = [, fu* asn — +oc0 and
then

] *) — < f ) — i
Ry e r Ty

Since u,, is the minimizer associated to f,,, one has, for all v € WO’ (Q),

(18) /Qj(:c,Vun)—/anung/Qj(x,Vv)—/anv.
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Passing to the liminf in this inequality, we obtain that u* = u (recall
that w is the minimizer of the functional J). Taking v = u in (18), we
also obtain that

(19) /Qj(x,Vun)—/anun—>/gj(x,Vu)—/ﬂfu

and then
/j(x,Vun)%/j(x,Vu).
Q Q

We now follow exactly the proof of Theorem 1. It gives that
Vu,(x) converges in measure to Vu(z),

and finally that u, — u in W,7(Q) as n — oo. This concludes the
proof of Theorem 2. Note that, in this proof, a main tool was the fact
that [, foun — [, fu*. A tool which is no longer true if Hypothesis
(6) on the sequence (fy,)nen is replaced by Hypothesis (7).

We now give the proof of Theorem 3. We begin as in the previous proof,
The sequence {u,} is bounded in W, (). Then, up to a subsequence,
we have u,, — u* weakly in W, (), as n — +00. We can also assume
that u, — w* a.e.. The new difficulty with respect to the previous
proof is that we do not have fQ fotly, — fQ fu*.

We fix h € IR" and let Tj(s) = max{min{k,s} — k}, s € IR. Using
the minimality of w,, and u,,, we get (here and in (24) we follow some
techniques of [1])

| ite.vu) s/ﬂj(a:,wun—w)) +/§2an,

and
/Qj@c,wm) g/ﬁ}j(:c,wum—w)) +/§2me.

Adding these equations, this gives

_ , .. Vu,, +Vu,
[ () o T - 2, )
[t —un |<h 2

1
<5 [ = )T = 02)
Q
Since f, — f weakly in L}(Q2) and u, — u* a.e., for all > 0 there
exists 7(d) > 0 such that n,m > v(J) implies (recall that h is fixed)

(20) /|um—un§h {%j(w,Vum)+%j(x, Vu,)—j (x, w>} <.
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Let A > 0 and € > 0. We want to prove that there exists v(e, A) such
that

(21)  m, n>v(e,\) = measure ({|Vu, — Vu,| > A}) <e
First of all, there exists £ > 0 such that
measure ({|Vu,| > k}) < ¢, measure ({|Vu,| > k}) <e,

uniformly w.r.t. n, m (thanks to the Wy(€2) bound on (u, )nen)-
We define

K={&n) e R™:[| <k [n <k, [£=nl>]},

@) = min 536, €) + 3 3G — (w557,

An,m =
{IVu,| < E}n{|Vun,| < E}0{|u,—un| < h}0{|Vu,—Vu,| > A}

Thanks to (20), one has, for n,m > v(J),

/ y(z) <
A’IL,’VV‘L

/l;Lmun|§h {%j(x,Vum) + %j(x, Vu,) —j(x, w>} <5

Now, thanks to Lemma 5, we choose ¢ such that
/ v(z) < 0 implies measure (A) < e.
A

Thus
(22) measure (A4, ,) < €if n,m > v = v(J).

Now we note that the convergence in measure of the sequence {u,}
implies that there exists 7 > 0 such that, for n,m > v,

measure {|u, — U,| > h} <e.
On the other hand we have
{|Vu, — Vuy,| > A} C
{IVu,| >k} U{|Vuy| >k} U{|u, —un| > h}U A, ,,.
Then for n,m > v = max(v, 7) one has

measure {|Vu, — Vu,| > A} < 4e.
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This gives that the sequence (Vu,)n,en converges in measure. Then,
there exists a function £(z) such that

(23) Vu,, converges in measure to &.

Since we already know that Vu, converges weakly to Vu* in LP(Q)), we
then conclude that £(z) = Vu*(x) and Vu, converges to Vu* in L7(€)
forall 1 < g <p.

It remains to show that u* = u. The minimality of u, gives for all n
and all w € W, 7(Q)

Lﬂawm—én%s[ﬁ@vw—énw

Let v € WyP(Q), Taking w = u,, — T}[u, — v] we obtain

(M)tﬂwmﬂﬁwméﬁmwﬂ@Nw+Lhﬂ%—w

Here we pass to the limit with Fatou Lemma, the weak convergence
of f, to fin L'(Q) and the convergence in measure of u,, to u*. This

gives
/ J(z, Vu*) < / j(z, Vv) —i—/ fLiu™ — ).
Ju*—v|< 14 |u*—v|< i Q

Let i — o0o. Then

Aﬂawmsﬁgmvw+4fw—ﬂ

which implies that ©* = w. Finally, Thanks to the uniqueness of the
minimizer, all the sequence u,, converges to u.

4. COUNTER EXAMPLE

We give in this section a counter example to Theorem 3 if the sequence
(fn)nemnw does not satisfy Hypothesis (8).

We take N =1, 2 =]0,1[, p = 3 and j(z, Vv) = |¢/|*>. The functional
to minimize in W, ?(Q) if defined for f € W= (Q) by

J(U):/Qj(x,VU)—<f,v>.

For any f in W~ (Q), the minimizer of .J in W, () is the function
u in WyP(Q) such that —(|u/|u/)’ = f in the sense of distribution in
(0,1).

For n € N*, we define the function u,, as follow. The function u,, is a
continuous function satisfying u,(0) = 0 and u,(1/2 4+ z) = u,(1/2 —
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x) for all z € [0,1/2]. On the interval [0,1/2] it is defined, for i €
{0,...,n—1}, by

7 1
/ 1if
() =i €l o]
1 2 1 1
W)= —lifre—+— 411

2n ' 3n’2n ' 3n ' 6n

The sequence (u, )nen+ is bounded in W, *°(Q). Tt converges weakly in
Wol’p(Q) (and even weakly in W,?(Q) for all ¢ < +00) to the function
u defined by

u(z) = g if z € [0,%],

-1 1
u(x) :_3:3 if z € [5,1].

Since w is continuous and u'(z) = 3 if 2 € (0,3) and u/(z) = —
z € (3,1), one has

d1.

(Y = 26,

We now take f, = —(|u,|ul,). We set g, = |u,|ul,. It is quite easy
to see that g, weakly converges in any L7())-space, ¢ < +o0o, to the
function g defined by

Nej i\

1 1

1 1
g(x) = ~3 if x € (5, 1).
This gives that f, — f weakly in W~ (Q) (and even weakly in
W=14(Q) for any q < +00) with

2
=30

Since —(|u'|u')" # f, this concludes our counter example.

mH

APPENDIX A

LEMMA 5. Let (X, p) be a measurable space, p a positive measure with
1(X) < +oo,

v: X — [0, +0o0]
a measurable function such that p({x € X : y(x) = 0}) = 0. Then, for
every € > 0 there exists § > 0 such that the statement

A measurable subset of X, / x)dp <o

implies pu(A) < e.
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PrROOF. For every B > 0, we have

Bul{An (B <2} = [

An{B<v(z

Bd x
: MS/AV( )
Then

1
(25) p{An(B <@ < 5 [ )

On the other hand, since the sequence {z € X : y(x) < L} is decreas-
ing, we have

(26) a0 < ) = () = 0)).

Fix € > 0. Thus, there exists m, such that

u({v(fr) < ﬂ%}) < %

Then, with B = -2

Me

Me
1 €
<= -
<3 A’y(ﬂf) +3
We choose § = B 5 to conclude. o
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