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1. INTRODUCTION 

IN THIS paper we prove the existence of solutions of nonlinear elliptic equations of the type 

U E w,‘*P(Q): A(u) + g(x, 2.4, Du) = f E L'(sz), 

where A is a Leray-Lions operator and g is a nonlinear lower order term having “natural 
growth” (of order p) with respect to ]Du]. With respect to 1~1, we do not assume any growth 
restriction, but we assume the “sign-condition” g(x, s, r)s 2 0. 

It will turn out that for a solution U, g(x, U, Du) E L’(Q), but, for a general u E W1*p(sZ), 
g(x, u, Du) can be very singular. If f E W-l*p’(Cl) the reader is referred to [l, 3, 51 for existence 
results and references. If f E L’(a) existence results have been proved in [6, 91 (if g does not 
depend on Du) and in [7] (if g has growth strictly less than p with respect to IDr.1) when A is 
linear. The case where A is nonlinear and g does not depend on DU is studied in [2]. 

The model examples of our equation are 

-div(]DU]p-2DU) + yu]uI’I~uI~ = f, Y>O 
-div(a(x)Du) + y~jDu(~ = f, Y > 0, p = 2. 

We shall prove the existence of a solution in &l*p(Q), but it should be emphasized that for 
y = 0 the existence of u in such a space cannot be expected, if p s IV. In [2] the existence of a 
solution has been proved in W,lSq(Q) v q < ((p - l)N)/(N - 1); (see also [ll]). 

2. THE MAIN RESULT 

Let 0 be a bounded open set of RN. Let 1 < p < CO be fixed and A be a nonlinear operator 
from w,‘Sp(k2) into its dual W-l*p’(Q), l/p + l/p’ = 1, defined by 

A(u) = -div(a(x, U, Du)), 

where a(x, s, <): fi x R x RN -+ RN ’ IS a Caratheodory function such that 

there exist p > 0, k E Lp(sZ), (Y > 0 such that 
‘) 

I46 s, 0 5 Pw-’ + IW’ + k(x)); 

[4x, s, 0 - 4x9 s, rl)l[< - rll > 0; VY#.)l 

4x7 s, or 2 alrIP. 1 
573 

(1) 
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Let g(x, s, <): Q x R + R” + R be a Caratheodory function such that 

g(x, s, 0s 2 0 

there exist CJ > 0, y > 0 such that Ig(x, s, 01 L yl<lp; Is/ 2 0, 

IAx, s, 01 5 ~(I~l~W + c(x)), 1 

where b is a continuous and increasing real function, c(x) E L’(a), c(x) 2 0, and 

f E L’(0). 

We consider the nonlinear elliptic problem with Dirichlet boundary conditions 

A(u) +g(x, u, Du) = f in a>‘(Q) 

u E w,t’p(Q), g(x, u, Du) E L’(Q). 1 

Our objective is to prove the following theorem. 

(2) 

(3) 

(4) 

THEOREM 1. Under the assumptions (l)-(3) there exists a solution of (4). 

Proof. Ifflies in P(Q), (4) is known to have a weak solution (see [l]). We take a sequence 
f,(f, E Lp(sZ), v E > 0) which converges to f in L’(a) with 11 f,llLI I (1 f iiLl. Define u, to be a 
solution of the equation 

A(%) + g(x, UC, Du,) = f, in a>‘(a) 

u, E W,‘,P(Q), g(x, u, , DUE) E L’(Q). 
(5) 

Multiplying (5) by Tk(u,) and using (l), (2), we get 

(6) 

where Tk(v), k E R+, is the usual truncation in W,rSp(Q). Now we shall prove that 

1 

/ 
I&v u, t %)I 5 i Ifel, for any t l R+. (7) 

I I% > I <J bcl > f 

We follow a technique of [8]. Let vi(s) be a sequence of real smooth increasing functions with 
I,V: E L”(R) and w;(O) = 0. The choice of I,v;(u,) as test function in (5) yields 

I> 

I 

> 

g(X7 uc 9 D”c)Wi(uc) 5 

I 

fc Vi t”tJ. (8) 

.n .n 

If wi(S) converges to the function w(s) defined by 

ifs? t 

if --I < s < t 

ifs 5 --I 
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we obtain the estimate (7) which implies 

515 

(9) 

Hence from (6) and (9) we get 

Thus we can extract a subsequence, still denoted by uE, with 

24 -2.4 E in W,lVP(fi)-weakly, P(Q)-strongly and a.e. (LO) 

Our first objective is to prove that 

U,’ -+ u+ in W,‘*P(fi)-strongly. (11) 

Let k be a positive constant greater than cr. We use in (5) Tk(uJ - u+)+ as a test function 
(where Tk is the truncation at kk) and we have 

” n 

(A(u,), T,Cu: - u+)+) + ! g(x, uE, Du,)T,(u: - u+)+ = ! f,T,(u; - u+)+. (12) 
.R ,fl 

Note that where G(u,f(x) - u+(x))+ > 0, one has u:(x) > 0, hence u,(x) > 0 and from (2) 

g(x, Us, Du,(x)) 2 0. Therefore from (12) we deduce 
1 

(A(u,), T,Cu: - u+)+> I ! fcTk(u,c - u+)+. 
.R 

Since u,(x) = u,‘(x) on the set (x E Q: U:(X) > u+(x)), we can also write 

i 

> 

a(x, u,,Du,+)DT,(u; - u+)+ I 
/ 

f,r,(u,’ - u+)+ 
R ,n 

which implies 3 

lim 
! c-0, n 

[a(~, U, , Du:) - a(x, u, , Du +)]DT, (u: - u +)+ = 0. 

We recall again that, where (u:(x) - u+(x))+ > 0, we have u,‘(x) = U,(X). Therefore 

[a(x, 24,) DUE+) - a(x, U,) Du+)]D(u: - UC)+ 

(13) 

(14) 
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(using (9)) 

5 c2 Ifel + 
uc > k 

k(x)@+ 1 lDu+lj := R,(k). 
< u,>k 

If k tends to +co the right-hand side of (14) tends to zero (uniformly with respect to a). From 

this observation and (13) we deduce that 

lim 
! 

[a(x, u, ) Due+) - a(x, U,) Du+)]D(u,+ - 2.4+)+ = 0. (15) 
c-0, n 

In the next step we study the behaviour of Z, := (u: - Tk(uf))-, and we follow the lines 
of [l]. 

We use as a test function in (5) 

where 

(see 141). 

u, = ~A((%-+ - Tk(U+))-) (16) 

&(s) = s exSZ, 
A = &V2 

4012 
(17) 

Note that if u,(x) # 0 then 0 I u:(x) I k. Hence U, E W,‘,P(Q) fl L”(Q) and u, is an 
admissible test function in (2.5). We deduce 

i 
4x9 u,, ~~,)Dz,~~(z;) + ! g(x, u, 7 mhk,) = 

.R .R 
I, /&4xK). I (18) 

Now we can follow the proof of [l] because the left-hand side of (18) is exactly the left-hand 
side of (12) of [l]. On the other hand since I#+,(z;) # 0, where 0 5 u:(x) 5 k, we have 6x(z,) 
bounded in L”(Q), then 

Thus passing to the limit in E, for k fixed, in (18) we have (as in [ 11, (17)) 

We can write the following equalities 

I - Mx, UC, Due+) - a(x, UC, Du+)]D(uJ - u+)- 
.R 

= 
i 

[a(x, u, ) Du:) - a(x, u,, Du+)]D(u: - u+) 
T&u+) < Ll: 5 Ii+ 

(19) 

+ ! ~:c7X(U+)[a(x,u,,Du:) - u(x,u,,Du+>]D(u: - 24’) 
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= I [4x, 2.4, , Du&+) - a(x, 24, , Du +)]D(u,+ - 2.4 ‘) 
k<u:=u,su+ 

+ - [a(& td~‘DT,(u+)) - a(& UC, Du+)]D(u; - Tk(U+))- 

+ s ~~~7~~u+~~u(x~u~~Duc+) - a(x,u,,Du+)]D(Tk(u+) - u+), (20) 

because 

lx E Q: Tk@+) < uC+ 5 u+) = (x E a: k < uE+ I u+)U(x E C2: Tk(u+) < uc+ s u+; u,’ 5 k) 

and the last set is empty. Now we study the last four integrals. 
The first can be estimated as in (14). It goes to zero as k -+ co, uniformly with respect to E. 
For the second we have the limit (19). For fixed k, the third integral converges to zero (if 

E + 0) and 

which converges to zero, for k + +a. Therefore (20) yields 

lim s [4x, uE, Du,+) - a(~, uE, Du+)]D(u,C - u+)- = 0. (21) 
&+O n 

From (15) and (21) we deduce that 

lim E_O 
i 

I2 [4x, UE,DUE+) - a(x, u,,DuC)]D(u,+ - uf) = 0. (22) 

By a variation of a result of Leray-Lions [lo] (for the proof see e.g. [4]), (22) implies 

UC+ + u+ in W,‘TP(Q)-strongly. 

Now we want to prove that 

U, + u- in Wol~p(~)-strongly. 

The proof of the convergence (24) is achieved using as test functions 
c$~((u; - Tk(u-))-) and working as in the previous steps. 

From (23) and (24) we deduce that for some subsequence 

Du, 4 Du in P(Q)-strongly 
and 

Du, -+ Du a.e. in Sz. 

Since g(x, S, {) is continuous in (s, <) we have 

g(x, UC(X), &(x)) + g(x, u(x), Du(x)) a.e. 

(23) 

(24) 

u-)’ and 

(25) 

(26) 

(27) 
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Thus in order to prove that 

g(x, 4 9 Due) + g(x, u, Du) in L’(a) 

it is sufficient to prove that, for any measurable subset E of Q, we have 

,$mO 
i 

E Ig(x, uE, DuJ = 0, uniformly in E. 

(28) 

(29) 

We can write 

.i 
kc% 4 7 %I I = 

E i 

1 
k-G 4 9 m)I + 

<En%, / 
I&, 4 9 m)I 3 

<EnX& 

where 
x; = (x E sz: lu,(x)l I m) 

Y$ = {x E M: Iu,(x)I > m). 
So, using (7), we get 

n 0 

I 
Igk u, 3 %J 25 b(m) 

! 
mGIP + c(x)) + Ifcl. 

E .E Iutl>m 

Now (lo), (25) and Vitali’s theorem yield (29) (and (28)). 
Using (lo), (25) and (28) it is easy to pass to the limit in 

to obtain 

(A(u), v> + I ‘d-c u, DUN = ! fu, (30) 
,R .Q 

for any v E W,‘pP(sZ) n L”(fA). 

3. REMARKS 

Remark 1. If f 2 0 the solution obtained in the previous section is positive (use u = -Tk(u-), 
k > 0, in (30)). 

Remark 2. If f L 0, we can use the Monotone Converge theorem (for k + +a) in 

to obtain 

(A(u), u> + 
I 

&, u, DUN = fu, 
,fi \ .n 

possibly with jn g(x, u, Du)u = jn fu = -too. 

Remark 3. Consider B = (x E lR2: 1x1 < 1 J. If the real number y belongs to [$, *), then 
the positive function u(x) = (-loglxl)y, belongs to H,(B) and -Au E L’(B), -Au 1 0, 
ulDu[’ E L’(B), but lu121Du12 $ L’(B). 
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