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1. INTRODUCTION
IN THIS paper we prove the existence of solutions of nonlinear elliptic equations of the type
ue WhP(Q): A(u) + glx, u, Du) = f e L'(Q),

where A4 is a Leray-Lions operator and g is a nonlinear lower order term having ‘‘natural
growth’’ (of order p) with respect to |Du|. With respect to |#|, we do not assume any growth
restriction, but we assume the ‘‘sign-condition’ g(x, s, £)s = 0.

It will turn out that for a solution u, g(x, u, Du) € L'(Q), but, for a general v € WP(Q),
g(x, v, Dv) can be very singular. If f € W ~17(Q) the reader is referred to [1, 3, 5] for existence
results and references. If f e L(Q) existence results have been proved in [6, 9] (if g does not
depend on Du) and in [7] (if g has growth strictly less than p with respect to |Du|) when A4 is
linear. The case where A is nonlinear and g does not depend on Du is studied in [2].

The model examples of our equation are

—div(|Du|?~2Du) + yulul’|Dul? = f, y>0
—div(a(x)Du) + yu|Du|* = f, y>0, p=2.
We shall prove the existence of a solution in W,;""?(Q), but it should be emphasized that for
y = 0 the existence of « in such a space cannot be expected, if p < N. In [2] the existence of a
solution has been proved in W, 9(Q) v g < ((p — DN)/(N — 1); (see also [11]).
2. THE MAIN RESULT

Let Q be a bounded open set of RY. Let I < p < o be fixed and A be a nonlinear operator
from W,''P(Q) into its dual W ~17(Q), 1/p + 1/p’ = 1, defined by

A) = —div(a(x, v, Dv)),
where a(x, s, £): Q@ x R x RY — RV is a Carathéodory function such that
there exist 8§ > 0, k € IP(Q), a > 0 such that
latx, s, &) < BUsP~" + (&P~ + k(o))
latx, s, &) — alx, s, I — 71 >0,  VE#n
alx, s, ) = el

(n
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Let g(x, s, £): Q x R > RY = R be a Carathéodory function such that

gx,s5,8)s =0
there exist ¢ > 0, y > 0 such that |g(x, s, &)| = y|&|?; |s| = o, )
lgx, s, O = b(IsUL” + c(x)),
where b is a continuous and increasing real function, c(x) € L'(Q), c(x) = 0, and
feL'(Q). 3)
We consider the nonlinear elliptic problem with Dirichlet boundary conditions
AW) +glx,u,Du) = f  in D'(Q) } @
ue W,""(Q),  glx,u, Du) e L'(Q).

Our objective is to prove the following theorem.
TaeoreM 1. Under the assumptions (1)-(3) there exists a solution of (4).

Proof. If f lies in L”(Q2), (4) is known to have a weak solution (see [1]). We take a sequence
f.(f, € IP(Q), ¥ & > 0) which converges to fin L'(Q) with | £,|l;» = || f]l,1. Define u, to be a
solution of the equation

A(ug) + glx, u,, Duy) = f;  in D'(Q) )
u, € W,h2(Q), g(x, u,, Du,) € L'(Q).
Multiplying (5) by 7, (u,) and using (1), (2), we get
a | (DT )l < k| £l (6
Q
where T, (v), k € R™, is the usual truncation in W,""?(Q). Now we shall prove that
\ le(x, u,, Du,)| < |f.l,  foranyreR". (N
Jugl >t Jlugl >

We follow a technique of [8]. Let w;(s) be a sequence of real smooth increasing functions with
v e L”(R) and ,(0) = 0. The choice of y;(u,) as test function in (5) yields

Jewi(up). (8)
Q

\ g(xv U, Dus)Wi(us) =
JQ

«

If w;(s) converges to the function w(s) defined by
1 ifs=t¢
w(s) = 0 if —t<s<t

-1 ifs < —t¢
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we obtain the estimate (7) which implies
p 1
|Du,|” < - FAR for ¢t = o. 9
Jug) > 1 Y Jluyl >t

Hence from (6) and (9) we get

j 1Du,l? = S D+ | Ipul
Q lugl <o lug| >0
g 1
<o+1| sl
a Jlugl >0
g 1
<2+ Dt
a y
Thus we can extract a subsequence, still denoted by u,, with
U, =~ u in W,'?(Q)-weakly, I”(Q)-strongly and a.e. (10)
Our first objective is to prove that
ul = u*  in WP(Q)-strongly. (11

Let k be a positive constant greater than g. We use in (5) T, (4, — u™)* as a test function
(where T, is the truncation at +k) and we have

<A(ue)’ T;((u: - H+)+> + “ g(X, ue’Dus)n(u: - u+)+ = [ fen(u: - u+)+' (12)
JQ JQ

Note that where T; (1 (x) — #*(x))* > 0, one has . (x) > 0, hence u,(x) > 0 and from (2)
g(x, u.(x), Du,(x)) = 0. Therefore from (12) we deduce

(A, T, (u, —u*)*)y =

S

faT;c(u: - Ll+)+.
Q

Since u,(x) = u; (x) on the set {x € Q: u}(x) > u*(x)}, we can also write

j a(x, u,, Du)DT, (u} — u™)* < ‘ ST uf — u*)*
Q J 2

which implies
lim
£—0

la(x, u,, Du) — a(x, u,, Dut)IDT, (u} — u*)* = 0. (13)
0

[y

We recall again that, where (4, (x) — u*(x))* > 0, we have 1, (x) = u,(x). Therefore

g la(x, u,, Du) — a(x, u,, Du")D(u; — u*)*
Juf-ut >k

n

=< \ {a(x, u., Du,) — a(x, u,, DuH)D(u, — u™)
u, >k

o Ue
n

< CIU | Du,|? + \ [u, | + S k(x) +
u, >k Ju. >k u, >k

Ju, >k

IDM’}

(14)
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(using (9))

= e

If k tends to +oo the right-hand side of (14) tends to zero (uniformly with respect to ). From
this observation and (13) we deduce that

lu P + } k(xyP' + |Du+|”} = R, (k).

u.>k .

| Sl +

u. >k J

u, >k u, >k

lim | [(a(x, u,, Du}) — a(x, u,, Du)D(u} — u*)* = 0. (15)

£—0 Jg

In the next step we study the behaviour of z; := (u7 — T, («"))~, and we follow the lines
of [1].
We use as a test function in (5)

v, = o, — T (u™)) (16)
where
5 b(k)?
oas) = se™, A= (17)
(see [4]).

Note that if v,(x) # 0 then 0 < . (x) < k. Hence v, € W,""(Q) N L°(Q) and v, is an
admissible test function in (2.5). We deduce

a(x, u,, Du)Dz; d\(z;) + | &(x, ug, Duoy(z;) = | fedn(z:)- (18)
JQ JQ

JQ

Now we can follow the proof of [1] because the left-hand side of (18) is exactly the left-hand
side of (12) of [1]. On the other hand since ¢,(z;) # 0, where 0 < u;(x) < k, we have ¢,(z;)
bounded in L*(Q), then

Jeon(ze) = Qfdh((u+ - T(u™)7) =0.
Q

o e

Thus passing to the limit in ¢, for k fixed, in (18) we have (as in [1], (17))

mj — la(x, u,, DuJ) = ax, u, DT, (u NID(u; — Ti(u™)™ = 0. (19)
Q

e—~0

We can write the following equalities

\ — [a(x, u,, Du)) — al(x, ug, Du D — u™)”
Ja

S la(x, u,, Du}) — a(x, u,, Du)|Du; — u*)
T(ut)y<uf <u*

+ } la(x, u,, Du}) — a(x, u,, DuH)D(u; — u™)
uf =T
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= j {a(x, u,, Du}) — a(x, u,, Du*)D(u; — u™)
k<u}=u,<u*
+ S - la(x, u,, Du}) — a(x, ug, DT (u* MDD, — T, (™)

+ - [a(x’ U D’I;c(u+)) - a(x’ ue)Du+)]D(u: - 7;((”+))_

Q
,
+ S lax, u,, Du) — a(x, u,, DuH)D(T, (u*) — u’*), 20)
u}p < Ti(uhy

because

xeQ: T w)<u <ut}=ixeQk<u =utiUxeQ:T,(u")<u su*u’ <k

and the last set is empty. Now we study the last four integrals.
The first can be estimated as in (14). It goes to zero as k — oo, uniformly with respect to ¢.
For the second we have the limit (19). For fixed k, the third integral converges to zero (if

& — 0) and
1/p
< d DT ) - u+>|p)
Q

j‘ [a(x’ ue;Du:) - a(x9 ue)Du+)]D(7;((u+) - u+)
ut < T(u*)

which converges to zero, for k = +c. Therefore (20) yields

lil'l(l)g {a(x, u,, Du}) — a(x, u,, Du HDu; — u™)” = 0. 21
€0 Jo
From (15) and (21) we deduce that
liII(l)S la(x, u., Du}) — a(x, u,, Du™)D(u; — u™) = 0. (22)
£ Q
By a variation of a result of Leray-Lions [10] (for the proof see e.g. [4]), (22) implies
ub - ut in W,""#(Q)-strongly. 23)
Now we want to prove that
u; - u” in W,"?(Q)-strongly. 24

The proof of the convergence (24) is achieved using as test functions 7 (¥, — u~)* and
o ((u; — T, (u7))7) and working as in the previous steps.
From (23) and (24) we deduce that for some subsequence

Du, — Du in IP(Q)-strongly 2%
and
Du, - Du a.c. in Q. (26)

Since g(x, s, £) is continuous in (s, £) we have

g(x, u (x), Du.(x)) = g(x, u(x), Du(x)) a.c. 7
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Thus in order to prove that
glx, u,, Du,) — g(x, u, Du) in Z{(Q) (28)

it is sufficient to prove that, for any measurable subset E of Q, we have

lim S lgCx, u., Du,)| = 0, uniformly in &. 29)
E

|E[-0
We can write

! |g(X, us,Dus)| = |g(xy ussDue)l + |g(x, ue:Dua)Iy
E JENX], JENXE,
where
X5 = {x e Q: |u, ()| = m)
Y = {x € Q: |u,(x)| > mj.
So, using (7), we get
j le(x, u,, Duy)| < b(m) s (1Du,|” + c(x)) + j FAR
E JE |ug| >m
Now (10), (25) and Vitali’s theorem yield (29) (and (28)).
Using (10), (25) and (28) it is easy to pass to the limit in
(Auy), vy + j glx, ug, Dugv = | fu
Q JQ
to obtain R
(A(u), vy +  glx,u, Du)v = | fv, (30)
JO JQ
for any v € Wy''"P(Q) N L™(Q).
3. REMARKS
Remark 1. If f = 0 the solution obtained in the previous section is positive (use v = =T, (u"),

k > 0, in (30)).

Remark 2. If f = 0, we can use the Monotone Converge theorem (for k& — +o0) in

(A), T (u)) +

ST (W)
Q

g(x, u, DT, (v) =
Ja

«

to obtain

(A(u), uy + \ gx,u,Duyu = | fu,

o0

J

possibly with {q g(x, u, Du)u = {o fu = +oo.

Remark 3. Consider B = {x € R% |x| < 1}. If the real number y belongs to [f,3), then
the positive function u(x) = (—log|x|)?, belongs to Hy(B) and —Au e L'(B), ~Au =0,
u|Dul? e L'(B), but |u|?|Du|* ¢ L'(B).
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