STRONGLY NONLINEAR ELLIPTIC EQUATIONS HAVING NATURAL GROWTH TERMS AND L^{1} DATA

L. Boccardo \dagger and T. Gallouet \ddagger
\dagger Dipartimento di Matematica, Università di Roma I, Piazza A. Moro, 00185 Roma, Italy and \ddagger Département de Mathématiques, Université de Savoie, BP 1104, 73011 Chambery Cedex, France

(Received 1 April 1990; received for publication 12 September 1991)
Key words and phrase: Nonlinear PDE in L^{1}.

1. INTRODUCTION

In turs paper we prove the existence of solutions of nonlinear elliptic equations of the type

$$
u \in W_{0}^{1, p}(\Omega): A(u)+g(x, u, D u)=f \in L^{1}(\Omega)
$$

where A is a Leray-Lions operator and g is a nonlinear lower order term having "natural growth'' (of order p) with respect to $|D u|$. With respect to $|u|$, we do not assume any growth restriction, but we assume the "sign-condition" $g(x, s, \xi) s \geq 0$.

It will turn out that for a solution $u, g(x, u, D u) \in L^{1}(\Omega)$, but, for a general $v \in W^{1, p}(\Omega)$, $g(x, v, D v)$ can be very singular. If $f \in W^{-1, p^{\prime}}(\Omega)$ the reader is referred to [1,3,5] for existence results and references. If $f \in L^{1}(\Omega)$ existence results have been proved in [6, 9] (if g does not depend on $D u$) and in [7] (if g has growth strictly less than p with respect to $|D u|$) when A is linear. The case where A is nonlinear and g does not depend on $D u$ is studied in [2].

The model examples of our equation are

$$
\begin{aligned}
-\operatorname{div}\left(|D u|^{p-2} D u\right)+\gamma u|u|^{r}|D u|^{p}=f, & & \gamma>0 \\
-\operatorname{div}(a(x) D u)+\gamma u|D u|^{2}=f, & & \gamma>0, \quad p=2 .
\end{aligned}
$$

We shall prove the existence of a solution in $W_{0}^{1, p}(\Omega)$, but it should be emphasized that for $\gamma=0$ the existence of u in such a space cannot be expected, if $p \leq N$. In [2] the existence of a solution has been proved in $W_{0}^{1, q}(\Omega) \forall q<((p-1) N) /(N-1)$; (see also [11]).

2. THE MAIN RESULT

Let Ω be a bounded open set of \mathbb{R}^{N}. Let $1<p<\infty$ be fixed and A be a nonlinear operator from $W_{0}^{1, p}(\Omega)$ into its dual $W^{-1, p^{\prime}}(\Omega), 1 / p+1 / p^{\prime}=1$, defined by

$$
A(v)=-\operatorname{div}(a(x, v, D v))
$$

where $a(x, s, \xi): \Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$ is a Carathéodory function such that

$$
\left.\begin{array}{l}
\text { there exist } \beta>0, k \in L^{p^{\prime}}(\Omega), \alpha>0 \text { such that } \tag{1}\\
|a(x, s, \xi)| \leq \beta\left(|s|^{p-1}+|\xi|^{p-1}+k(x)\right) ; \\
{[a(x, s, \xi)-a(x, s, \eta)][\xi-\eta]>0 ; \quad \forall \xi \neq \eta} \\
a(x, s, \xi) \xi \geq \alpha|\xi|^{p} .
\end{array}\right\}
$$

Let $g(x, s, \xi): \Omega \times \mathbb{R} \rightarrow \mathbb{R}^{N} \rightarrow \mathbb{R}$ be a Carathéodory function such that

$$
\left.\begin{array}{l}
g(x, s, \xi) s \geq 0 \tag{2}\\
\text { there exist } \sigma>0, \gamma>0 \text { such that }|g(x, s, \xi)| \geq \gamma|\xi|^{p} ;|s| \geq \sigma \\
|g(x, s, \xi)| \leq b(|s|)\left(|\xi|^{p}+c(x)\right)
\end{array}\right\}
$$

where b is a continuous and increasing real function, $c(x) \in L^{1}(\Omega), c(x) \geq 0$, and

$$
\begin{equation*}
f \in L^{1}(\Omega) \tag{3}
\end{equation*}
$$

We consider the nonlinear elliptic problem with Dirichlet boundary conditions

$$
\left.\begin{array}{l}
A(u)+g(x, u, D u)=f \quad \text { in } D^{\prime}(\Omega) \tag{4}\\
u \in W_{0}^{1, p}(\Omega), \quad g(x, u, D u) \in L^{1}(\Omega) .
\end{array}\right\}
$$

Our objective is to prove the following theorem.

Theorem 1. Under the assumptions (1)-(3) there exists a solution of (4).

Proof. If f lies in $L^{p^{\prime}}(\Omega)$, (4) is known to have a weak solution (see [1]). We take a sequence $f_{\varepsilon}\left(f_{\varepsilon} \in L^{p^{\prime}}(\Omega), \forall \varepsilon>0\right)$ which converges to f in $L^{1}(\Omega)$ with $\left\|f_{\varepsilon}\right\|_{L^{1}} \leq\|f\|_{L^{1}}$. Define u_{ε} to be a solution of the equation

$$
\left.\begin{array}{l}
A\left(u_{\varepsilon}\right)+g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)=f_{\varepsilon} \quad \text { in } D^{\prime}(\Omega) \tag{5}\\
u_{\varepsilon} \in W_{0}^{1, p}(\Omega), \quad g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) \in L^{1}(\Omega) .
\end{array}\right\}
$$

Multiplying (5) by $T_{k}\left(u_{\varepsilon}\right)$ and using (1), (2), we get

$$
\begin{equation*}
\alpha \int_{\Omega}\left|D T_{k}\left(u_{\varepsilon}\right)\right|^{p} \leq k\left\|f_{\varepsilon}\right\|_{L^{1}}, \tag{6}
\end{equation*}
$$

where $T_{k}(v), k \in \mathbb{R}^{+}$, is the usual truncation in $W_{0}^{1, p}(\Omega)$. Now we shall prove that

$$
\begin{equation*}
\int_{\left|u_{\varepsilon}\right|>t}\left|g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)\right| \leq \int_{\left|u_{\varepsilon}\right|>t}\left|f_{\varepsilon}\right|, \quad \text { for any } t \in \mathbb{R}^{+} . \tag{7}
\end{equation*}
$$

We follow a technique of [8]. Let $\psi_{i}(s)$ be a sequence of real smooth increasing functions with $\psi_{i}^{\prime} \in L^{\infty}(\mathbb{R})$ and $\psi_{i}(0)=0$. The choice of $\psi_{i}\left(u_{\varepsilon}\right)$ as test function in (5) yields

$$
\begin{equation*}
\int_{\Omega} g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) \psi_{i}\left(u_{\varepsilon}\right) \leq \int_{\Omega} f_{\varepsilon} \psi_{i}\left(u_{\varepsilon}\right) \tag{8}
\end{equation*}
$$

If $\psi_{i}(s)$ converges to the function $\psi(s)$ defined by

$$
\psi(s)=\left\{\begin{aligned}
1 & \text { if } s \geq t \\
0 & \text { if }-t<s<t \\
-1 & \text { if } s \leq-t
\end{aligned}\right.
$$

we obtain the estimate (7) which implies

$$
\begin{equation*}
\int_{\left|u_{\varepsilon}\right|>t}\left|D u_{\varepsilon}\right|^{p} \leq \frac{1}{\gamma} \int_{\left|u_{\varepsilon}\right|>t}\left|f_{\varepsilon}\right|, \quad \text { for } t \geq \sigma \tag{9}
\end{equation*}
$$

Hence from (6) and (9) we get

$$
\begin{aligned}
\int_{\Omega}\left|D u_{\varepsilon}\right|^{p} & =\int_{\left|u_{\varepsilon}\right| \leq \sigma}\left|D u_{\varepsilon}\right|^{p}+\int_{\left|u_{\varepsilon}\right|>\sigma}\left|D u_{\varepsilon}\right|^{p} \\
& \leq \frac{\sigma}{\alpha}\left\|f_{\varepsilon}\right\|_{L^{1}}+\frac{1}{\gamma} \int_{\left|u_{s}\right|>\sigma}\left|f_{\varepsilon}\right| \\
& \leq\left(\frac{\sigma}{\alpha}+\frac{1}{\gamma}\right)\|f\|_{L^{1}}
\end{aligned}
$$

Thus we can extract a subsequence, still denoted by u_{ε}, with

$$
\begin{equation*}
u_{\varepsilon} \rightharpoonup u \quad \text { in } W_{0}^{1, p}(\Omega) \text {-weakly, } L^{p}(\Omega) \text {-strongly and a.e. } \tag{10}
\end{equation*}
$$

Our first objective is to prove that

$$
\begin{equation*}
u_{\varepsilon}^{+} \rightarrow u^{+} \quad \text { in } W_{0}^{1, p}(\Omega) \text {-strongly } \tag{11}
\end{equation*}
$$

Let k be a positive constant greater than σ. We use in (5) $T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}$as a test function (where T_{k} is the truncation at $\pm k$) and we have

$$
\begin{equation*}
\left\langle\Lambda\left(u_{\varepsilon}\right), T_{k}\left(u_{\varepsilon}^{+} \quad u^{+}\right)^{+}\right\rangle+\int_{\Omega} g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}=\int_{\Omega} f_{\varepsilon} T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+} . \tag{12}
\end{equation*}
$$

Note that where $T_{k}\left(u_{\varepsilon}^{+}(x)-u^{+}(x)\right)^{+}>0$, one has $u_{\varepsilon}^{+}(x)>0$, hence $u_{\varepsilon}(x)>0$ and from (2) $g\left(x, u_{\varepsilon}(x), D u_{\varepsilon}(x)\right) \geq 0$. Therefore from (12) we deduce

$$
\left\langle A\left(u_{\varepsilon}\right), T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}\right\rangle \leq \int_{\Omega} f_{\varepsilon} T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}
$$

Since $u_{\varepsilon}(x)=u_{\varepsilon}^{+}(x)$ on the set $\left\{x \in \Omega: u_{\varepsilon}^{+}(x)>u^{+}(x)\right\}$, we can also write

$$
\int_{\Omega} a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right) D T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+} \leq \int_{\Omega} f_{\varepsilon} T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}
$$

which implies

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D T_{k}\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}=0 \tag{13}
\end{equation*}
$$

We recall again that, where $\left(u_{\varepsilon}^{+}(x)-u^{+}(x)\right)^{+}>0$, we have $u_{\varepsilon}^{+}(x)=u_{\varepsilon}(x)$. Therefore

$$
\begin{align*}
& \int_{u_{\varepsilon}^{+}-u^{+}>k}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right)^{+} \\
& \quad \leq \int_{u_{r}>k}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}-u^{+}\right) \\
& \quad \leq c_{1}\left\{\int_{u_{\varepsilon}>k}\left|D u_{\varepsilon}\right|^{p}+\int_{u_{\varepsilon}>k}\left|u_{\varepsilon}\right|^{p}+\int_{u_{\varepsilon}>k} k(x)^{p^{\prime}}+\int_{u_{\varepsilon}>k}\left|D u^{+}\right|^{p}\right\} \tag{14}
\end{align*}
$$

(using (9))

$$
\leq c_{2}\left\{\int_{u_{\varepsilon}>k}\left|f_{\varepsilon}\right|+\int_{u_{c}>k}\left|u_{\varepsilon}\right|^{p}+\int_{u_{c}>k} k(x)^{p^{\prime}}+\int_{u_{c}>k}\left|D u^{+}\right|^{p}\right\}:=R_{\varepsilon}(k)
$$

If k tends to $+\infty$ the right-hand side of (14) tends to zero (uniformly with respect to ε). From this observation and (13) we deduce that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right)^{+}=0 \tag{15}
\end{equation*}
$$

In the next step we study the behaviour of $z_{\varepsilon}^{-}:=\left(u_{\varepsilon}^{+}-T_{k}\left(u^{+}\right)\right)^{-}$, and we follow the lines of [1].

We use as a test function in (5)

$$
\begin{equation*}
v_{\varepsilon}=\phi_{\lambda}\left(\left(u_{\varepsilon}^{+}-T_{k}\left(u^{+}\right)\right)^{-}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{\lambda}(s)=s \mathrm{e}^{\lambda s^{2}}, \quad \lambda=\frac{b(k)^{2}}{4 \alpha^{2}} \tag{17}
\end{equation*}
$$

(see [4]).
Note that if $v_{\varepsilon}(x) \neq 0$ then $0 \leq u_{\varepsilon}^{+}(x) \leq k$. Hence $v_{\varepsilon} \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ and v_{ε} is an admissible test function in (2.5). We deduce

$$
\begin{equation*}
\int_{\Omega} a\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) D z_{\varepsilon}^{-} \phi_{\lambda}^{\prime}\left(z_{\varepsilon}^{-}\right)+\int_{\Omega} g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) \phi_{\lambda}\left(z_{\varepsilon}^{-}\right)=\int_{\Omega} f_{\varepsilon} \phi_{\lambda}\left(z_{\varepsilon}^{-}\right) \tag{18}
\end{equation*}
$$

Now we can follow the proof of [1] because the left-hand side of (18) is exactly the left-hand side of (12) of [1]. On the other hand since $\phi_{\lambda}\left(z_{\varepsilon}^{-}\right) \neq 0$, where $0 \leq u_{\varepsilon}^{+}(x) \leq k$, we have $\phi_{\lambda}\left(z_{\varepsilon}^{-}\right)$ bounded in $L^{\infty}(\Omega)$, then

$$
\int_{\Omega} f_{\varepsilon} \phi_{\lambda}\left(z_{\varepsilon}^{-}\right) \rightarrow \int_{\Omega} f_{\lambda}\left(\left(u^{+}-T_{k}\left(u^{+}\right)\right)^{-}\right) \equiv 0
$$

Thus passing to the limit in ε, for k fixed, in (18) we have (as in [1], (17))

$$
\begin{equation*}
\varlimsup_{\varepsilon \rightarrow 0} \int_{\Omega}-\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D T_{k}\left(u^{+}\right)\right)\right] D\left(u_{\varepsilon}^{+}-T_{k}\left(u^{+}\right)\right)^{-} \leq 0 \tag{19}
\end{equation*}
$$

We can write the following equalities

$$
\begin{aligned}
\int_{\Omega}- & {\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right)^{-} } \\
= & \int_{T_{k}\left(u^{+}\right)<u_{\varepsilon}^{+} \leq u^{+}}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right) \\
& +\int_{u_{\varepsilon}^{+} \leq T_{k}\left(u^{+}\right)}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right)
\end{aligned}
$$

$$
\begin{align*}
= & \int_{k<u_{\varepsilon}^{+}=u_{\varepsilon} \leq u^{+}}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right) \\
& +\int_{\Omega}-\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D T_{k}\left(u^{+}\right)\right)\right] D\left(u_{\varepsilon}^{+}-T_{k}\left(u^{+}\right)\right) \\
& +\int_{\Omega}-\left[a\left(x, u_{\varepsilon}, D T_{k}\left(u^{+}\right)\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-T_{k}\left(u^{+}\right)\right)^{-} \\
& +\int_{u_{\varepsilon}^{+} \leq T_{k}\left(u^{+}\right)}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(T_{k}\left(u^{+}\right)-u^{+}\right) \tag{20}
\end{align*}
$$

because

$$
\left\{x \in \Omega: T_{k}\left(u^{+}\right)<u_{\varepsilon}^{+} \leq u^{+}\right\}=\left\{x \in \Omega: k<u_{\varepsilon}^{+} \leq u^{+}\right\} U\left\{x \in \Omega: T_{k}\left(u^{+}\right)<u_{\varepsilon}^{+} \leq u^{+} ; u_{\varepsilon}^{+} \leq k\right\}
$$

and the last set is empty. Now we study the last four integrals.
The first can be estimated as in (14). It goes to zero as $k \rightarrow \infty$, uniformly with respect to ε.
For the second we have the limit (19). For fixed k, the third integral converges to zero (if $\varepsilon \rightarrow 0$) and

$$
\left|\int_{u_{\varepsilon}^{+} \leq T_{k}\left(u^{+}\right)}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(T_{k}\left(u^{+}\right)-u^{+}\right)\right| \leq c_{3}\left(\int_{\Omega}\left|D\left(T_{k}\left(u^{+}\right)-u^{+}\right)\right|^{p}\right)^{1 / p}
$$

which converges to zero, for $k \rightarrow+\infty$. Therefore (20) yields

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right)^{-}=0 . \tag{21}
\end{equation*}
$$

From (15) and (21) we deduce that

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \int_{\Omega}\left[a\left(x, u_{\varepsilon}, D u_{\varepsilon}^{+}\right)-a\left(x, u_{\varepsilon}, D u^{+}\right)\right] D\left(u_{\varepsilon}^{+}-u^{+}\right)=0 \tag{22}
\end{equation*}
$$

By a variation of a result of Leray-Lions [10] (for the proof see e.g. [4]), (22) implies

$$
\begin{equation*}
u_{\varepsilon}^{+} \rightarrow u^{+} \quad \text { in } W_{0}^{1, p}(\Omega) \text {-strongly. } \tag{23}
\end{equation*}
$$

Now we want to prove that

$$
\begin{equation*}
u_{\varepsilon}^{-} \rightarrow u^{-} \quad \text { in } W_{0}^{1, p}(\Omega) \text {-strongly. } \tag{24}
\end{equation*}
$$

The proof of the convergence (24) is achieved using as test functions $T_{k}\left(u_{\varepsilon}^{-}-u^{-}\right)^{+}$and $\phi_{\lambda}\left(\left(u_{\varepsilon}^{-}-T_{k}\left(u^{-}\right)\right)^{-}\right)$and working as in the previous steps.

From (23) and (24) we deduce that for some subsequence

$$
\begin{equation*}
D u_{\varepsilon} \rightarrow D u \quad \text { in } L^{p}(\Omega) \text {-strongly } \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
D u_{\varepsilon} \rightarrow D u \quad \text { a.e. in } \Omega . \tag{26}
\end{equation*}
$$

Since $g(x, s, \xi)$ is continuous in (s, ξ) we have

$$
\begin{equation*}
g\left(x, u_{\varepsilon}(x), D u_{\varepsilon}(x)\right) \rightarrow g(x, u(x), D u(x)) \quad \text { a.e. } \tag{27}
\end{equation*}
$$

Thus in order to prove that

$$
\begin{equation*}
g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) \rightarrow g(x, u, D u) \quad \text { in } L^{1}(\Omega) \tag{28}
\end{equation*}
$$

it is sufficient to prove that, for any measurable subset E of Ω, we have

$$
\begin{equation*}
\lim _{|E| \rightarrow 0} \int_{E}\left|g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)\right|=0, \quad \text { uniformly in } \varepsilon \tag{29}
\end{equation*}
$$

We can write

$$
\int_{E}\left|g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)\right|=\int_{E \cap X_{m}^{\varepsilon}}\left|g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)\right|+\int_{E \cap X_{m}^{\varepsilon}}\left|g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)\right|,
$$

where

$$
\begin{aligned}
X_{m}^{\varepsilon} & =\left\{x \in \Omega:\left|u_{\varepsilon}(x)\right| \leq m\right\} \\
Y_{m}^{\varepsilon} & =\left\{x \in \Omega:\left|u_{\varepsilon}(x)\right|>m\right\} .
\end{aligned}
$$

So, using (7), we get

$$
\int_{E}\left|g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right)\right| \leq b(m) \int_{E}\left(\left|D u_{\varepsilon}\right|^{p}+c(x)\right)+\int_{\left|u_{\varepsilon}\right|>m}\left|f_{\varepsilon}\right|
$$

Now (10), (25) and Vitali's theorem yield (29) (and (28)).
Using (10), (25) and (28) it is easy to pass to the limit in

$$
\left\langle A\left(u_{\varepsilon}\right), v\right\rangle+\int_{\Omega} g\left(x, u_{\varepsilon}, D u_{\varepsilon}\right) v=\int_{\Omega} f v
$$

to obtain

$$
\begin{equation*}
\langle A(u), v\rangle+\int_{\Omega} g(x, u, D u) v=\int_{\Omega} f v \tag{30}
\end{equation*}
$$

for any $v \in W_{0}^{1, p}(\Omega) \cap L^{\infty}(\Omega)$.

3. REMARKS

Remark 1. If $f \geq 0$ the solution obtained in the previous section is positive (use $v=-T_{k}\left(u^{-}\right)$, $k>0$, in (30)).

Remark 2. If $f \geq 0$, we can use the Monotone Converge theorem (for $k \rightarrow+\infty$) in

$$
\left\langle A(u), T_{k}(u)\right\rangle+\int_{\Omega} g(x, u, D u) T_{k}(u)=\int_{\Omega} f T_{k}(u)
$$

to obtain

$$
\langle A(u), u\rangle+\int_{\Omega} g(x, u, D u) u=\int_{\Omega} f u,
$$

possibly with $\int_{\Omega} g(x, u, D u) u=\int_{\Omega} f u=+\infty$.
Remark 3. Consider $B=\left\{x \in \mathbb{R}^{2}:|x|<1\right\}$. If the real number γ belongs to $\left[\frac{1}{4}, \frac{1}{3}\right)$, then the positive function $u(x)=(-\log |x|)^{\gamma}$, belongs to $H_{0}^{1}(B)$ and $-\Delta u \in L^{1}(B),-\Delta u \geq 0$, $u|D u|^{2} \in I^{1}(B)$, but $|u|^{2}|D u|^{2} \notin L^{1}(B)$.

Acknowledgement-This work has been partially supported by MPI $(40 \%, 60 \%)$ CNR (IAC, GNAFA) and Université de Savoie.

REFERENCES

1. Bensoussan A., Boccardo L. \& Murat F., On a nonlinear P.D.E. having natural growth terms and unbounded solutions, Ann. Inst. H. Poincuré Analyse non Linéaire 5, 347-364 (1988).
2. Boccardo L. \& Gallouet T., Nonlinear elliptic and parabolic equations involving measure data, J. funct. Analysis 87, 149-169 (1989).
3. Boccardo L., Murat F. \& Puel J. P., Existence de solutions non bornées pour certaines equations quasi-linéaires, Portugaliae Math. 41, 507-534 (1982).
4. Boccardo L., Murat F. \& Puel J. P., Existence of bounded solutions for nonlinear elliptic unilateral problems, Annali Mat. pura appl. 152, 183-196 (1988).
5. Brezis H. \& Browder F. E., Some properties of higher order Sobolev spaces, J. Math. pures appl. 61, 245-259 (1982).
6. Brezis H. \& Strauss W., Semilinear elliptic equations in L', J. math. Soc. Japan 25, 565-590 (1973).
7. Gallouet T., Equations elliptiques semilinéaires avec, pour la non linéarité, une condition de sigıe et une dépendence sous-quadratique par rapport au gradient, Ann. Fac. Sci. Toulouse 2, 161-169 (1988).
8. Gallouet T. \& Morel J. M., Resolution of a semilinear equation in L^{1}, Proc. R. Soc. Edinb. 96, 275-288 (1984).
9. Gallouet T. \& Morel J. M., On some semilinear problems in L^{1}, Boll. Un. mat. Ital. 4, 121-131 (1985).
10. Leray J. \& Lions J. L., Quelques resultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. 93, 97-107 (1965).
11. Stampacchia G., Le problème de Dirichlet pour les equations elliptiques du second ordre à coefficients discontinus, Anns Inst. Fourier Univ. Grenoble 15, 189-258 (1965).
