appear in Ap-

ationary semi-

L, 18:861-872,

ns. Springer,

15 in semicon-

devices. Boole

srmanium and

s with electro-

L BOCCARDO, T GALLOUET AND F MURAT
A unified presentation of two existence
results for problems with natural growth

1. Introduction.

In this paper we prove the existence of 4 solution for the following problem

- diva(z, u, Du) + 9(z,u,Du) = f in 2,
u€WyP(Q), g(z,u, Du) € L'(f),

where —div a(z, u, Du) is a Leray-Lions operator from Wﬂl"’{ﬂ} into W=1# () and
9(z,u,Du) is a nonlinearity with natura] g[';::uwth (lg(x, s,8)| < b(ls)) (e(z) + [£]7))
which satisfies the sign condition g(r, 8,£)8 > 0. The right hand side f is assumed
to belong either to 1W—1.#' (f2) or to LY(0) : in the latest case we also assume that
|l9(z, 5,&)| > ~J¢|? for Is| sufficiently large. This result unifies both the statements
and the proofs of resylts previously obtained in [BMP1], [BBM], [G], [D] and [BG2].
We also prove that there exists a nonnegative solution of the above problem when
f and g(z, s, £) are nonnegative.

2. Setting of the problem and main result,

Let 22 be a bounded domain in RV and P, P’ be real numbers such that

1<p, p < +oc, I/p+1/p =1.

Let A be a nonlinear operator from Wy"(9) into its dual defined by

A(v) = ~div(a(z, v, Dv))




i
|

where a(z,5,£) : 2 x R x RY — RV is a Caratheodory function satisfying the

following conditions for almost every £ € ) and for all s € R, €,£* e RY

la(z, 5, )| < Blk(z) + |s|”~ + [P~ (2.1)
la(x,s,&) — a(z,8,£")]€ - £°] >0 i€ #E° (2.2)
a(z, s,€)€ = alél” (2.3)

where a and 3 are strictly positive constants and k(z) is a given nonnegative
function in L"'{H}. Under these hypotheses, A is a bounded, continuous, coercive,
pseudomonotone operator of Leray-Lions type from Wﬁ}"'[ﬂ) into its dual.

Furthermore let g(z, s,£) : 2 x R x BY — R be a Caratheodory function such
that for almost every = € 1 and for all s € R, & € RY

9(z,8,€)s 20 (2.4)

lg(x, 5, )| < blls|)(c(z) + |£]7) (2.5)

where b : R — R is a continuous and nondecreasing function and e(z) is a given
nonnegative function in L'(0).
Finally we assume one of the following two assumptions:
either
fFe Wb () (2.6)
or
fe LY Q)
and there exists e >0 and~v >0 (2.7)
such that |g(z, 5,£)| = ¥|€]|” when |s| > 0.
We consider the following nonlinear elliptic problem with Dirichlet boundary
condition

{ Alu) + glz,u, Du) = f in D'(01)
(2.8)

u€ WyP(), glz,u,Du) e L'(Q)
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We shall prove the following existence theorem:

Theorem 1. Under the assumptions (2.1)-(2.5) and either (2.6) or (2.7), there
exists at least one solution of (2.8).

The above Theorem unifies in the same statement as well as by the same proof
the two results of [BBM], [BMP1] and of [BG2], which are respectively concerned
with right hand sides in W~=1%(Q) (hypothesis (2.6)) and in L'(Q) (hypothesis
(2.7).

Note that the solution of (2.8) belongs to W,'P(Q) even in the case where
f € L'(£2). This seems to be strange since for f in L'(Q2) the solution u of

Alu)=f inf), u=0 ondN

is known to belong only to Wy'*(2) for all g < N(p—1)/(N — 1) (cf. [BG1]), but
this is due to the second part of hypothesis (2.7).

An example where hypotheses (2.4), (2.5) and where either (2.6) or (2.7) are
satisfied is the case where

g(z, 5,€) = d(s)|€]?

withd : R — R,d(s)s > 0 and (if (2.7) is required to hold) |d(s)| > o when |s]| > 7.

Under assumption (2.6) it is also true that ug(z,u, Du) belongs to L1(0),
which in contrast is in general false (¢f. Remark 3 of [BG2]) if we assume hypot hesis
(2.7).

The proof of Theorem 1 is given in Section 3. It consists in the following
steps. We first define approximate equations. We then prove an a priori estimate
in Wnl 'P(€2) for the solutions u. of these approximate equations. Finally using a
proof somewhat similar to the proof of [BM] and [LM] we prove (this is the main
step) that the truncations Ty (u.) are relatively compact in the strong topology of
W;,'P(£2), a result which allows us to pass to the limit and to obtain the existence
result.

In Section 4 we consider the case where f > 0 and remark that in this case

there exists a nonnegative solution u whenever glz,s,6) = 0.
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3. Proof of Theorem 1.
3.1. Approximation.

In order to prove Theorem 1, we consider the sequence of approximate equations

Alug) + gel(z, ue, Due) = f.  in D(5D)
, (3.1)
ue € Wy'P(01)
where
QE(I, 3+ E'} i F(z! S:IE} {3-21

1+ E|§|‘{I1 &, E}l

and where f, is a sequence of smooth functions which converges strongly to f in
W_l'pr(ﬂ:] (if we assume (2.6)) or in L'(Q2) (if we assume (2.7)). Note that

9e(2,8,£)8 2 0, |9e(x,5,6)| < lg(z,5,€)| and |g.(z,s,8)| < 1/e.

Since g, is bounded for any fixed £ > 0, there exists at least one solution e

of (3.1) (cf. [LL], [L]), and u, belongs to L>=(Q) (cf. [B]).

3.2. A priori estimates.

If we assume (2.6), the use in (3.1) of the test function u, yields (see [BBM] if
necessary)

"uillwn'-”[n] < Cy (3.3)

f UeGe (T, Ue, Du,) < Cs. (3.4)
0

If we assume (2.7), the use in (3.1) of the test function Ti(ue) (where Ty (v),
k € R*, is the usual truncation in W'(£))) yields for any k > 0 (see [BG2| if
necessary)

/f; | DT (ue)|P < Cak (3.5)

k 19¢ (2, e, Dug)| < fﬂ_ 71T (u)] < Cak (36)

1“:':—"-’:
which combined with (3.5) and the second part of hypothesis (2.7) yields (3.3)
again.
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2.7) yields (3.3)

Therefore there exist u € W,:}“’ (£2) and a subsequence (still denoted by &) such
that

ue — u weakly in Wy ?(Q2) (3.7)

U — u a.e. (3.8)

3.3. Strong convergence of Ti(u.).

We already know that for any fixed k € R+
Ti(ue) — Te(u) weakly in W, (). (3.9)

We shall prove that this convergence is actually strong. This is the most original
part of the present paper.
We shall use in (3.1) the test function

Ve = pf2)

where

(3.10)

(The use of the test function @(u®) is one of the main tools in the existence proof
of [BMP2].) It is easy to see that when A > (b(k)/2a)? the following inequality

&(s) - 2 (s)] >

(3.11)
¥

bl |

holds for all s € R.
Since v, converges to zero weakly in W&'p(ﬂ} and weakly + in L*°(£2) we have

< F oy i) (3.12)

if we assume (2.6), and

[ feve = 0 (3.13)
0
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if we assume (2.7). Thus in both cases we get
< Alug),ve > +f ge(x, Ue, Due)ve — 0. (3.14)
1

From now on we denote by w(£),wa(g), ... various sequences of real numbers
which converge to zero when £ tends to zero. Since ge(x, ue, Dug)u, = 0 on the
subset {z € 01 : |u.(z)| = k} we deduce from (3.14) that

< Alug), ve > +f ge (T, g, Dug)ve < wy€). (3.15)

{luel=k}
We now study the terms in the left hand side of (3.15). We have

[ < A(u),ve >

=La(zmhﬂu;)l}[n{uc]—Tk{ﬂ}}‘ﬁﬁzﬂ
- fn (@, T (ue), DTe(ue)) D(Ti(ue) — Te(w))o'(ze)
+f a(z, k,0) DTk (u)g' (k — Ti(u))
(ue>k)

+ f alz, —k,0) DTk (u)p'(—k — Ti(u))
{ue<—k}

4
—f alz, ue, Due ) DT (u)'(z:)
{|ue| =k}
. [ﬂ (a(z, Ti(ue), DT (ue)) — a(, Ti(te), DTe(w))) D(Th(ue) — T ())¢'(2°)
4 fn a(, T (ue), DTe(u)) D(Tu(ute) — Tie(w)) (2°) + wale)
= fn (=, Ti(ue), DTk(us)) — alz, Ti(te), DT ()] D(Th (ue) — Ta()) ()
L + wale).
(3.16)
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(3.14)

numbers
0 on the

(3.15)

(u))¢'(2°)

(u))e'(2°)

(3.16)

On the other hand

i
|[ ﬂs[I,umDHs)Usl
{lue | <k}

< f b(k)(e(z) + [ Dugl?) [vel
{lue| <k}

- el bh) fn DTk ()P el

(3.17)
<@ + 22 [ a(a, Tuuwe), DTetue) DTie) e
= 28 [ fa(e, Tu(ue), DTu(ue)) - al, Tiloe), DTk (w)
a Ja
“ D(Ti(ug) — DT () vl +ws(e).
Combining (3.15), (3.16) and (3.17) yields
[ o€z, Tu(ue), DTu(ue))-alz, Telwe), DT () DlTelue) ~ Tiw)
0 (3.18)

(¢/(20) ~ 22 p(z)]) < wele).

Recalling inequality (3.11) we have

{U = L[ﬂl{LTk{ﬂsJ: DT (ue)) = alz, Ti(ue), DTi(u))] D(Tie(ue) — Ti(u))

< MEEE]I — (0.
(3.19)
Lemma 5 of [BMP2] or Lemma S of [B’] implies
Ti(ue) — Tk(u) strongly in WyP(€2). (3.20)
3.4. Passing to the limit.
The strong convergence (3.20) implies that for some subsequence
Dy, — Du  a.c. (3.21)
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which yields, since a(z, u,, Du,) is bounded in (L7 (2))V
a(z,ug, Du,) — a(zx,u, Du) weakly in (L¥ (22))" (3.22)

as well as

9e(T, ue, Due) — g(z,u, Du) ae. (3.23)

We now use the classical trick in order to prove that g, (z, ue, Du,) is uniformly

equiintegrable. For any measurable subset E of ! and for any m € Rt we have

i
[ locta,ue, Duol = [ 195, . n)|
E Erif|ue | <m)

+f |ge (2, ue, Du, )|
EN{|ug|>m}

< f b(m)(c(x) + | DT (u:)|P)
En{|ug|<m}

2 j’ I9elx, ue, Dug)|.
\ En{lug|>m}

For fixed m the first integral of the right hand side of (3.24) is smaller that
Jg b(m)(e{z) + | DTy (ue)|P) and is thus small uniformly in € when the measure of
E is small (recall that DTy, (u.) converges strongly in (LP(f2))V).

We now discuss the behaviour of the second integral of the right hand side
of (3.24), which is smaller than -Ir{lu.
have estimate (3.4) and thus

f 19e (2, ue, Du, )|
{Jue|>m}

(3.24)

|=m} IH:{I,““ Du:}l If we assume {EﬁL we

a

1
f —Ue Je (T, Ug, D)
{

fuel>m) |ue] (3.25)
1 Ca
— | Ugge(T,ue, Du,) < —.
m Ja m

IA

If we assume (2.7), we use in (3.1) the test function S,,(u.), where for m > 1

Sm(s) =0 if |s|<m-1,
Sm(8) =1 if 22>2m, Sn(s)=-1 ifs<-m,

S@)=1-if m-1<|s

< m.
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This yields
fﬂ[z,u,,ﬂusjﬂu, S:“{ugj+fSm[u,}_gr;[:r:,u,,ﬂu,}=ff;Sm{u,]
LY 11 0

which implies

f 196 (2, tes Dute)| € ] £l
{lue|=m} {|ue| 2m=1}

and thus
lim sup 9¢(a, e, Due)| < [ il (3.26)

. {lue|=>m} {Jul>m=1}

In both cases we have proved that the second term of the right hand side
of (3.24) is small, uniformly in € and in E, when m is sufficiently large. This
completes the proof of the uniform equiintegrability of ge(,ue, Due). In view of
(3.23) we thus have

ge(x, ue, Due) — g(z,u, Du) strongly in L'(82). (3.27)

Using (3.22) and (3.27) it is now easy to pass 1o the limit in (3.1) to obtain that
a is a solution to (2.8). Theorem 1 is proved.

4. The case where f is nonnegative.

In this Section we assume that (2.1), (2.2), (2.3) and (2.5) as well as either (2.6)
or (2.7) still hold. We moreover assume that

fz0 (4.1)
while we replace hypothesis (2.4) by
g(z,s,€) >0, g(z,0,0)=0. (4.2)

In this case we have the following existence theorem:

Theorem 2. Under the assumptions (2.1), (2.2), (2.3), (4.2), (2.5) and (4.1), and
either (2.6) or (2.7), there exists at least one solution u of (2.8) such that

u>0. (4.3)
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Proof of Theorem 2.
The proof consists in repeating the proof of Theorem 1, for the approximate

equation
Alue) + ge(z, e, Due) = fe  in D'(ND)
(4.4)

ue € Wy'?(0)

where now

Ge(T,5,€) = he [g}%

he(8)=0ifa <0, R*(s)=s/eif0<s<e h(s)=1ifs2>¢
and where f; is a sequence of smooth functions which strongly converges to f in
W ]'F"{H] or in L'(Q) with
Je 2 0.
Use of the test function —u_ in (4.4) implies that
ue = 0.

The remainder of the proof is identical. It is indeed sufficient to remark that

u=>0

and that for almost every x € 1)

s E

55[11 SE:EEJ = ﬂ[Ia*"'rE} if':;':. =+ 4, Es 5

since we assumed g(z,0,0) = 0.
Note that the latest assumption is natural since g(z, 0,0) has to be nonnega-

tive because of the first part of assumption (4.2). But g(z,0,0) can not be assumed

to be strictly positive, as it is easily seen in the case g(z, 5,£) = g(z). Indeed the

solution of the equation

— Au+ g(z) = f(x)
u € H}N)

does not result in general to be nonnegative when ¢ > 0 and f > 0.
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