NONLINEAR SCHRÖDINGER EVOLUTION EQUATIONS

H. Brezis and T. Gallouet

Dept. de Mathématiques, Université Paris VI, 4, pl. Jussieu, 75230 Paris Cedex 05, France.

(Received 15 August 1979)

Key words: Nonlinear Schrödinger equation, global solutions, Sobolev embedding, interpolation inequality.

Let Ω Be a domain in R^2 with compact smooth boundary Γ (Ω could be for example a bounded domain or an exterior domain). Consider the equation

$$i\frac{\partial u}{\partial t} - \Delta u + k|u|^2 u = 0 \quad \text{in} \quad \Omega \times [0, \infty)$$

$$u(x, t) = 0 \quad \text{in} \quad \Gamma \times [0, \infty)$$

$$u(x, 0) = u_0(x), \quad (1)$$

where u(x, t) is a complex valued function and $k \in \mathbb{R}$ is a constant. Problem (1) which occurs in nonlinear optics when $\Omega = \mathbb{R}^2$ has been extensively studied in this case (see [1-3, 5, 8]), but we are not aware of any known result when $\Omega \neq \mathbb{R}^2$.

Our main result is the following:

THEOREM 1. Let $u_0 \in H^2(\Omega) \cap H^1_0(\Omega)$. Assume that one of the following conditions holds

- (a) either $k \geqslant 0$,
- (b) or k < 0 and $|k| \int |u_0(x)|^2 dx < 4$.

Then there exists a unique solution of (1) such that

 $u \in C([0, \infty); H^2(\Omega)) \cap C^1([0, \infty); L^2(\Omega)).$

The proof of Theorem 1 relies on several lemmas. The first lemma is of interest for its own sake; it is a new interpolation-embedding inequality.

In what follows we denote by C various constants depending only on Ω .

LEMMA 2. We have

$$\|u\|_{L^{\infty}} \leqslant C(1 + \sqrt{\log(1 + \|u\|_{H^2})}) \tag{2}$$

for every $u \in H^2(\Omega)$ with $||u||_{H^1} \le 1$.

Proof. It is well known that an H^2 function on Ω can be extended by an H^2 function on \mathbb{R}^2 .

Sponsored in part by the United States Army under Contract No. DAAG29-75-C-0024.

Nonlinear Schrödinger evolution equations

More precisely one can construct an extension operator P such that:

P is a bounded operator from $H^1(\Omega)$ into $H^1(R^2)$

P is a bounded operator from $H^2(\Omega)$ into $H^2(\mathbb{R}^2)$

$$Pu_{|\Omega} = u$$
 for every $u \in H^1(\Omega)$.

Let $u \in H^2(\Omega)$ with $||u||_{H^1} \le 1$. Let v = Pu and denote by \hat{v} the Fourier transform of v. We clearly have

$$\|(1+|\xi|)\hat{v}\|_{L^{2}(\mathbb{R}^{2})} \leqslant C \tag{3}$$

$$\|(1+|\xi|^2)\hat{v}\|_{L^2(\mathbb{R}^2)} \leqslant C\|u\|_{H^2(\Omega)} \tag{4}$$

$$\|u\|_{L^{\infty}(\Omega)} \le \|v\|_{L^{\infty}(R^2)} \le C \|\hat{v}\|_{L^1(R^2)}.$$
 (5)

For R > 0 we write

$$\begin{split} \|\hat{v}\|_{L^{1}} &= \int_{|\xi| < R} |\hat{v}(\xi)| \, \mathrm{d}\xi + \int_{|\xi| \geqslant R} |\hat{v}(\xi)| \, \mathrm{d}\xi \\ &= \int_{|\xi| < R} (1 + |\xi|) |\hat{v}(\xi)| \frac{1}{1 + |\xi|} \, \mathrm{d}\xi + \int_{|\xi| \geqslant R} (1 + |\xi|^{2}) |\hat{v}(\xi)| \frac{1}{1 + |\xi|^{2}} \, \mathrm{d}\xi \\ &\leqslant C \left[\int_{|\xi| < R} \frac{1}{(1 + |\xi|)^{2}} \, \mathrm{d}\xi \right]^{1/2} + C \|u\|_{H^{2}} \left[\int_{|\xi| \geqslant R} \frac{1}{(1 + |\xi|^{2})^{2}} \, \mathrm{d}\xi \right]^{1/2} \end{split}$$

by Cauchy-Schwarz, (3) and (4). A straightforward computation leads to

$$\|\hat{v}\|_{L^1} \leqslant C[\log(1+R)]^{1/2} + C\|u\|_{H^2}(1+R)^{-1}$$

by every $R \ge 0$. We obtain (2) by choosing $R = ||u||_{H^2}$.

LEMMA 3. We have

$$||u|^2 u||_{H^2} \leqslant C ||u||_{L^{\infty}}^2 ||u||_{H^2}$$
 for every $u \in H^2(\Omega)$. (6)

Proof of Lemma 3. Let D denote any first order differential operator. For $u \in H^2$ we have

$$|D^2(|u|^2u)| \leq C(|u|^2|D^2u| + |u||Du|^2),$$

and so

$$||u|^2 u||_{L^2} \leqslant C ||u||_{L^\infty}^2 ||u||_{L^2} + C ||u||_{L^\infty} ||u||_{W_{1,4}}^2. \tag{7}$$

On the other hand an inequality of Gagliardo-Nirenberg (see [6]) implies that

$$||u||_{W^{1,4}} \leqslant C||u||_{L^{\infty}}^{1/2}||u||_{H^{2}}^{1/2}. \tag{8}$$

Combining (7) and (8) we obtain (6).

Finally we recall the following well known result essentially due to Segal [7]:

LEMMA 4. Assume H is a Hilbert space and $A: D(A) \subset H \to H$ is an m-accretive linear operator. Assume F is a mapping from D(A) into itself which is Lipschitz on every bounded set of D(A).

Then for every $u_0 \in D(A)$, there exists a unique solution u of the equation

$$\frac{\mathrm{d}u}{\mathrm{d}t} + Au = Fu$$

$$u(0) = u_0$$

defined for $t \in [0, T_{\text{max}})$ such that

$$u \in C^1([0, T_{max}); H) \cap C([0, T_{max}); D(A))$$

with the additional property that

either
$$T_{\max} = \infty$$
 or $T_{\max} < \infty$ and $\lim_{t \uparrow T_{\max}} \|u(t)\| + \|Au(t)\| = \infty$.

Proof of Theorem 1. We apply Lemma 4 in $H = L^2(\Omega)$ to $Au = i\Delta u$, $D(A) = H^2(\Omega) \cap H_0^1(\Omega)$, $Fu = ik|u|^2u$. We shall show that $T_{\max} = \infty$ by proving that $||u(t)||_{H^2}$ remains bounded on every finite time interval.

First we multiply (1) by \bar{u} and consider the imaginary part. This leads to

$$||u(t)||_{L^2} = ||u_0||_{L^2}. (9)$$

Next we multiply (1) by $\partial \bar{u}/\partial t$ and consider the real part. This leads to

$$\frac{1}{2} \int |\nabla u(x,t)|^2 dx + \frac{k}{4} \int |u(x,t)|^4 dx \equiv E_0$$
 (10)

where

$$E_0 = \frac{1}{2} \int_{\Omega} |\nabla u_0(x)|^2 dx + \frac{k}{4} \int_{\Omega} |u_0(x)|^4 dx.$$

We claim that $||u(t)||_{H^1}$ remains bounded for t > 0. Indeed, this is clear when $k \ge 0$. While if k < 0 we have

$$\int |\nabla u(x,t)|^2 \le \frac{|k|}{2} \int |u(x,t)|^4 \, \mathrm{d}x + 2E_0. \tag{11}$$

On the other hand an inequality of Gagliardo and Nirenberg ([6]) shows that*

$$|\varphi(x_1, x_2)| \leq \frac{1}{2} \int_{-\infty}^{+\infty} |\varphi_{x_1}(t, x_2)| dt, |\varphi(x_1, x_2)| \leq \frac{1}{2} \int_{-\infty}^{+\infty} |\varphi_{x_2}(x_1, s)| ds.$$

Thus

$$\int_{\mathbb{R}^2} |\varphi|^2 \, \mathrm{d}x \leqslant \frac{1}{4} \int_{\mathbb{R}^2} |\varphi_{x_1}| \, \mathrm{d}x \int_{\mathbb{R}^2} |\varphi_{x_2}| \, \mathrm{d}x.$$

Choosing $\varphi = |u|^2$ leads to

$$\int |u|^4 dx \le \int |u|^2 dx \left(\int |u_{x_1}|^2 dx \right)^{1/2} \left(\int |u_{x_2}|^2 dx \right)^{1/2} \le \frac{1}{2} \int |u|^2 dx \int |\nabla u|^2 dx.$$

^{*} In order to obtain the constant $\frac{1}{2}$ one proceeds as follows. For $\varphi \in C_0^{\infty}(\mathbb{R}^2)$ we have

$$\int |u|^4 dx \leqslant \frac{1}{2} \int |u|^2 dx \int |\nabla u|^2 dx$$

$$= \frac{1}{2} \int |u_0|^2 dx \int |\nabla u|^2 dx.$$
(12)

Combining (11), (12) and assumption (b) in Theorem 1 we see that

$$\|u(t)\|_{H^1} \leqslant C \tag{13}$$

where C is independent of t.

We now denote by S(t) the L^2 isometry group generated by -A. From (1) we have

$$u(t) = S(t)u_0 + ik \int_0^t S(t-s) |u(s)|^2 u(s) ds$$

and so

$$Au(t) = S(t)Au_0 + ik \int_0^t S(t-s)A \left[|u(s)|^2 u(s) \right] ds.$$

Thus

$$||Au(t)||_{L^2} \le ||Au_0||_{L^2} + |k| \int_0^t ||A[|u(s)|^2 u(s)]||_{L^2} ds.$$
 (14)

Lemma 3 implies that

$$||A[|u(s)|^2 |u(s)]||_{L^2} \le C||u(s)||_{L^\infty}^2 ||u(s)||_{H^2}.$$

From Lemma 2 and estimate (13) we deduce that

$$||u(s)||_{L^{\infty}} \leq C(1 + \sqrt{\log(1 + ||u(s)||_{H^2})})$$

Hence (14) leads to

$$\|u(t)\|_{H^2} \le C + C \int_0^t \|u(s)\|_{H^2} [1 + \log(1 + \|u(s)\|_{H^2})] ds.$$
 (15)

We denote by G(t) the RHS in (15); thus

$$G'(t) = C \|u(t)\|_{H^2} [1 + \log(1 + \|u(t)\|_{H^2})] \le CG(t) [1 + \log(1 + G(t))].$$

Consequently

$$\frac{\mathrm{d}}{\mathrm{d}t}\log[1+\log(1+G(t))]\leqslant C$$

and we find an estimate for $||u(t)||_{H^2}$ of the form

$$\|u(t)\|_{H^2} \leqslant e^{\alpha e^{\beta t}}$$

for some constants α and β . Therefore $\|u(t)\|_{H^2}$ remains bounded on every finite time interval and so we must have $T_{\max} = \infty$.

Remarks. (1) The proof of Theorem 1 leads to an estimate of the form $||u(t)||_{L^{\infty}} \leq \alpha e^{\beta t}$. We do not know whether $||u(t)||_{L^{\infty}}$ remains actually bounded as $t \to \infty$.

(2) When k < 0 and $|k| \int |u_0|^2 > 4$, it is known (see [4] and [2]) if $\Omega = R^2$ that the solution of (1) corresponding to some initial conditions may blow up in finite time. A similar phenomenon presumably occurs when $\Omega \neq R^2$.

REFERENCES

- BAILLON J. B., CAZENAVE T. & FIGUEIRA M., Equation de Schrödinger nonlinéaire, C.r. Acad. Sci., Paris 284, 869–872 (1977).
- 2. CAZENAVE T., Equations de Schrödinger nonlinéaires, Proc. Roy. Soc. Edinburgh (to appear).
- 3. J. Ginibre & Velo G., On a class of nonlinear Schrödinger equations.
- GLASSEY R. T., On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. math. Phys. 18, 1794-1979 (1977).
- LIN J. E. & STRAUSS W. A., Decay and scattering of solutions of a nonlinear Schrödinger equation, J. funct. Anal. 30, 245-263 (1978).
- 6. NIRENBERG L., On elliptic partial differential equations, Ann. Sci. Norm. Sup. Pisa 13, 115-162 (1959).
- 7. SEGAL I., Nonlinear semi-groups, Ann. Math. 78, 339-364 (1963).
- STRAUSS W. A., The nonlinear Schrödinger equation, in Contemporary Developments in Continuum Mechanics and PDE (Edited by G. de la Penha and L. Medeiros), North Holland, Amsterdam 1978, pp. 452-465.