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LeT Q BE a domain in R? with compact smooth boundary T (Q could be for example a bounded
domain or an exterior domain), Consider the equation

3,
ia—t:—Au+k|u|2u=0. in Q x [0, )

ux, 5y =0 in T x [0, co) 1)
u(x, 0) = uy(x),

where u(x, ) is a complex valued function and k € R is a constant. Problem (1) which occurs in
nonlinear optics when Q = R? has been extensively studied in this case (see [1-3, 5, 8]), but we
are not aware of any known result when  # R

Our main result is the following:

TeEOREM 1. Let u, € H*(Q) n H(Q). Assume that one of the following conditions holds
{a) either k = 0,
(b) or k < 0 and |k|{|u,(x)|* dx < 4.

Then there exists a unique solution of (1) such that

ue C([0, w0); HAQ) n CH0, w); IHQ)
The proof of Theorem 1 relies on several lemmas. The first lemima is of interest for its own sake;

it is a new interpolation-embedding inequality.
In what follows we denote by C various constants depending only on Q.

LeEMma 2. We have

Juf - < €1 + JloglT + [ul ) | @

for every u e H*(Q) with ||uf| 5, < 1.

Proof. It is well known that an H? function on £ can be extended by an H? function on R%.
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More preciscly one can construct an extension operator P such that:
P is a bounded operator from H(Q) into H'(R?)
P is a bounded operator from H*(Q) into H*(R?)
Pug, = uforeveryue H Q).

Let u € H¥(Q) with |u]| ;. < 1. Let v = Pu and denote by # the Fourier transform of v». We clearly
have :

[+ 1EDD] pamy < € 3)
0] 2mz € Clu gy " )

“““L”(m = H ”L “(R2) = C”U”Li(RZ) (5)

For R > 0 we write

llﬁll-u=j |2 déj+J- 52| de
1g{<R 1&§1ZR

= 1 d 2 6 2
LHR(”{')"’@‘ |¢|“L + 12 560 |¢|

1 12
£C d + C 2
U;M i+ ‘f} ”“”H[LPR T+ 7 5}

by Cauchy-Schwarz, (3) and (4). A straightforward computation leads to
[/ < Cllog(l + R)]™* + Clu 1 + R
by every R > 0. We obtain (2) by‘choosing R = |u| ..

LeMma 3. We have

[Pl g < Cllu||7e il forevery ue HQ). ©)

Proof of Lemma 3. Let D denote any first order differential operator. For u e H* we have
ID*(ul*w)| < Cu*(D?| + [ul|Du]),

and so

Hul?ull o < Cllulielu] o + Cllull i oo Uy

On the other hand an inequality of Gagliardo—Nirenberg (see [6]) implies that

[llpes <

Combining (7) and {8) we obtain (6).

Finally we recall the following well known result essentially due to Segal [7]:

LeEMMA 4. Assume H is a Hilbert space and A: D(4) < H — H is an m-accretive linear operator. |
Assume F is a mapping from D(A) into itself which is Lipschiiz on every bounded set of D(A4). °

Hl:z ' ®) '.
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Then for every u, € D(4), there exists a unique solution  of the equation

Eidﬁ + Au = Fu
w0} = u,
defined for t€ [0, T ) such that
ue CH[O, T, ) H) n C([0, T__}; D(A))

with the additional property that

gither T =

max

or T <oo and lim [u(@)] + |Au@®)| = oo.}
11 Tinax

MAax

Proof of Theorem 1. We apply Lemma 4 in H = I}(Q) to Au = iAu, D(4) = HYQ) n H}(Q),
Fu = ikiu{*u. We shall show that T, = oo by proving that ||u(t})|| ;. remains bounded on every
finite time interval,

First we multiply (1) by & and consider the imaginary part. This leads to

@) llza =l 1 ©)
Next we multiply (1) by 84/0t and consider the real part. This leads to

k
%ﬁVu(x, fH? dx + Zj|u(x, ni*dx = E, (10

where

k
E,= %j. |V ()] dx + Zj |t ()|* dx.
0 4]

We claim that |u(f)],, remains bounded for ¢ > 0. Indeed, this is clear when k > 0. While if
k < 0 we have

jiVu(x, 1)? slli;i\[iu(x, t)|* dx + 2E,. (11)

On the other hand an inequality of Gagliardo and Nirenberg ([6]) shows that*

* In order to obtain the constant % one proceeds as follows. For p e C “(RZ) we have

lot x| < & '[ 0, 215 il )] < %_[ [ (0 s,

[rerar<i] tojox] Jontax
R? R2 R2
Choosing ¢ = |u|’ leads to

J|u|4dx < j|u|2 (ﬁu E )‘ Z(ﬁux2|2dx)”2 < %f|u|2MJ|Vu|1dx.

Thus
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4 s 1 ) Remarks. (1) The proof of Theorem 1 leads to an estimate of the form )], < aef. Wedo
jul* dx < 5 |la]* dx | |V dx (12) not know whether ||u(t)], . remains actually bounded as t —» co.

(2) When k < 0 and [kffu,{* > 4, it is known (sce [4] and [2]) if Q = R? that the solution of
(1) corresponding to some intial conditions may blow up in finite time. A similar phenomenon
presumably occurs when Q # R2,

=%J|uo|2 dxﬁVuF dx.
Combining {11), (12) and assumption (b) in Theorem 1 we see that
lue)]g: < € , (13)
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where C is independent of ¢.
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u(t) = S, + ik J ! St — s} juls)|*uls) ds
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0
Thus

A < Pt + 4| LDt (14
. 0

Lemma 3 implies that
| 4Lt w2 < Clul)] 7o | e

From Lemma 2 and estimate (13)zwe deduce that

[us)] = < C(1 + Jlog(T + [[uls)] a))-

Hence (14) leads to

|MWmSC+CfW@MﬂﬁJ%ﬂ+W®hM®- (15)

0

We denote by G(f) the RHS in (15); thus
G'(6) = Cllul®)]| =[1 + log(l + [lu(t)] )] < CGE[1 + log(1 + G))].

Consequently
giog[l +log(l + G)] < C
and we find an estimate for |Ju(t)]| ;. of the form
[4(0)] 2 < &

for some constants « and f. Therefore |u(),,. remains bounded on every finite time interval
and so we must have T, = co.




