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FINITE VOLUME SCHEMES FOR NONLINEAR PARABOLIC
PROBLEMS: ANOTHER REGULARIZATION METHOD

R. EYMARD∗, T. GALLOUËT† , AND R. HERBIN‡

Abstract. On one hand, the existence of a solution to degenerate parabolic equations, without
a nonlinear convection term, can be proven using the results of Alt and Luckhaus, Minty and Kol-
mogorov. On the other hand, the proof of uniqueness of an entropy weak solution to a nonlinear
scalar hyperbolic equation, first provided by Krushkov, has been extended in two directions: Car-
rillo has handled the case of degenerate parabolic equations including a nonlinear convection term,
whereas Di Perna has proven the uniqueness of weaker solutions, namely Young measure entropy so-
lutions. All of these results are reviewed in the course of a convergence result for two regularizations
of a degenerate parabolic problem including a nonlinear convective term. The first regularization is
classicaly obtained by adding a minimal diffusion, the second one is given by a finite volume scheme
on unstructured meshes. The convergence result is therefore only based on L∞(Ω × (0, T )) and
L2(0, T ; H1(Ω)) estimates, associated with the uniqueness result for a weaker sense for a solution.
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1. Introduction. The aim of this paper is to review a chain of various results
obtained after 1960, for the approximation of the solution u to the following nonlinear
parabolic/hyperbolic problem:

ut + div
(
q f(u)

)
−∆ϕ(u) = 0 in Q,(1.1)

with the initial condition

u(·, 0) = u0 on Ω,(1.2)

and the non homogeneous Dirichlet boundary condition

u = ū on ∂Ω× (0, T ),(1.3)

denoting by Q = Ω × (0, T ), under various hypotheses on the domain Ω, the initial
data u0, the boundary conditions ū, the convection velocity q, the nonlinear transport
function f : R → R and the degenerate diffusion ϕ : R → R. Let us only detail
some of these hypotheses:

1. u0 and ū are bounded functions with uI ≤ u0 ≤ uS and uI ≤ ū ≤ uS a.e.,
and ū is the trace on ∂Ω× (0, T ) of a regular function defined in Q, also denoted by
ū,

2. the velocity field q is Lipschitz continuous on Q and it satisfies divq = 0
(this hypothesis is not necessary, but it corresponds to a large number of physical
situations), and q · n = 0 on ∂Ω× (0, T ) (this hypothesis prevents from the handling
of boundary conditions for nonlinear hyperbolic problems),
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3. the function f is Lipschitz continuous and monotonous nondecreasing (this
is only assumed to simplify the expression of the Godunov scheme),

4. the function ϕ is Lipschitz continuous and monotonous nondecreasing, which
implies a degenerate diffusion for (x, t) ∈ Ω × (0, T ) such that ϕ′(u(x, t)) = 0 (the
case ϕ = 0 is not excluded).

Using such weak hypotheses, it is necessary to introduce the definition of a weak
entropy solution u to Problem (1.1)-(1.3):

1. u ∈ L∞(Ω× (0, T ))
2. thanks to q · n = 0, the Dirichlet boundary condition has only to be taken

on ϕ(u), namely: ζ(u) − ζ(ū) ∈ L2(0, T ;H1
0 (Ω)) with ζ(s) :=

∫ s

0

√
ϕ′(a)da (the

function ζ such defined verifies−
∫
Ω
v∆ϕ(v)dx =

∫
Ω
(∇ζ(v))2dx for all regular function

v vanishing at the boundary),
3. to handle the case of strong degeneracy, entropy conditions (necessary to

expect a uniqueness property) are introduced:∫
Ω×(0,T )

 η(u)ψt+
Φ(u) q · ∇ψ
−∇θ(u) · ∇ψ

 dxdt+
∫

Ω

η(u0(x))ψ(x, 0)dx ≥ 0,

∀ ψ ∈ C, ∀η ∈ C1(R,R), η′′ ≥ 0, Φ′ = η′(·)f ′(·), θ′ = η′(·)ϕ′(·),

(1.4)

where the space of test functions is given by C = {ψ ∈ C∞c (Rd × R), with ψ ≥ 0 and
ψ = 0 on ∂Ω× (0, T ) ∪ Ω× {T}}.

Results of existence and uniqueness were developed for such a solution. Let us
first remark that, in the case where ϕ = 0, the problem resumes to a scalar nonlin-
ear hyperbolic equation, for which Krushkov’s works [7] were fundamental. These
works include the introduction of entropies and that of the doubling variable tech-
nique for the uniqueness proof of a solution. In the case where ϕ 6= 0, Carrillo’s
works [2] have led to a clever and essential adaptation of Krushkov’s method to
the presence of a degenerate diffusion term. Let us examine, on a numerical sim-
ulation, the effect of a degenerate diffusion on a linear convection problem. We
consider the example where ϕ(u) = max(u, .5), f(u) = u, Ω = (0, 1) × (0, 1) and
q(x1, x2) = curl (x1(1− x1)x2(1− x2)). Figure 1 shows the approximate solution for
u at different times. We see that in such a case, the degenerate parabolic term makes
only disappear the initial bump from u = 0.5 to u = 1 (black color in the figure),
whereas the initial bump from u = 0.5 to u = 0 is convected and only smeared by the
numerical diffusion.
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Fig. 1.1. Approximate solutions u at times 0.00, 0.01, 0.04, 0.16, 0.40, from left to right. Color
white stands for u = 0 and black for u = 1.

2. Two regularization methods. We consider two types of regularized solu-
tions. The first one is the classical strongly parabolic regularization uε, for ε > 0,
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Fig. 2.1. Notations and example of two control volumes of an admissible mesh.

solution of

(uε)t + div
(
q f(uε)

)
−∆

(
ϕ(uε) + εuε

)
= 0 in Q,(2.1)

with initial and boundary conditions (1.2) and (1.3). The second one is defined using
a finite volume scheme. Within the notations of [4], we use an admissible mesh
M, the control volumes of which satisfying an orthogonality property between the
“centers” of the control volumes and the edges (see Figure 2). We then introduce a
constant (for simplicity) time step δt > 0, and we define the convected flux qn+1

K,L =
1
δt

∫ (n+1)δt

nδt

∫
K|L q(x, t) · nK,Ldγ(x)dt at time step n and at each edge K|L, denoting

by nK,L the unit vector, normal to K|L and oriented from K to L. We denote by
NK ⊂ M the set of the neighbours of K, by Eext ⊂ E (resp. Eint) the set of the
exterior (resp. interior) edges, by Eext,K ⊂ Eext the set of the edges of K belonging to
Eext, for all s ∈ R we set s+ = max(s, 0) and s− = max(−s, 0). Using the notations
of Figure 2, we define the finite volume scheme by

(un+1
K − un

K) meas(K) +
δt

∑
L∈NK

(
(qn+1

K,L )+f(un+1
K )− (qn+1

K,L )−f(un+1
L )

)
−

δt
∑

L∈NK

meas(K|L)
dK|L

(
ϕ(un+1

L )− ϕ(un+1
K )

)
−

δt
∑

σ∈Eext,K

meas(σ)
dK,σ

(
ϕ(ūn+1

σ )− ϕ(un+1
K )

)
= 0,

(2.2)

in association with a standard definition for the approximation of the initial condition
u0

K for all K ∈M, and the boundary condition ūn+1
σ for all exterior edge σ and time

step n. Scheme (2.2) appears to be implicit, using the Godunov scheme for the
convection term (which is the upstream weighting scheme in the present case where
f is non decreasing). It is then possible to show that the implicit scheme (2.2) has
at least one solution, which allows to define the function uD(x, t) by the value un+1

K

for a.e. x ∈ K and t ∈ (nδt, (n+ 1)δt). The remaining of this paper is devoted to the
analysis of the convergence of these regularizations to the weak entropy solution of
Problem (1.1)-(1.3).



4 R. EYMARD, T. GALLOUËT and R. HERBIN

2.1. L∞(Q) estimate. Both regularizations satisfy the same bounds as the ini-
tial and boundary conditions:

uI ≤ uε(x, t) ≤ uS , for a.e. (x, t) ∈ Q,(2.3)

and, for the discrete approximation,

uI ≤ uD(x, t) ≤ uS , for a.e. (x, t) ∈ Q.(2.4)

These L∞(Q) estimates allows for the application of the non linear weak-? compact-
ness property [3, 4]: for any sequence (un)n∈N with un ∈ L∞(Q) for all n ∈ N, which
is bounded in L∞(Q), one can extract a subsequence, again denoted (un)n∈N, and
u ∈ L∞(Q× (0, 1)), such that for all continuous function g ∈ C0(R), (g(un))n∈N con-
verges to

∫ 1

0
g(u(·, α))dα for the weak-? topology of L∞(Q). This function u is then

called a “process limit” of (un)n∈N, the word process being used with analogy to the
trajectories defined by u(·, α) for a.e. α ∈ (0, 1). This notion of process limit (used in
[4]) happens to be a way to define a Young measure (x, t) 7→ µx,t (used in [3]), thanks
to the relation

∫
gdµx,t =

∫ 1

0
g(u(x, t, α))dα. The advantage of the notion of process

limit is that the measurability properties of the function u become explicit, allowing
for easier applications of the theorem of continuity in means during the course of the
uniqueness proof.

We thus get the existence of a process limit uc for uε as ε −→ 0, and ud for uD
as δ(D) −→ 0 (where δ(D) is the maximum of the space steps and time step).

2.2. L2(0, T ;H1(Ω)) estimate. We now consider, again using the function de-
fined by ζ(s) =

∫ s

0

√
ϕ′(a)da, the continuous function zε = ζ(uε) − ζ(ū) and the

discrete one zD, defined by the discrete values zn+1
K = ζ(un+1

K ) − ζ(ūn+1
K ) in a same

manner as uD. We then get the existence of a real C1c > 0, which does not depend
on ε and of a real C1d > 0, which does not depend on the size of the discretization
δ(D), such that:

‖zε‖L2(0,T ;H1
0 (Ω)) ≤ C1c,(2.5)

and

N∑
n=0

δt

 ∑
K|L∈Eint

meas(K|L)
dK|L

(zn+1
K − zn+1

L ))2 +
∑

σ∈Eext

meas(σ)
dK,σ

(zn+1
K )2

 ≤ C1d,(2.6)

where N ∈ N is such that Nδt ≤ T < (N + 1)δt. Each of these relations implies a
space translate estimate, which writes in the first case∫ T

0

∫
Rd

(zε(x+ ξ, t)− zε(x, t))2dxdt ≤ C1c|ξ|2, ∀ξ ∈ Rd,(2.7)

and in the second one (see [4])∫ T

0

∫
Rd

(zD(x+ ξ, t)− zD(x, t))2dxdt ≤ C1d|ξ|(|ξ|+ 4 δ(D)), ∀ξ ∈ Rd.(2.8)

Both results are a first step in direction to the application of Kolmogorov’s theorem,
proving the relative compactness of the families zε, for ε > 0 and zD, for all admissible
discretization D. The second step is handled in the next subsection.
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2.3. Time translate estimate. The use of time translate estimates for degen-
erate parabolic equations is first due to Alt and Luckhaus [1], since standard functional
arguments cannot be easily adapted to the time derivatives of functions zε and zD.
The existence of some C2c > 0, which does not depend on ε and of some C2d > 0
which does not depend on δ(D), such that:∫ T−s

0

∫
Rd

(zε(x, t+ s)− zε(x, t))2dxdt ≤ C2c s, ∀s ∈ (0, T )(2.9)

and ∫ T−s

0

∫
Rd

(zD(x, t+ s)− zD(x, t))2dxdt ≤ C2d s, ∀s ∈ (0, T )(2.10)

are proven (in the case of degenerate equations without convective terms, inequality
(2.10) has been proven in [6]). Note that in the case of variable time steps, one
must replace s in the right hand side of (2.10) by s + δ(D), which leads to a slight
modification in the verification of the hypotheses of Kolmogorov’s theorem. It is now
possible to express a relative compactness property.

3. Compactness and monotony . Thanks to the space and time translate
estimates, we have now got some strong convergence for zε and zD. For the continuous
regularization, we thus have proven the following results: there exists a sequence
(uεn

)n∈N with εn tends to 0 as n→∞ such that
1. uεn converges to some function uc ∈ L∞(Q× (0, 1)) in the nonlinear weak-?

sense,
2. zεn

= ζ(uεn
)− ζ(ū) −→ zc in L2(Q) as ε −→ 0, and zc ∈ L2(0, T ;H1

0 (Ω)).
In the discrete case, we have proven that there exists a sequence (Dn)n∈N with δ(Dn)
tends to 0 as n→∞ such that

1. uDn
converges to some function ud ∈ L∞(Q× (0, 1)) in the nonlinear weak-?

sense,
2. zDn = ζ(uDn)−ζ(ūDn) −→ zd in L2(Q) as n→∞ , and zd ∈ L2(0, T ;H1

0 (Ω)).
Then, using the Minty monotony argument [8], classicaly used in this framework,
we get that, for a.e. (x, t, α) ∈ Q × (0, 1), zc(x, t) = ζ(uc(x, t, α)) − ζ(ū(x, t)) and
zd(x, t) = ζ(ud(x, t, α)) − ζ(ū(x, t)). Intuitively, this result means that the strong
convergence of zε or zD prevents uε or uD from oscillating around values such that
ϕ′ > 0, which implies that ζ(uc(x, t, α)) and ζ(ud(x, t, α)) do not depend on α for a.e.
(x, t) ∈ Q. At this stage, there is not yet an evidence that uc and ud don’t depend on
α for a.e. (x, t) ∈ Q. This will be handled in the next section.

4. Uniqueness theorem. Thanks to the passage to the limit in the equations
leading to the definition of both regularizations, we show that the functions uc and
ud are entropy weak process solutions [5] to Problem (1.1)-(1.3), where we say that a
function u is an entropy weak process solution to Problem (1.1)-(1.3) if it satisfies

1. u ∈ L∞(Q× (0, 1)),
2. ζ(u(x, t, α)) does not depend on α for a.e. (x, t) ∈ Ω×(0, T ) and ζ(u)−ζ(ū) ∈

L2(0, T ;H1
0 (Ω)),

3. a first kind of entropy inequalities is satisfied∫
Q

[ ∫ 1

0
(µ(u(·, α)) ψt + ν(u(·, α)) q · ∇ψ) dα

−∇η(ϕ(u)) · ∇ψ − η′′(ϕ(u))(∇ϕ(u))2ψ

]
dxdt

+
∫
Ω
µ(u0)ψ(·, 0)dx ≥ 0,

(4.1)
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for all ψ ∈ C and for all regular convex function η, setting µ′ = η′(ϕ(·)), ν′ =
η′(ϕ(·))f ′(·),

4. a second kind of entropy inequalities is satisfied∫
Q

[ ∫ 1

0
(|u− κ| ψt + (f(max(u, κ))− f(min(u, κ))) q · ∇ψ) dα

−∇|ϕ(u)− ϕ(κ)| · ∇ψ

]
dxdt

+
∫
Ω
|u0 − κ|ψ(·, 0)dx ≥ 0,

(4.2)

for all ψ ∈ C and for all κ ∈ R, where one recognizes the Krushkov entropy pair
| · −κ|, f(max(·, κ)) − f(min(·, κ)) = |f(·) − f(κ)| in the particular case where f is
monotonous nondecreasing (remark that the two entropy criteria cannot be deduced
one from each other).

We then have the following result: the entropy weak process solution to Problem
(1.1)-(1.3) is unique, and thus does not depend on α, resuming to the entropy weak
solution, which is also unique. This result is proven in [5], following the doubling
variable technique introduced by Krushkov, adapted to Young measures by Di Perna
[3]. The proof uses Carrillo’s method, which is an adaptation to the doubling variable
technique of the following simple result: for all η ∈ C2(R) with η′′ ≥ 0, and for all u,
v such that ut −∆u = 0 and vt −∆v = 0, then η(u− v)t −∆η(u− v) ≤ 0.

5. Conclusion: strong convergence of the regularizations. We have now
obtained that both regularizations converge to the entropy weak solution in the non-
linear weak-? sense. In fact, the uniqueness result implies that the convergence is
strong in all Lp(Q), for all p ∈ [1,+∞). This result is an immediate consequence of
the definition of the nonlinear weak-? sense and of the fact that u(x, t, α) does not de-
pend on α (see [3] or [4]). This concludes the proof that both regularizations strongly
converge to the entropy weak solution of Problem (1.1)-(1.3). This conclusion shows
that the finite volume scheme, which permits to define piecewise constant functions
and therefore to handle simple real values, indeed behaves as a standard regularization
method. A large advantage of such an approximation is that all algebraic operations
are possible, without functional space considerations.
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