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ANALYSIS TOOLS FOR FINITE VOLUME SCHEMES

R. EYMARD*, T. GALLOUET!, R. HERBIN, AND J.-C. LATCHES

Abstract. This paper is devoted to a review of the analysis tools wharelbeen developed for the the math-
ematical study of cell centred finite volume schemes in ttet paars. We first recall the general principle of the
method and give some simple examples. We then explain hoartalysis is performed for elliptic equations and
relate it to the analysis of the continuous problem; the laickegularity of the approximate solutions is overcome
by an estimate on the translates, which allows the use of thmdgorov theorem in order to get compactness. The
parabolic case is treated with the same technique. Next tnadince a co-located scheme for the incompressible
Navier—Stokes, which requires the definition of some discderivatives. Here again, we explain how the continu-
ous estimates can guide us for the discrete estimates. \Waive the basic ideas of the convergence analysis for
non linear hyperbolic conservation laws, and conclude aitloverview of the recent domains of application.

Key words. Finite volume methods, elliptic equations, parabolic ¢igna, Navier-Stokes equations, hyperbolic
equations

AMS subject classifications.65M12, 65N12, 76D05, 76D07, 76M12

1. Introduction. Finite volume methods (FVM) are known to be well suited foe th
discretisation of conservation laws; these conservatovs Imay yield partial differential
equations (PDE's) of different nature (elliptic, parabadr hyperbolic) and also to coupled
systems of equations of different nature. Consequenttyfuhctional spaces in which the
solutions of the continuous problems are sought may be different: H, L2(0, 7T, H),
L. .., so that it might seem rash to think of approximating ttehequally with piecewise
constant functions, as with the cell centred FVM considdreck; indeed, even though it
seems natural that the spak® should be approximated by the discrete space consisting of
piecewise constant functions on the control volumes, thimilonger the case when the con-
tinuous functional space K. Surprisingly, the cell centred approximation is quitecaint
even in the case of elliptic and parabolic equations, as aeuwf works have proved in the
past fifteen years. Indeed, analysis tools have been dedfopall types of equations, most
of them adapted from tools used in the study of the respectiméinuous partial differential
equations. The unified theory of these discrete analysis,tatich was initiated in the late
80's, allows to tackle the numerical analysis of the dissagion of more complex systems.
The aim of the present paper is to give a unified presentafitimeccell centred FVM anal-
ysis for different types of PDE’s, and give a review of the manalysis tools which were
developed for different model problems, and relate thernédr tontinuous counterparts.
The first question that is often asked by a layman is: whatasdifference between finite
volumes and, say, finite elements or finite differences ? Hswvar truly lies in the concepts
of the methods, but indeed, in some cases, these methodssinglar schemes (this may
be seen on the simple example” = f discretised by the three above mentioned methods
with a constant mesh step). The concepts, however, are djffiieent. Roughly speaking,
one could say that the finite element method is based on a wealufation coupled with a
convenient approximation of the functional spaces whigefthite difference method relies
on an approximation of the original differential operatoysTaylor expansions; and the finite
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volume method is constructed from a balance equation, rétlae the PDE itself, with a
consistent approximation of the fluxes defined on the boynafathe control volumes.
Confusion between the finite volume method and the finiteetiffice method arises from
the fact that the FVM has often been called finite differenoethod when the flux on the
boundary of the control volumes are approximated by finifeedinces. This is the case,
for instance, in oil reservoir simulations, where rectdaguartesian grids are used, so that
the diffusion flux can easily be dicretised by a differentjabtient, at least in the isotropic
case. Moreover, numerous schemes which have been desgregperbolic equations and
systems, and cast in the finite difference family, are alshefinite volume type, since they
are based on a suitable approximation of the fluxes at theaotes of the discretisation cells.
Links between the FVM and the finite element method (FEM) ¢smlae mentioned. Indeed,
for particular problems, the FVM may be written as a FEM witime particular integration
rule. Conversely, there are cases where the FEM can be see/\&8!l. For instance, the
piecewise linear finite element method for the discretisatf the Laplace operator on a
triangular mesh satisfying the weak Delaunay conditiofdgi@ matrix which is the same as
that of the FVM on the dual Voronoi mesh, see [40] for detailse FVM may also be seen
as a discontinuous Galerkin method (DGM) of lowest ordethalgh the DGM, derived
from the finite element ideas, is also based on a weak forionlathe approximation of
the continuous space is no longer conforming, as is alsodke in the cell centred FVM.
However, the tools used to analyse the DGM of higher orderatcseem to apply to the
FVM. Let us also mention that other families of FVM’s have bekeveloped, such as vertex
centered schemes, box or co—volume schemes, finite volueneeat methods: see [6, 3,
15, 23, 33, 67, 26, 58, 59] and references therein. Our isttéoe cell centred schemes is
primarily motivated by the fact that they are probably thesimwidely used in industrial
codes.

The outline of this paper is as follows. In section 2, we st the principle of the cell cen-
tred FVM for general conservation laws. Section 3 is devtaetie convergence analysis of
the FVM approximations for steady state convection diffastquations. We show that one
of the key ingredients is an estimate on the translates appeoximate solutions, which al-
lows the use of the Kolmogorov theorem. Time dependent adiorediffusion problems are
then tackled in section 4, where estimates on the time titesshre also developed. Sections
5 and 6 are devoted to more recent works on the incompressibles and Navier-Stokes
equations. Discrete derivatives are introduced to hartieggtadient and divergence terms.
In section 7, we give the main ideas which lie behind the @liff) analysis of cell centred
FVM’s for hyperbolic equations. Finally we conclude in $ent8 by mentioning the different
problems which have been studied in the past, along with st ongoing works.

2. Principle of the finite volume method. Let © be a polygonal open subset Bf,
T € R, and let us consider a balance law written under the genamal. f

uy 4+ div(F (u, Vu)) + s(u) =00nQ x (0,T), (2.1)

whereF € C1(R x R4, R) ands € C(R,R). Let 7 be a finite volume mesh &t. For the
time being, we shall only assume thats a collection of convex polygonal control volumes
K, disjoint one to another, and such thé:= Ux <7 K. The balance equation is obtained
from the above conservation law by integrating it over a mdntolume K and applying the
Stokes formula:

/K us der/aK F(u, V) - ng dvy(z) +/I.(s(u) dz = 0,

whereng stands for the unit normal vector to the boundafy outward toX and~ denotes
the integration with respect to tt{d — 1)—dimensional Lebesgue measure. Let us denote by
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£ the set of edges (faces in 3D) of the mesh, 8pahe set of edges which form the boundary
0K of the control volumeX. With these notations, the above equation reads:

/Kutda:—i— Z F(u,Vu)-an'y(x)—i—/ (u)dz =0.

S
o€k V7 K

Letk = T/M, whereM € N, M > 1, and let us perform an explicit Euler discretization of
the above equation (an implicit or semi-implicit discratipn could also be performed, and
is sometimes preferable, depending on the type of equatdahen get:

(m+1) _ 4, (m)
/ %dm + Z /F(u(m),Vu(m))-nK dw(m)—l—/ s(u™)dx =0,
K

oceEx Y K

whereu (™) denotes an approximation af-, t(™)), with (™) = mk. Let us then introduce

the discrete unknowns (one per control volume and time iﬁeﬁ@)))Kef meN; assuming
the existence of such a set of real values, we may define awigeonstant function by:

u(Tm) € Hr () : ug—m) = Z u%n)lK,
KeT

whereH7(2) denotes the space of functions fréivio R which are constant on each control
volume of the mesi, and1k the characteristic function ok, that islx(z) = 1if © €
K, 1g(z) = 0 otherwise. In order to define the scheme, the flugkes (u(™, Vu(™) .
ng dy(z) need to be approximated as a function of the discrete unksioWe denote by
FK,a(u(Tm)) the resulting numerical flux, the expression of which degeamdthe type of flux
to be approximated. Let us now give this expression for vargimple examples.

First we consider the case of a linear convection equatfat,is equation (2.1) where the
flux F(u, Vu) reduces td (u, Vu) = vu, v € R4, and s(u) = 0:

us + div(vu) = 0 onQ. (2.2)

In order to approximate the fluxu - n on the edges of the mesh, one needs to approximate
the value ofu on these edges, as a function of the discrete unknaynassociated to each
control volumeK . This may be done in several ways. A straightforward chade approx-
imate the value of; on the edger = o1 separating the control volumés and L by the
mean valu%(uK + ur,). This yields the following numerical flux:

UK + Uf,
2

wherevg , = fg v-ng ., andng , denotes the unit normal vector to the edgeutward to
K. This centred choice is known to lead to stability probleams] is therefore often replaced
by the so—called upstream choice, which is given by:

Fl(éz’u)(uj—) = v}youK — Vg oUL, (2.3)

wherezt = max(x,0) andz™ = — min(z,0).

If we now consider a linear convection diffusion reaction&tpn, that is equation (2.1) with
F(u,Vu) = —Vu+ vu,v € R?, ands(u) = bu, b € R:

ug — Au + div(vu) + bu = 0on €, (2.4)
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the flux through a given edge then reads:

/F(u)-nKJ:/—Vu-nK,g—l—v-nK,g u,

so that we now need to discretize the additional tdgn%Vu ‘ng »; this diffusion flux
involves the normal derivative to the boundary, for whicloagible discretization is obtained
by considering the differential quotient between the valuer in K and in the neighbouring
control volume, let say.:
O (ur) = A7 (g~ ue). (25)
KL
where|o| stands for théd — 1)—dimensional Lebesgue measureaindd k1, is the distance
between some points df and L, which will be defined further. Using the above upstream
scheme (2.3) for the convective part of the scheme, we thtirotine following numerical
flux:
FED ur) = = A7 (u — ) + v s — i .
s dKL s s
However, we are able to prove that this choice for the diszaton of the diffusion flux
yields accurate results only if the mesh satisfies the deetalthogonality condition, that is,
there exists a family of point&c i) k7, such that for a given edgex ., the line segment
xxxy is orthogonal to this edge (see figure 2.1). The length is then defined as the
distance betweenm andxj. This geometrical feature of the mesh will be exploited to
prove the consistency of the flux, a notion which is detaitethie next section. Of course,
this orthogonality condition is not satisfied for any meshcl$a family of points exists for
instance in the case of triangles, rectangles or Voronshe® We refer to [40] for more
details.

FIGURE 2.1. Notations for a control volume

3. Convergence analysis for the steady state reaction coroten diffusion equation.

3.1. The continuous and discrete problemsLet Q2 be an open bounded polygonal
subset ofR?, d = 2 or 3, f € L?(Q2), v € R? andb € R, and let us consider the following
steady-state linear convection diffusion reaction eguati

—Au + div(vu) + bu = f on{, (3.2)
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with homogeneous boundary conditions@i. A weak formulation of this problem is:

Findu € H}(Q) such that
3.2)

/QVu-qudx—i—/gdiv(vu)qbdx—i—/ﬂbu(bdx:/Qf¢d$, Vo € Hi(Q). (

Let(7,&,P) be adiscretization dl: 7 denotes the set of control volumésthe set of edges
of the mesh?pP the set of points satisfying the above mentioned orthogiyr@indition. The
finite volume scheme may be written under the following weak.

ur, dlr + cr(ur, ) +/ buréds = / fédr, Vo € Hr(9). (3.3)
Q Q

{ Findur € H7 () such that
where:

1. H7(Q) is the space of piecewise constant functions on the conttohves of7,

2. the inner produdt, -7 is defined by:

[w,vlr = Y |UKL|(UL_UK)(UL_UK)+ > d|a| UK VK,

d
oKk LEEint KL 0E€Eext Ko

whereé;,; (resp.€ext, £x) denotes the set of edges includedirfresp. o, 0K),
|o| the (d — 1)-dimensional Lebesgue measuresofdy, the distance between
xx andxy, (see Figure 2.1) andk , the distance betweeny ando; in the first
summationg g, denotes the edge separating the control volukieend L, and in
the last summation, the voluni€ is the unique volume to which is an edge.

3. the bilinear convective form is defined by:

r(ur,0) = Y K ) (i uk + Vg uL).

KeT o€k

The finite volume scheme may equivalently be written undemiore classical flux form:

> Frolur) + b Klux = |K|fx, VK € T, (3.4)

oc€EK

where| K| denotes thé dimensional Lebesque measurefofand:

d|0| (up —ug)+ vK SUK — Vg UL, if o =okr,
Fr o (ur) = |K|L (3.5)
fdi(qu) + v} Juk, if o is an edge of K located o,
KL ’

Indeed, takingy = 1k in (3.3), it is easily seen that (3.3) implies (3.4). Conedyslet
¢ € Hr(Q2). Multiplying (3.4) by ¢k, summing the resulting equations for &l € 7 and
reordering the summations leads to (3.3).

One may also define a discrete Laplace operatdf-nin the following way. Forv € Hr,
let A7v € Hr be defined by:

d
OSTU = |l(| 2{: }ﬁéz

c€€K



6 R. Eymard, T. Gallouét, R. Herbin and J.-C. Latché

where:
(d) 7d|o-| (ULva) ifO':O'KL,
FK,O’(/U) = |§|L (3.6)
———(—vg) if o C 0.
drr,

Then one may remark that, thanks to the property of congeityadf the flux (that isFx , =
—Fp, , if 0 = 0k), One has:

[u,v]7 = f/ Aruvdxr = f/ u Arvdz, Vu,v € Hr (Q). (3.7)
Q Q
The formulation (3.3) highlights a property of finite volureehemes for elliptic equations,
namely the fact that, as Galerkin methods, they may be defieen a coercive variational
formulation. However, because of the non-conforming reatidifinite volumes, going further
in the analogy with Galerkin methods does not seem to be afipedinterest: the coercivity
of the formulation is not inherited from the coercivity oftlcontinuous problem but rather
stems from the conservativity of the fluxes; even if the cogeace of the method is proven
by an analogue of the second Strang lemma, classical in ikeediement framework, it relies
in fine on the consistency of the flux, at least in the presently albbdlanalyses.

Note that, thanks to the following Poincaré inequality @hholds foru € H7 (see e.g. [40,
Lemma 9.1]):

l[ull L2y < diam(€) [|ul|1.7, (3.8)

we may define a mesh dependent "discrBte norm” using the inner product introduced
above:

iy = () = (Y AT —we?+ 3 A2 @)

dxr
oKk LEEint 0E€Eext 7

3.2. Convergence results.The mathematical analysis of any numerical scheme must
address the question of existence of a solution, which ieragasy here since the problem is
linear, and the question of convergentce.( “does the approximate solution converge to the
solution of the continuous problem as the mesh size tend2th @ related question is the
obtention of a rate of convergence, through error estimagslly conditionned to regularity
assumptions on the continuous solution. The proof of thee@gence of the finite volume
scheme for a semi-linear equation generalizing (3.1) wsisdioven in [39] (see also [40]).
We shall state the result here for the linear case, and exghlaimain steps of the proof, since
the presented techniques extend to nonlinear problems.

Under the assumptions given at the beginning of this sedtimeasily seen that the system
(3.3) (resp. (3.4)) has a unique solutitny ) ker (resp. ur € Hr). Let (7,)nen be a
sequence of finite volume discretizations satisfying ttteagonality condition, and leir,
be the size of the mesh,, that is the maximum of the diameters of the control volunfes o
7T,. We suppose thdt;;, — 0 asn — +oo and we are going to show that, in this case, the
corresponding sequencer, ),en converges in.?(Q2) to the unique solution of (3.2). The
proof of this result may be decomposed into four steps:
1. We first get soma priori estimates on the approximate solution in fiig norm and
the L2 norm which yield existence (and uniqueness).efsolution of the scheme.
We can then also deduce the weak convergenc@:.ef),cn in L?(Q), up to a
subsequence, to soniec L?(12).
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2. Strong convergence and regularity of the limit, thatiis H{(f2), are obtained
through a kind of discrete Rellich theorem, which we shadiadie in the sequel.
3. The fact that the limit: is a weak solution of the continuous problem is obtained by
a passage to the limit in the scheme kas— 0).
4. We then use a classical argument of uniqueness to shovhihathole sequence
converges.
Note that we do not need to assume the existence of the gotatie continuous problem:
we get it as a by-product of the convergence of the schembelpresent easy linear case, this
is quite useless, since existence is well-known. For mompticated nonlinear problems,
obtaining the existence of the solutieta the convergence of the numerical scheme may
come in handy (see e.g.[9]).

These four steps will be detailed in the following paragafar the pure diffusion operator,
for the sake of simplicity. We also sketch the proof of orleronvergence ir.?2 and Hy
norms, under regularity conditions on the solution, namely H?(2). Note that the up-
stream scheme for the convection flux does not lead to anyiaadli difficulty, see [39, 53].
Order 2 convergence in th?> norm may be proven for the pure diffusion operator on uni-
form grids. However, the same result on triangular meshag;his observed in numerical
experiments, remains an open problem; recall that higharargence rates in weaker norms
(including this special case) are known and proven for madekin methods via duality
arguments (the so-called Aubin-Nitsche lemma, [24]).

3.3. A priori estimate. DEFINITION 3.1. Let ¥ be a function of.?(92). We define its
discreted —! norm by:

/wvdm
H\II||717T: Sup 97 (310)
veHr (Q),0#£0 [vll1,7

Note that, by the discrete Poind&inequality (3.8), we have:

W17 < diam() [[W]| 2o

Assumingv = 0 andb = 0 and using the notation (3.3), the finite volume scheme reads:
[ur,vlr = | fuvdx, Vv € Hr(Q).
Q

Choosingv = ur, we get by the Cauchy—Schwarz inequality:
lurllir <[Ifl-17- (3.11)

Taking f = 0, we thus obtain uniqueness (and therefore existence) afiticeete solution.
This estimate also yields weak convergence of a subsequéraggroximate solutions in
L?(Q).

3.4. Convergence theoremNow that we have the weak convergence of the approxi-
mate solutions, we need some control on their oscillatitmghe finite element framework,
the family of approximate solutions is bounded/ift (€2), and one may therefore use the
Rellich theorem to obtain compactnesdif(Q2). This is not the case here, but we note that
the Rellich theorem derives from the Kolmogorov theoremicWlgives a necessary and suf-
ficient condition for a bounded family di? (©2), p < +o0, to be relatively compact. Because



8 R. Eymard, T. Gallouét, R. Herbin and J.-C. Latché

of the lack of regularity of our approximate solutions, th@idogorov theorem is an adequate
tool. In order to use it, we need some estimates on the titessid functions off (). In-
deed, one may show, in a way which is close to that of the coatis case (replacing the
derivatives by differences) that for any functiore Hr(€2), one has:

[o(- +n) = vll72) < Inl (Inl +4h)) |lol[i 7. V7 € R?

From this estimate, we may deduce the following result.

THEOREM 3.2 (Discrete Rellich theorem).et (7,,).,.cn be a sequence of finite volume dis-
cretizations satisfying the orthogonality condition, Bubathr, — 0, and let(u,)nen C
L?(Q) such thatu,, € Hz, and|ju,|1.7, < C, whereC € R. Then there exists a subse-
quence(u, ey andu € Hi(Q) such thatu,, — uin L*(Q) asn — +oc.

From the discretéd! estimate (3.11), we then deduce from the above theorem riiegst
convergence of a subsequence of the approximate solutidi’{ €2), to some function €
HL(Q).

3.5. Passage to the limit in the schemeWe now need to show that the limit is
solution to (3.2). Let(7,,) be a sequence of discretizations such fthat — 0. For each
mesh7,,, the finite volume scheme reads:

[uz,,v]T, = / fvdz, Yv € Hr, (Q). (3.12)
Q

LeEMMA 3.3 (Consistency of the discrete Laplace operathet.7 be a finite volume mesh
satisfying the orthogonality condition. We denoteftyyandIl; the following interpolation
operators:

Pr : C(Q) — Hr(Q), Pro(z)=p(rk), Vee K,VKeT, (3.13)
1
Oy : L2(Q) — Hr(Q), Trp(z) = W/ pdr, Vre K, VK cT. (3.14)
K

For ¢ € C°(Q), let us define the consistency errin () € Hr () on the discrete
Laplace operator by:

Ra1(p) = ArPro — Iz (Ap).
Then there exist§’, depending only o such that:
[Ra7(0)ll-1.7 < Cphr. (3.15)

Proof: Fory € C2°(12), one has:

[Ra,z(P)l-1,7 = sup X (v),
veHr (), o]l 7=1

with:
X(v) = > |K|[(ArPro)k vk — (7 (Ap))k vk] .-
KeT

For h7 small enoughy vanishes in all the control volumes having an edge on the dayn
of the domain so that, by definition &+, Py andIlz, one has:

X@) =Y vk [Z Fo(Pre) ~ [ Vo mico dv(fc)]
KeT 0EEK 7 (316)

= Z |O'|RK0‘(§0) (UK 7UL)5

ok LEEint
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whereRk () is the consistency error on the fluxes, defined by:

Rk .o (p) = %(FK,U(PTSO) */ Ve ng . dy(z)).

g

Now we use the property of consistency of the fluxes, nameli/fdr a regular functiorp,
there exists, € R depending only orp such that:

R0 ()| < cohr.

This result, proven in [40], is a central argument of the firtaequires on the orthogonality
condition for the mesh, and is obtained by Taylor’s expamsioBy the Cauchy—Schwarz
inequality, we then obtain from (3.16) that:

X(v) < Cohr|v|

1,7,
which concludes the proof.

An immediate consequence is the following corollary.

COROLLARY 3.4. Let (7,),en be a family of meshes satisfying the orthogonality property
and such thatr, — 0. Let(uz, )nen C L3(Q) anda € H*(Q) such that|ur, |17 < C,
whereC € R, anduz, — @ in L?(Q) asn — +oo, then:

/ ur, Az, (Pr,e)de — | @ Apdrasn — +oo, Vi € C°(Q).
Q Q

We now sketch the proof of convergence of the scheme. Letwsai®v = Pz, ¢ in (3.12).
Thanks to (3.7), we have:

—/uTHATnPTntdec:/fPTngodx.
Q Q

Let us then pass to the limit as— +oo. From Lemma 3.3 and the fact that the right hand
side converges t¢,, ¢ dz, we get that:

—/@A(pda::/f(pdm.
Q Q

Since we know from the previous step thiat H}(2), we obtain thati is indeed the solution
to (3.2).

3.6. Error analysis. The key argument for the error analysis is the fact that thre co
sistency lemma (3.3) still holds, under regularity assuomstfor the mesh, fop in H?(Q2).
Using the variational form of the scheme (3.12), we have:

[ur, — Pr,u,v]r, = / fvdz — [Pr,u,v]|r,, Yv € Hr, (),
Q

whereu is the solution to the continuous problem. Integrating thatinuous equation
—Au = f over each control volume to replace the first term of the riggnid side of the
preceding relation, we get:

[ur, — Pr,u,v]r, = / Ra 1, (w)vdz, Yv € Hr, (),
Q

and a first order convergence result in fiig norm (and thus, thanks to the Poincaré inequal-
ity, in the L? norm) follows by the stability estimate (3.11).
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4. The parabolic case.

4.1. The continuous problem.We now consider a transient convection diffusion equa-
tion. LetT > 0, up € L?(Q) andv € R be given; the partial derivative equation at hand
reads:

u:Qx[0,T] = R;
up +div(ve) — Au=0inQ x (0,7,

w=0in8Q x (0,T), (4.1)
u(.,0) =upin Q.
A weak formulation of this problem is:
Findu € L?(0,T; H(2)) suchthat,; € L2(0,7; H-*()) and
< U, >p-1 gl Jr/ Vu(z, ) Vo(z,)de =0, Ve € H&(Q), 4.2)
Q

u(-,0) = uo.

As in the steady state case, we shall use some estimates warikkates of: in order to get
some compactness properties, despite the lack of regutdiihe approximate finite volume
solutions. To get some insight into what kind of estimatessiveuld be aiming at, it is
informative to look at the estimates that can be obtainechercontinuous solution. First,
we see that since € L?(0,T; H}(f2)), we have the following estimate on the translates in
space:

lu(-+n,-) = ul, 20,7 L2 < Clnl, ¥n € R
Then, sinceu € L?(0,T; H3(2)) andu; € L?(0,T; H~1(Q)), the following estimate on
the time translates holds:

[u-, - +7) = u )01 2 < Cl7I%, V7 € R.
We shall therefore look for the same kind of estimates in teerdte framework.

4.2. The finite volume schemelet k¥ = 1/M be the (uniform) time step. The finite
volume scheme, using an implicit Euler scheme in time, reads

n+1

M+ZFKU n+1):0, OSNSM_L
oeex (4.3)
u°
x)dx.
o
with Fie , (uit!) = d'—'(ul”‘1 with) + v Juitt — ok ultt
KL

The existence and uniqueness of a solufief} ),en to (4.3) is easily deduced from the
steady state case. Let us denote the approximate solutiog Hp(Q2 x (0,7)), where
Hp(Q2 x (0,T)) denotes the set of functions 67 (2 x (0, T")) which are piecewise constant
on the subset& x (¢,,t,+1). Using a variational technique similar to the way the estéama
(3.11) is established in the steady state case, the folpavipriori estimates omp may be
obtained:

llup|lLe=0,7; L2(2)) < C, kz lup (-, tn)llfp < C. (4.4)
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whereC only depends on the initial condition. As in the steady statee, the second relation
above yields an estimate on the space translates:

1
lup(-+n,-) = up(, )20, 120 < C(Inl(Inl + hp)) 2, ¥ € R
We then have an estimate on the time translates:
1
lup(:, -+ 7) —up(,)llL20,7; L2)) < Cl7|2 VT € R.

By a discrete Rellich theorem, we deduce as in the steady stete the convergence in
L?(0,T; L*(Q)) of up to some functiom: € L?(0,T; H}(Q)). As in the elliptic case, a
passage to the limit in the scheme yields that u, weak solution of (4.2). This analysis
may be generalized to the case of non-homogeneous Diriobilatdary conditions, see [9].

5. The Stokes problem.A huge amount of litterature is devoted to the numerical-solu
tion of the Stokes and Navier—Stokes equations. Among tbpgsed methods is the well-
known finite element method [54, 55, 58] and finite volume rodtfY2, 73]; finite difference
schemes on staggered grids were also studied [69, 70]. Viesdf staggered scheme was
also generalized to non—cartesian finite volume grids [2].,, Mowever, staggered grids are
not easy to handle in the computational practice, and sewelgstrial and commercial codes
are based on co-located finite volume method, that is a methede the primitive variables
(velocity and pressure) are used, and all located withiserdiization cell; in this section we
shall give an example of a co—located finite volume scheme/fach a convergence theory
was developped for both the Stokes and Navier—Stokes eqsati

5.1. The continuous problem.The centred finite volume scheme may also be used to
discretize the Navier—Stokes equations. For reasons qfigiity, let us start with the steady
state Stokes equations. The aim is to findQ2 — R¢ andp : © — R such that:

—vAu+Vp=f inQ,
divu =0 inQ, (5.1)
u = 00noQ, /pdz:()
Q

Let E(Q) := {v € (HZ(Q))?, dive = 0 a.e. inQ}, and assume that € L2(Q2)4. A weak
formulation of (5.1) is:

uw=(u ... uD) e BQ), 1// Vu:Vvdzz/fwdz, Yv € E(Q), (5.2)
Q Q

with / Vu:Vudr = Z vu® . Vol da.
Q i=1,d”$
5.2. Discrete gradient and divergenceAs in the preceding sections, we consider the
discrete spacél(Q2) C L?(Q) of piecewise constant functions on the control volumes. In

order to construct a finite volume scheme, we need to digeréie divergence operator. Let
us remark that for € H'(Q)¢, one has:

/K divudr = Z / U N gy, dy(T).

LEN| YV IKL
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Adopting a centred discretization ofn ono k1, leads to the following definition of a discrete
divergence operator:

. 1 Ug + U
foru e HT(Q)d, (leTU)K = m Z |0'KL| % "NK oxrs
LENK

so thatdivzu is a linear operator frontl7(Q2)? to Hr(2). Note that one could also choose
a more precise interpolation of the values anduy, than their mean value, see [44].

REMARK 1. Note that sincerx .., = —nr o, , We have:
/ divru(z)de = Y |K|(divzu)kx = 0,Yu € H(9). (5.3)
Q KeT

Now we define the discrete gradient as the adjoint of the elisativergence, that is a linear
operatorV 1 from Hz(Q) to H7 ()4 such that:

/ divyupdr = —/ u-Vopdr, Yue Hr(Q)? Vpe Hr (Q).
Q Q

An easy calculation leads to:

S ol pL—pr) (5.4)

1
(va)K = |— B
LeNk

K]

Since Z lokL| nk o, = 0, 0ne may also write the discrete gradient as:
LeNk

1 pL + DK
(Vrp)x = K| Z lok Ll (72) DKo (5.5)
LeNk

this latter form being conservative.
Let us then give some convergence properties of the disgratkent.
THEOREMS5.1 (Weak convergence of the gradienitt (7, ),.cn be a sequence of admissible
meshes of2 with vanishing mesh size, arid,,),en C L?(Q2) such thatu,, € Hz, (Q) and
|[u™]||,.7, < Cforalln € N. Then there exists € H{(Q) and a subsequence @f™),,cx
(still denoted(u(™),,cy) such thatu(™) — @ asn — +oo in L?(Q2), and such that, for any
p € C°(V),

1. hIJIrl W™, Pr o), = / Va-Vedz.

2. Vr,u™ weakly converges t&'z in L?(Q)? asn — +oo.
Item 1 is already known from the study in the elliptic casem2 follows from the following
lemma.
LeEmMA 5.2 (Consistency of the discrete derivativdsdt 7 be a finite volume mesh satisfy-
ing the orthogonality condition. With the notations intraméd in Lemma 3.3, let € C°(€2),
let us define the consistency erBp, 7(¢) € Hr(€2) on the discrete derivative by:

Ro,7(¢) = 0 Pro — (07 ¢).
Whereag)PTgp stands for the componefit of the discrete gradient above defined. Then:

R, (@)l -1,7 < Cyhr.

The proof of this lemma uses the consistency of the apprdiomaf the normal fluxu - n
(see [43] for detalils).
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5.3. A stabilized finite volume scheme for the Stokes equatis. Let Er(Q2) = {u €
(H7(Q))4,divy (u) = 0}, then a natural finite volume discretization of problem (5s2)

u € Er(Q), viu, vl = / f-vdz, Yve Er(Q),
Q

where[u, v]7 stands foy ", _, ,[u, v()]7. However, this is not a very useful form since the
"direct” construction of the spadg7 (1) is far from being an easy task. The standard way to
proceed is then to write the conditidiv;(u) = 0 as a constraint, but it is well known that
such a scheme yields some stability problems, related téattighat the inf-sup condition

is not satisfied for colocated schemes. A cure for this prabiMhich has become classical
in the finite element framework, is then to use a modified djgace constraint including a
stabilization term, which yields a scheme of the followiogh:

(u,p) € H7 ()" x Hr (),

viu,v]r — / pdivy(v)de = / f-vde, Yve Hr(Q)Y,

: . . (5.6)
[ divo(u)ads = (v g7 v € Hr (),

)

where
g
(P, @) A = Z AK|L |dKL| (pr — pr)(9L — gK) (5.7)
ok L EEint KL

and the coefficients x|, are determined according to the choice of stabilization. rét fi
possible choice [43], inspired by the well known BrezzikRitinta [14] scheme in the finite
element framework, is to takex |, = Bhp“, a € (0,2). A stabilization by “clusters” was
recently introduced [22, 45], which yields a scheme for wttlte accuracy is less affected
by the size of the stabilization coefficient [21]. The ideadsntroduce a partition of the
mesh into clusters, each cluster containing some conttohwes of the mesh. It is assumed
that the maximum diameter of each cluster is bounded by aaoitEmes the mesh size, and
therefore, it tends to zero with the mesh size. For any comptame K we denote by i the
cluster which contain&’; letv > 0, we define the cluster stabilization by:

Y _ 05 CK ?écln
KIL = ~, Cx =Cy.

Note that one could also consider a stabilization terom each cluster which would depend
on i, and would lessen the weight of the stabilization withinteeloister. The pros and cons
of the various choices are currently being investigated.

Stabilizations by penalization of the pressure jumps acedther all the internal edges of the
mesh or only the internal edges of macro-elements havedgiteeen proposed in the finite
element context for the stabilization of the so-caligd— Q) element [61]; besides an exten-
sion to the finite volume framework, the above scheme coredidy generalizes the notion
of macro-element. Indeed, under some simple geometrisahgstions for the clusters, we
are able to prove that the pair of spaces associdiin¢2)? for the velocity and constant by
cluster pressures is “inf-sup stable” [46]. The clusteb#itzation can then be interpreted as
a minimal stabilization procedure, as defined by Brezzi aodi[13]; this interpretation
suggests a variation efas the square of the mesh size.
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The finite volume scheme (5.6) may also be written in its méaesical flux form:

o o

PN AR ED W
LeENK KL o€EK NEext Ko
+ Y Jox) pr=pr) :/ fdr., VK eT,
2 K
LeNKk
Z Gr,p(ur,pr) =0, VK €T,
LeENK
where
U +u o
Gk.r(ur,pr) = |UKL|% ‘DK o + AKL |dKL| (pr — k). (5.8)
KL

This finite volume scheme must be supplemented by the condjtipr dx = 0.

As in the elliptic case, the convergence analysis for tHigste is based ampriori estimates.
First, takingy = u7 andq = p7 in (5.6) yields:

v lur |z +vipzlza < 112

where|| - |1,z and|| - |17 are now the discreté/! and H~! norms onHz ()¢, easily
deduced from their scalar counterparts, ang- is the semi—norm associated with the inner
product defined by (5.7). Note that for both considered Btaltions, the above estimate on
the pressure is mesh dependent, and therefore does noayieifbrm estimate.

The second step is then to prove Af estimate on the pressure. To this purpose, we take
benefit of the fact that the inf-sup condition is verified a tontinuous level, so there exists
v € H}(Q)? such thatdive = pr and||?| g ()« < Cllp7|r2(0) [68]; takingIl7v as test
function in the first relation of the scheme (5.6) then yiedatel estimate ofipr||z2(q) —

|p7 |7, which, combined with the preceding bound, yields the result

From these estimates, we then obtain existence and unigsiefie andp solution to (5.6),
which implies the weak convergence of both velocities aresgure inL?(Q2). As in the
elliptic case, the compactness on the velocities, and thdagty of the limit, are obtained by
estimates on the translates. We thus obtain the strong gevee inL.?(2) of a subsequence

of the approximate velocities to somec H(}(2), and the convergence of a subsequence of
approximate pressures to someveakly in L2(Q2). In order to conclude the convergence
proof, we then considep € C°(Q2), andv = Pry in (5.6). A passage to the limit as
the mesh size tends to 0, using the weak convergence of thegdivce and of the gradient
(Theorem 5.1) yields thdti, p) is the solution to (5.2).

If we assume that the weak solutitm p) to (5.2) belongs td72(Q)? x H*($2), we may also
obtain an error estimate, we refer to [43, 44] for both thBcakand numerical results.

6. Transient isothermal incompressible Navier StokesLet us now consider the (adi-
mensionalised) isothermal incompressible Navier Stokesseeku :  x [0,7] — R and
p:Qx[0,T] — R such that:

ur — vAu+diviu®@u) + Vp = fin Q x (0,7,
divu =0, inQ x (0,7,

u=0Iin9Q x (0,T)

u(+,0) = upin Q.

(6.1)
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whereug € L*°(Q), anddiv(u ® u) = Zle 9;(u ® u);, so that ifdivue = 0, thendiv(u ®
u) = Zle w0 = (u - V)u.

Let us then consider a convenient weak formulation of (Grijhe sense that it is the for-
mulation obtained when passing to the limit in the finite vouscheme which we shall
introduce in the sequel (see e.g. [77] or [10] for other weakiulations). LetE(Q2) = {v €
H ()4 dive = 0 a.e. inQ}; we seek a function of time and space such that:

we L2(0,T; B(Q)) N L=(0,T; L2(Q)%),

/ /u 8tg0d$dt—/u0 (-, 0) d$+l// /Vu:Vgpdxdt

2 (6.2)
/ / u-Vu-pdedt = / f(z) - pdxdt,

Q Q

Vo € L2(0,T; E(Q)) N C2(Q x (—o0, T))%

In order to define the finite volume scheme, we need to digerdétie nonlinear convection
term, which is integrated on a control voluriein the following way:

/(u-V)udm:/ (u-ng)udy(x Z / (u-ngo)udy(z),
K 0K cEEK
which is then naturally discretised as:

> Grurlur,pr)

oc€€k, o=K|L

UK +ur,
2

whereGk 1. (ur, p) is the discretisation of the mass flux through the edge sépgr& and
L which was introduced in (5.8). We then obtain the followirgcdete approximation of the

nonlinear formb(u, v, w) = / (u-V)v-wdz:
Q

vk + VL

br(ur,vr,wr) = Y Gr(ur,pr) 5

c€€K

WK .

We perform a time discretisation of the system of equatiérik) py the well known Crank—
Nicolson scheme:

un+1 n

57;“ FuAutE 4 @t vyt 4 Logpntd s
p

. 1
divu"tz =0,

with w3 = L(u" + u™*') andpn*ts = L(p" + p**'). With the same definition of
Hp(Q x (0,T)) as in the parabolic case (space and time piecewise constatidns), the
finite volume scheme for (6.2) may then be written:

(up,pp) € Hp( x (0,7))% x Hp (2 x (0,T)),

U%Jrl —uh nal L
/*de—i—u[up 2,U]D+bp(u uD 2,0)
Q

ot . (6.3)
— / pp 2divp(v) do = / f-vdz, Yve Hr(Q)Y,
Q Q

n4i
/Q d1vD(uD ) qdr = <pD+2,q>T,/\; Vq € Hr (),
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with up"tz = S (up™ + up™tt) andpp"tz = 2(pp™ + pp™™!'). As in the previous
sections, the convergence of the scheme is obtained by dirsirty a compactness property
for a family of approximate solutions, thanks to some ed®an the translates, which
are a bit more difficult to obtain in the present case. Let wsrfstance study the three—
dimensional case and have a glance at the estimates ontiskates which may be obtained
for the continuous problem. Letbe a solution to (6.2). First, sineec L2(0,T; E(Q2)), we
get that:

u(-+m,) =l )21 L2 < Clnl, Y € R?. (6.4)
Next, sinceu € L2(0,T; E(Q)) andu; € L3 (0,T; E()'), we have that:

1

lu(:, -+ 1) — ul, .)||L%(O7T; L) <C|7|z, VT €R. (6.5)
In fact, we may also remark that we have the simpler estimates (0, T; E(Q2)) and
uz € L1(0,T; E(Q)") which yield:

[uy - +7) = u o L2 < Cl7l?, ¥r € R. (6.6)

but note that, contrary to the parabolic case, we havét{0, T; L*(2)?) estimate on the
time translates. We thus derive corresponding discretmatss to (6.4) and (6.6) for the
discrete problem. Leip € Hp(Q2 % (0,7)) be a solution to (6.3). Then there existss R
depending only o, v, ug, f,T such that [43]:

lup Lo (0,7; L2(y3) < C and|lupl|2(0,7; Hp () < C.

Furthermore, if one assumes some reasonable regularitpnasions on the mesh, see [43],
then there exist6’ € R, depending only o2, v, ug, f, 7" and on the regularity of the mesh,
such that the following estimates on the space and timel&izsshold:

lup (- +n,-) = up (-, )l 207 L2002y < C(Inl(In| + hp))*, Vne€R?, 6.7)

lup (- +7) —up(,)lLio,r; L2()3) < CT%, v1 e Ry

The estimate on the space translates is identical to thégidzaase; the proof on the time
translates, however, is much more technical, in partidoémause we have to deal wifl
and notL?, we refer to [43] for details. The proof of the convergencthefdiscrete approx-
imation up to the solution of (6.2) may be found in [43] in the case whéregtabilisation
pressure term is not taken into account in the nonlinearexivwe term. The proof in the case
presented here is somewhat similar. Using the above estnaat the Kolmogorov theorem,
we get the convergence of a subsequence of the approxiniatiess tou € L2(0,T; E(Q2))

in L1(0,T; L?(Q2)?) as the mesh size tends to 0. Finally, a passage to the linfieischeme
yields thata is indeed a solution of (6.2).

7. Hyperbolic equations. Let us finally briefly mention the wide use of finite volume
schemes for nonlinear hyperbolic equations. We refer to$%640, 62, 7] for more on this
subject. Here we only consider the following nonlinear hpodic equation:

{ ug + div(vf(u)) =0inR? x (0,7),

u(-,0) = up, (7.1)
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up € L=(Q),v € R, f € CY(R,R), f' > 0. Itis well known that the above problem is
well-posed, in the sense that it admits a unique weak ensolfution, that is a function
satisfying:

ue L®R? x (0,T)),

T
| [ e+ o vodsas [ aw@iewis =0 @2
VneC?R),®; & = f'n,VoecCRYx[0,T),Ry).

With the same notations as in the previous sections] bk a finite volume mesh a¢?. A
finite volume scheme with an upwind choice for the convediiaxcan be written:

u?jl —ul 41
————:ﬂ?———'4f :E: 1?;47 =0,n2>0,

1 0€EK
ul = W/Kuo(x)dx,
+

with: Ftl = ol f(uj!) — v, f(ul ). Note that this flux is consistent without any
condition on the mesh, since there is no more diffusion fluxltilying the scheme by i
and summing orK yields anL>° estimate onup: there exists only depending omg, T, v
such that:

[up || Lo Rax (0,7)) < C- (7.3)

Hence if we consider a family of meshes with vanishing sizeget the weak convergence
(up to a subsequence) tioin L>=(R? x (0,7)). This estimate is not sufficient to pass to the
limit in the scheme even in the linear case (except in the aagpiform meshes). In order to
obtain convergence we use the so-called weak-BV inequéitity used in the linear case in
[19] and nonlinear case in [20], and namBdl" because it involves the jumps of the discrete
function at the interfaces):

> kol (f(uf) = ful))* < C. (7.4)

(K,L)EE

This estimate is obtained thanks to the diffusion term adoledhe upwinding onf (u).
Roughly speaking, this diffusion term may be seen as thaatisation of the continuous
diffusion termhp Zle D;(|vs||f'(w)|Diu) (Wherev; denotes the—th component of, and

D; stands for the weak derivative w.r.t. theh variable), so that the scheme may be seen as
the discretisation of the following parabolic equation:

d
g + div(vf(u)) = hp Y Dy(|oil| ' (w)| Dyu) = 0 (7.5)
=1

Along the same lines, we may remark that BB& inequality (7.4) is related to the following
weak H! inequality obtained from Equation (7.5):

Vhp

Even though this inequality is sufficient to pass to the limthe linear case, it does not yield
strong compactness, so that one needs yet another toolnottiaear case. Indeed, from the

d

1
Z l|vi f'(w)Djul| 2 (x) < ——==, for any compact subsdt of R? x (0, 7).
i=1
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L estimate, we only obtain a weak star converging subsequeraggroximate solutions,
and the question is how to pass to the limit in the nonlingaiithe key to this point is the
nonlinear weakk convergence [34]or [40, page 965], which is equivalent ®ribtion of
Young measure [76]. The notion of nonlinear weak convergenay be stated as follows:
THEOREM 7.1 (Non linear weak convergence)Let (u,),cn be a bounded sequence of
L>(R94 x (0,T))-estimate. There existc L>=(Q2 x (0,T) x (0,1)) and a subsequence of
(tun)nen, still denotedu, )nen, such thay (uy,) tendstofolg(ﬁ(~, a))dain L (Q x (0,7))
weakx, asn — +o0, that is:

| st @) dw//g (2)drda,

forall o € L*(2x (0,T)) and allg € C(R,R). We shall say that,, converges (up to a sub-
-1

sequence) in the nonlinear weak star sense. (Note/hag(ﬁ(x,a))da = /g(s)duz(s),

: . . . 0 R
and thaty, is a probability onR) Using the nonlineax convergence, we get that a subse-
guence of approximate solutions converges to an entropl preess solution of (7.1), that
is a functionz such that:

ue L>®(R? x Ry x(0,1)),
/ /R / u)r + P(u) - Vodr dtda +/ n(uo(x)) p(z)dx >0, (7.6)

]R+
VneC*R),®; & = f'/,VyecC®R:x[0,T),Ry).

The following uniqueness theorem then allows to concludheaonvergence of the scheme
towards the entropy weak solution.
THEOREM7.2.If & € L>(2 x (0,T) x (0,1)), is an entropy weak process solution then:
e u(x, ) does not depends en
¢ 7 is the unique entropy weak solutian
The proof uses the doubling variables method of Krushkds, 8] or [40].
Hence, if we consider a family of approximate solutions orshes with mesh size tending
to 0, we get that there exists a subsequence of this sol@iatirtg to a weak entropy process
solution, which is, by the above theorem, the unique entrgpsik solution of (7.1). The
convergence holds if.? (R4 x (0, T))) for all p < oo. Note that (non optimal) error estimates
may also be obtained, see e.g. [34, 17, 78, 25].

8. Conclusions and perspectivesln this paper, we presented an outline of the analysis
of the cell centred finite volume method for elliptic, pardbequations, for the incompress-
ible Navier—Stokes equations and for scalar hyperboliceoration laws. Numerous works
now exist for the analysis of the cell centred scheme for aberof problems and applica-
tions; to cite only a few on elliptic or parabolic problenet,is mention the works on general
boundary conditions [53, 11], non coercive problems with! or measure right hand side
[30, 31]; other topics include nonlinear reaction diffusexrjuations and degenerate equations,
see [36, 64, 79, 38] and references therein, variationgliakties [60], hyperbolic equations
with boundary conditions and discontinuous fluxes: see §48] references therein. Similar
tools were also used fa posteriori estimatesand mesh adaptation [63, 71], domain de-
composition [1, 16, 75], numerical homogeneisation [35hoage processing [65, 66]. It is
quite impossible to give a full review on the ongoing workgimite volumes; let us however
mention the difficulty of anisotropic diffusion problems diffusion problems on distorted
meshes [2, 37, 28, 74, 8, 29], which gives rise to a number tfioas for the construction
of discrete gradients and divergence operators. Someitpamare also being developed
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for coupled systems leading to irregular right hand sid@s 18], and for diffusion problems
in the presence of singularities in the domain [4, 27]. Twagghflow in porous media was
maybe one of the major incentive for the development of tredyais of cell centred finite

volume schemes, and has been and still is often addresse82}17Boundary conditions

for hyperbolic problems [79, 5] and the difficult problem dfi@ent solvers for hyperbolic

systems [49, 50, 51] are also being intensively studied.
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