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ABSTRACT. This paper presents some methods for the study of linear elliptic equations. These
methods, now classical, are essentially due to G. Stampacchia. The second part of the paper is
devoted to the possible use of these methods for the study of numerical schemes for these linear
elliptic equations.

RÉSUMÉ. Cet article présente tout d’abord des méthodes non linéaires pour l’étude d’équations
elliptiques non linéaires. Ces méthodes, maintenant assez classiques, sont essentiellement dues à
G. Stampacchia. La seconde partie est consacrée aux possibilités d’utlilisation de ces méthodes pour
l’étude des schémas numériques pour ces équations elliptiques linéaires.
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1. Introduction

The first objective of this paper is to present some (now classical) results on linear el-
liptic equations with Stampacchia’s methods (initiated in [1], 1965). The common feature
of these methods is that there are nonlinear. Indeed, they use some test functions, in the
weak formulation of the equation, which are nonlinear functions of the unknown. Then,
the second objective is to see if it is possible to use these methods for the study of numeri-
cal schemes, in order to prove, for instance, some properties on the approximate solutions
or to prove the convergence of the approximate solution towards the exact solution as the
mesh size goes to zero. We will see that the use of these nonlinear methods requires some
restrictions on the numerical schemes which are not needed when using linear methods.
A possible consequence of this study is to give some guideline for the construction of new
numerical schemes allowing the use of these nonlinear methods.

In all this paper, Ω is a bounded open set of Rd (d ≥ 1) with a Lipschitz continuous
boundary. The set Md(R) is the set of d × d positive definite symmetric matrices. The
function A is a function from Ω to Md(R) with coefficients in L∞(Ω) and uniformly
coercive, that is, for some α > 0, A(x)ξ.ξ ≥ αξ.ξ for all ξ ∈ Rd and for a.e. x ∈ Ω. The
principal part of the considered linear elliptic operator is u 7→ −div(A∇u).

In Section 2 are presented four examples of application of these Stampacchia’s meth-
ods. In Section 3 is presented the study of numerical schemes.

2. Stampacchia’s methods

One fisrt considers the Dirichlet problem with the function A and a second member f
in L2(Ω), whose the classical weak formulation is:

u ∈ H1
0 (Ω),∫

Ω

A∇u · ∇vdx =
∫

Ω

fvdx, for all v ∈ H1
0 (Ω). (1)

2.1. positivity

As it is well known, (1) has a unique solution u and f ≥ 0 a.e. implies u ≥ 0 a.e. (or,
equivalently, f ≤ 0 a.e. implies u ≤ 0 a.e.). Assuming f ≤ 0 a.e., a simple way to prove
this result is to take v = u+ in (1), this is possible since u+ ∈ H1

0 (Ω) and leads to:

α‖|∇u+|‖2 ≤
∫

Ω

A∇u+ · ∇u+ =
∫

Ω

A∇u · ∇u+ =
∫

Ω

fu+ ≤ 0.
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Then, ∇u+ = 0 a.e. and u+ = 0 a.e.., u ≤ 0 a.e... A property used in this proof is
that, for u ∈ H1

0 (Ω), one has ∇u+ = 1u>0∇u = 1u≥0∇u a.e.. More generally (cf. [1]),
if ϕ : R → R is a Lipschitz continuous function such that ϕ(0) = 0 and if u ∈ H1

0 (Ω),
the function ϕ(u) belongs to H1

0 (Ω) and ∇ϕ(u) = ϕ′(u)∇u a.e.. (Actually, for all the
results given in this paper, it is possible to use only C1 functions ϕ.)

2.2. Bounded solutions (Stampacchia)

Let f ∈ H−1(Ω) and u be the unique of (1) where the second member is replaced
by 〈f, v〉H−1(Ω),H1

0 (Ω). The aim is to find a condition on the “regularity" of f in order to
obtain u ∈ L∞(Ω) (d ≥ 2, since there is no condition on f if d = 1). A result of G.
Stampacchia ([1]) gives that u ∈ L∞(Ω) if f ∈W−1,p(Ω) for some p > d. In the case of
(1), this gives that a sufficient conditiion in order to have u ∈ L∞(Ω) is that f ∈ Lp(Ω)
for some p > d/2. In order to prove this result, let p > d such that f ∈W−1,p(Ω). Then,
it exists F ∈ (Lp(Ω))d such that f =divF and one has:

u ∈ H1
0 (Ω),

∫
Ω

A∇u · ∇vdx =
∫

Ω

F · ∇vdx for all v ∈ H1
0 (Ω).

Let k ∈ R?+. Taking v = ψ(u) = (u − k)+ − (u + k)− (ψ is nondecreasing). One
has ∇ψ(u) = 1Ak∇u a.e., with Ak = {|u| ≥ k} and:∫

Ak

A∇u · ∇udx =
∫
Ak

F · ∇udx.

Then, with Cauchy-Schwarz and Hölder inequalites (with p/2 and its conjugate):

α‖|∇u|‖L2(Ak) ≤ C1‖f‖W−1,pλ(Ak)
1
2−

1
p .

Using Sobolev imbedding (W 1,1
0 (Ω) ⊂ Ld/(d−1)(Ω)) and Cauchy-Schwarz again:

λ(Ah) ≤
C2‖f‖γW−1,p

h− k
λ(Ak)β , for 0 ≤ k < h,

with γ = d/(d− 1) and β = p−1
p

d
d−1 > 1 (since p > d).

Since β > 1, this gives λ(Ah) = 0 if h ≥ C3‖f‖W−1,p . Then: ‖u‖∞ ≤ C3‖f‖W−1,p .

A further developpement of this proof leads to u ∈ C(Ω) and finally to the Hölder
continuity of u.

2.3. Existence of a solution for a measure as second member

Let f be a measure on Ω (f ∈ (C(Ω))′). The aim is now to prove existence (and
possibly uniqueness) of the solution of the Dirichlet problem with f as second member
(for d > 2, the solution is, in general, no longer in H1

0 (Ω) since a measure is, in general,
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not inH−1(Ω)). The First method to solve this problem is a duality method (Stampacchia,
[1]). A second method is to pass to the limit on approximate solutions (cf. [2]). The main
difficulty is to obtain estimates on u, solution of (1) with f ∈ L2, only depending of the
L1−norm of f . For θ > 1, let, for s ∈ R, ϕ(s) =

∫ s
0

1
(1+|t|)θ dt. Taking v = ϕ(u) ∈

H1
0 (Ω) in (1) leads to:∫

Ω

|∇φ(u)|2dx =
∫

Ω

|∇u|2

(1 + |u|)θ
dx ≤ Cθ‖f‖1,

with Cθ =
∫∞

0
1

(1+|t|)θ dt < ∞ and φ(s) =
∫ s

0

√
ϕ′(t)dt. Using Hölder Inequality,

Sobolev imbedding and θ close to 1, one obtains, for q < d
d−1 , a bound on u in W 1,q

0

only depending on the L1−norm of f and on q. Passing to the limit on a sequence of
approximate solutions (corresponding to regular second members converging towards f ),
one obtains existence of a solution (in the disctribution sense) if f is a measure. This
solution belongs to W 1,q

0 (Ω) for all q < d
d−1 .

2.4. Convection-diffusion without coercivity

Let w ∈ C(Ω)d and f ∈ L2(Ω). One consider now the following problem:

u ∈ H1
0 (Ω),∫

Ω

A∇u · ∇vdx−
∫

Ω

uw · ∇vdx =
∫

Ω

fvdx, for all v ∈ H1
0 (Ω). (2)

Existence and uniqueness of a solution for this problem is known (J. Droniou, [3]). The
main step is to obtain an a priori estimate on meas({|u| ≥ k}) (this measure goes to
0 as k → ∞). (Then, one obtains an H1

0 (Ω)−estimate and existence follows with a
topological degree argument. Uniqueness is a consequence of an existence result for the
dual problem.) In order to obtain this a priori estimate, one takes takes v = ϕ(u) with
ϕ(s) =

∫ s
0

1
(1+|s|)2 in (2), it gives:

α

∫
Ω

|∇u|2

(1 + |u|)2
dx ≤ ‖f‖1 +

∫
Ω

|w||u||∇u|
(1 + |u|)2

dx ≤ ‖f‖1 + ‖w‖∞
∫

Ω

|∇u|
1 + |u|

dx,

with ‖w‖∞ = supx∈Ω |w(x)| <∞. and, with Young Inequality:∫
Ω

|∇φ(u)|2dx =
∫

Ω

|∇ ln(1 + |u|)|2dx =
∫

Ω

|∇u|2

(1 + |u|)2
dx ≤ C,

where C only depends on α, ‖f‖1 and ‖w‖∞, and where φ(s) =
∫ s

0

√
ϕ′(t)dt. Since

ln(1 + |u|) ∈ H1
0 (Ω), one deduces an estimate on ln(1 + |u|) in L2(Ω) and then an

estimate on meas({|u| ≥ k}).
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3. Numerical schemes

In this section, the objective is to use the nonlinear methods of the preceding section
for proving some properties of the approximate solutions (of the same equations) given
by a numerical scheme and for proving convergence results of the approximate solution.
It is possible to use Finite Volumes schemes or Finite Element schemes. One present here
Finite Element schemes (it is simpler to present, since Finite Element schemes are closer
to the weak formulation of the continuous problem). LetM is a mesh of Ω, with triangles
(d = 2) or tetrahedra (d = 3). Let H = {u ∈ C(Ω); u|K ∈ P 1} and H0 = {u ∈ H;
u = 0 on ∂Ω}. The approximate problem is:

uM ∈ H0,

∫
Ω

A∇uM · ∇vdx (−
∫

Ω

uMw · ∇vdx) = T (v), for all v ∈ H0, (3)

where T (v) =
∫

Ω
fvdx or 〈f, v〉 of

∫
Ω
vdf in the examples of Section 2. The first diffi-

culty is that u ∈ H0 does not implies u+, ψ(u), ϕ(u) ∈ H0 (with the notations of Section
2). But, it is possible to take, as test function in (3), the interpolate of the test function
of the “continuous" case. Before to do this, we rewrite slightly differently (3) (taking, for
simplicity, w = 0 and T (v) =

∫
fvdx).

Let us denote by V the set of vertices of the mesh and , for K ∈ V , by φK the basis
function associated to K. The unknown uM may be writen as uM =

∑
K∈V uKφK , and

(3) may be written as, for all v =
∑
L∈V vLφL ∈ H0:∑

(K,L)∈(V)2

TK,L(uK − uL)(vK − vL) =
∫
fvdx. (4)

where TK,L = −
∫

Ω
A∇φK · ∇φLdx. (Note that

∑
L∈V TK,L = 0.)

If v ∈ C(Ω), let us denote by ΠM(v) the element of H such ΠM(v) = v at the
vertices of the mesh. Let ϕ ∈ C(R,R) Lipschitz continuous and nondecreasing and such
that ϕ(0) = 0. Taking v = ΠMϕ(uM) (which belongs to H0) in (4) leads to:∑

(K,L)∈(V)2

TK,L(uK − uL)(ϕ(uK)− ϕ(uL)) =
∫
fvdx. (5)

Define φ by φ(s) =
∫ s

0

√
ϕ′(t)dt. For a, b ∈ R, one has (thanks to Cauchy-Schwarz

Inequality) (φ(a)− φ(b))2 ≤ (a− b)(ϕ(a)− ϕ(b)). In order to be able to proceed as in
Section 2, we will assume now that TK,L ≥ 0 for all K, L ∈ V . Then (5) gives:∑

(K,L)∈(V)2

TK,L(φ(uK)− φ(uL))2 ≤
∑

(K,L)∈(V)2

TK,L(uK − uL)(ϕ(uK)− ϕ(uL)).

Since
∫

Ω
A∇ΠMφ(u) · ∇ΠMφ(u) =

∑
(K,L)∈(V)2 TK,L(φ(uK) − φ(uL))2, it is now

possible to continue as in Section 2. Let u = uM. If f ≤ 0 a.e., taking ϕ(s) = s+ one
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obtains
∫

Ω
A∇ΠMu+ · ∇ΠMu+dx =

∑
(K,L)∈(V)2 TK,L(u+

K − u
+
L)2 ≤ 0, from which

one deduces u+ = 0 and u ≤ 0 a.e..

In the case of the third example of Section 2 (where f is a measure data), taking, for
θ > 1 and s ∈ R, ϕ(s) =

∫ s
0

1
(1+|t|)θ dt, one obtains

∫
Ω
|∇ΠMφ(u)|2dx ≤ Cθ‖f‖1,

with φ(s) =
∫ s

0

√
ϕ′(t)dt. We then deduce convenient bound on u to conclude to the

convergence of the scheme (see, for instance [4], [5], [6]).

In the case of the fourth example (convection-diffusion without coercivity), one takes
the same ϕ as before with θ = 2. If the mesh size is small enough (or using an “up-
winding" for the convection part), one obtains an H1

0 (Ω)−estimate on ΠM ln(1 + |u|) ∈
H1

0 (Ω), then, an estimate on ln(1 + |u|) in L2(Ω) and finally, as in the “continuous" case,
an estimate on meas({|u| ≥ k}) (see [5]).

In conclusion, If TK,L ≥ 0, for all K,L, the methods of Stampacchia can be used for
the study of numerical schemes. Without the condition TK,L ≥ 0, it seems not easy to
use the methods of Stampacchia. . . Without changing the mesh (Finite Element or Finite
Volume with the so called “non admissible" meshes), a possible solution is perhaps to dis-
cretize this elliptic linear problem with a nonlinear scheme taking in (5) TK,L depending
on the approximate solution and with TK,L(u) ≥ 0, for all K,L.
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