On the time continuity of entropy solutions

Clément Cances™', Thierry Gallouét!

Abstract

We show that any entropy solution u of a convection diffusion equation
Oru+divE (u) — Ag(u) = bin Qx (0, T) belongs to C([0,T), Lie(2)). The
proof does not use the uniqueness of the solution.
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1 The problem, and main result

Convection diffusion equations appear in a large class of problems, and
have been widely studied. We consider in the sequel only equations under
conservative form:

Ou + divF (u) — A¢(u) = b, (1)

so that we can give some sense to (1) in the distributional sense. In this
paper, we consider entropy solutions of (1) that do not take into account
any boundary condition, or condition for |z| — +oo.

The proof does not use a L'-contraction principle (see e.g. Alt &
Luckaus [1] or Otto [11]), so that it can be applied in case where unique-
ness is not ensured, like for example complex spatial coupling of different
conservation laws as in [3], or for cases where uniqueness fails because of
boundary conditions or conditions at |z| = 400, as it will be stressed in
the sequel.

Let us now state the required assumptions on the data. Let 2 be an
open subset of R? (d > 1), and let T be a positive real value or +oc.

F is a continuous function, (H1)
¢ is a nondecreasing Lipschitz function, (H2)
uo € Liye(Q). (H3)
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One has to make the following assumption on the source term:
b€ Live([0,T); H™' () N Lioe(2 x [0,7)). (H4)

In the sequel, sign is the function defined by

0 if s=0,
sign(s) =< 1 it s>0,
-1 if s<0.

We consider entropy weak solutions of (1), as in the famous work of
Kruzkov [9] for hyperbolic equations. This notion can be extended to
degenerated parabolic equations, as noticed by Carrillo [4]. This leads to
the following definition of entropy weak solution:

Definition 1 A function u is said to be an entropy weak solution if:
1. u € L (2 x[0,T)),
2. F(u) € (L2.(2 x [0,T)))",
3. ¢(u) € Li([0,T); Hioe (),
4. Y € DH(Q x [0,T)), Vk € R,

/OT/Q lu — H|8m/)dmdt+/ﬂ|u() — k|(0)da
+/OT /Q sign(u — k) (F(u) — F(k) — Vé(u)) - Vpdzdt

T
—l—/(; /s; sign(u — k)bipdzdt > 0. (2)

Proposition 1.1 Any entropy weak solution is a weak solution, that is it
fulfills the three first points in Definition 1, and: Y € D(Q x [0,T)),

/OT/Quatwd:rdt—F/ﬂum/J(O)dx
+ /0 ' /Q (F(u) — Vé(w)) - Vodzdt + /0 ' /Q bpdedt = 0. (3)

Reciprocally, if ¢ is increasing, then any weak solution is an entropy so-
lution.

Proof

Suppose first that ¢ is increasing, then the fact that any weak solution u
is an entropy weak solution is just based on a convexity inequality, and
on the fact that sign(¢(a) — ¢(b)) = sign(a — b) for all (a,b) € R?. More
details are available in [4] (see also [8]).

The fact that an entropy weak solution u is a weak solution is obvious if
u belongs to Liy. (2 % [0,7T)) (consider k = =£||ul| Lo (supp(w)))-

Suppose now that u only belongs to Li . (€2 x [0, T)). Let x € R, then for
all v € D(Q2 x [0,T)), one has

/oT /Q kOppdzdt + /Q K (0)dzx + /OT /Q F(k) - Vipdzdt =0, (4)



which added to (2) yields: Vi € DT (Q x [0,T)),

/()T/Q(|u—n|+n)8t1/zd:cdt+/ (luo — K| + K) 1(0)da

+// (2F (k) — F(u)) - Vpdzdt + // ) - Vpdzdt
{u<r} {u>m}
T
+/ / sign(u — ) (=V¢(u) - Voo + b)) daedt > 0. (5)
0o Ja
One will now let x tend to —oo in (5). Suppose that x < 0, then
|lu — k| + k| < |u| and ||u — K| + k| — u a.e. in supp(¥),

then, from the dominated convergence theorem, one has

T T
lim / / (lu — K| + k) Oppdadt = / / udppdxdt,
T Jo Ja 0 JQ

lim ; (luwo — 5| + &) ¥(0)dz = /Quoi/)(O)dx

K——00

It follows also from the dominated convergence theorem that

lim / / ) - Vipdadt = / / F(u) - Vipdzdt,
K— —00 {u>’i}

and that

K— — 00

lim / /s; sign(u — k) (=Vo(u) - Vip + b)) dzdt

T
= / / (=Vo(u) - Voo + byp) dadt.
0o Ja
It appears clearly that
(2F (k) — F'(u)) X{u<x}y — 0 a.e. in supp(z)) as K — —o0,

where xe(z,t) = 1 if (z,¢) € £ and 0 otherwise. In order to obtain the
domination, we will follow the method proposed in Remark 2.1 of [5].
Assume that there exists a sequence (k,), with kK, — —oo such that
(|F(kn)l),, is bounded by C, then

|2F (kn) = F(w)) X{u<rny| < 20 + F(u) € L' (supp(4)))-

Otherwise, lims—._o |F'(s)| = co. Let no € Nsuch that ng > infser |F(s)],
we set for n > ng:

n

kn =min{s € R | |F(s)| < n},
then one has lim, oo kn = —00, and

5 <k = [F(s)] 2 |F(kn)].
Hence, in this case, one has

|2F (k) = F(u)) Xu<n,y| < 3[F(u)] € L (supp(v)),



and thus

n— oo

lim //;u>nn} (2F (kn) — F(u)) - Vipdzdt = 0.

Therefore, letting (kn),, tend to —oo in (5) provides that, for all ¢ €

DH(Q x [0,T)),
T
O
/0 /Qu L/)d:rdt—k/ﬂum/)(O)dx

+ /0 ’ /Q (F(u) — Vo(u)) - Vipdadt + /0 ’ /Q bpdzdt > 0.

The same way, subtracting (4) to (2) and considering a convenient se-
quence (kn), tending to 400, one obtains

ATAuatwdxdt+Auo¢(0)dm

+/OT/Q(F(u)_v¢(u)).v¢dxdt+/:/ﬂb¢dxdtgo.

This ensures that: Vi) € DT(Q x [0,7)),

/OT/Quatwd:rdt—F/Qum/)(O)dx

+ /O ’ /Q (F(u) — Vé(u)) - Vodzdt + /O : /Q bydzdt = 0. (6)

It is now easy to check that (6) still holds for ¢ € D(Q x [0,7")), and so
this achieves the proof of Propostion 1.1 |

Remark 1.1 In the case where ¢ = 0, the point 2 of definition 1 can be
replaced by
F(u) € (Lioc(Q % [0,7)))",

and one can remove the assumption b € L .([0,T); H1(Q)) in (H4).
Actually, in such a case, Kruzkov entropies | - —k| are sufficient to ob-
tain the time continuity. The assumptions F(u) € (Li,.(Q2 % [0, T)))d
and b € LL.([0,T); HH(Q)) will only be useful to ensure dyu belongs
to LE ([0, T); H-Y(Q)) in order to recover the regular convex entropies,
which are necessary to treat the parabolic case, as it was shown in the
work of Carrillo [4].

The Definition 1 does not take into account any boundary condition, or
condition at |z| — +o0. This lack of regularity can lead to non-uniqueness
cases, as the one shown in the book of Friedman [7] (also available in the
one of Smoller [14]): the very simple problem

Ou—90%,u=0 inRxR,, )
u(+,0) =0 in R

admits multiple classical solutions if one does not ask some condition for
large x like e.g. v € 8'(R x Ry). Indeed, it is easy to check that

')

n=Y - 20 d° e
u@ ) =2 g gt
k=0



is a classical solution of (7). So w is a weak solution of (7), and thus
an entropy weak solution thanks to Proposition 1.1. It also belongs to
C([0,T], Li,c(R)), thanks to its regularity.

Let us give another example, proposed by Michel Pierre [13]. We now
consider the problem

Su—%,u=0 in [0,1] x Ry,
u(-,0)=0 in [0, 1], (8)
u(0,-) =u(l,)=0 inRy4

which admits the constant function equal to 0 as unique smooth solu-
tion. A non-smooth solution to the problem (8) can be built as follows.
Denote by us the fundamental solution of the heat equation in the one-
dimensional case:

1 2
x
Uf(:l?,t) = \/m exp <—E) )

then v := O, uy also satisfies the heat equation in the distributional sense.
The function v, given by

2z z?
U(w,t):—mexp —E 5

satisfies v(0,t) = 0 for all ¢ > 0, belongs to C*° ([0, 1] x [0,7]\ {(0,0)})
but is not continuous in (z,t) = (0,0). Indeed, one has

lim v(y/s,8) = —oo.

s—0

The function ¢t — v(1,t) belongs to C°°(Ry), then there exists a unique
w € C*([0,1] x Ry) solution to the problem

0w —02,w=0 in0,1] x Ry,
w(-,0)=0 in [0, 1],
U)(O,) =0 in RJH

w(l,t) =v(l,t) in R4.

Defining u := v — w, then u is a solution to the problem (8) which is
not the trivial solution since it is not regular. Nevertheless, u is a weak
solution to the problem and thus a entropy weak solution thanks to Propo-
sition 1.1. Thanks to its regularity, it clearly appears that u belongs to
C(R+; Llloc((07 1))

In the following theorem, we claim that any entropy solution is time
continuous with respect with the time variable, at least locally with re-
spect to the space variable.

Theorem 1.2 Let u be a entropy solution in the sense of Definition 1,
then there exists T such that u ="7u a.e. on Q x [0,T) and fulfilling

7 € C([0,T); Line ().

Furthermore, if there exists p > 1 and a neighborhood U of 02 in Q0 such
that
uo € Lj, (U)7 u € LT;C([(L T);Lfoc(u))7

loc
then we have: _
€ O([0,T); Lioc()).



2 Essential continuity for ¢t =0

In this section, we give a simple way to prove the classical result stated
in Proposition 2.1.

Definition 2 One says that t € [0,T) is a right-Lebesgque point if there
exists (t) in Liyo(Q) such that for all compact subset K of €,

t+e

1 —
hr% = lu(s) —@(t)]| L1 (x)ds = O.
e=0¢e J,

We denote by L the set of right-Lebesgue points.

It is well known that meas ((0,T) \ £) = 0 and that u = @ (in the L{,.()-
sense) a.e. in (0,7). In the sequel, we will prove that £ = [0,7"), and
that @ belongs to C([0, T); L. (). We begin by considering the essential
continuity for the initial time ¢t = 0.

Proposition 2.1 For all ¢ € DT (Q), one has:

lim [a(z,t) — uo(z)|{(x)dx = 0.
t—0 JQ

te Ll

Particularly, this ensures that 0 € L.

The limit as ¢ tends to 0, ¢ € £ can be seen as an essential limit, as it
is done in Lemma 7.41 in the book of Malek et al. [10] in the case of a
purely hyperbolic problem, or by Otto [11] in the case of a non strongly
degenerated parabolic equation. See also the paper of Blanchard and
Porretta [2] for the case of renormalized solutions for degenerate parabolic
equations.

Proof

First, notice that for all t € £, and for all kK € R, ¢ is also a right-hand
side Lebesgue point of |u — x|. Indeed, if K denotes a compact subset of

Q, one has for a.e (z,5) € QN K x (0,7
|lu(w, 5) — K| = [u(z,t) — £l < [u(z, s) —u(=,1)],

and so, for all t € L,

t+a
lim l/ / |[u(z,s) — k| — |u(z,t) — k||deds = 0. 9)
¢ QnK

a—0
Let a > 0, and ¢* € L, one denotes
1 it <t
Xjoes((t) =4 O ift>t"+a
Thomt  jf ¢ <t <t + o
Let ¢ € DT(Q), and let € > 0 be such that d(supp(¢),0) > e. Let

p € DT(RY), with supp(p) C B(0,1) and Jza p(2)dz = 1. One denotes
pe(2) = Eidp(g) The function y — ((x)pe(z — y) belongs to DT ().



Taking x = uo(y) and ¥(z,y,t) = ((x)ps(z — y)X[o,.+((t) in (2), an inte-
grating with respect to y € (2 yields:

L e = o) ic@ioe e = oo () dzayat
[ (@) = v C@hpe(o = v)dady
() 1o
Flun(y) | dedyde

/0 vt // e( -))
Lol o
/ Xfouee / / { sign(u(z, tp:(j:‘f‘lg))b( 1) ]dxdydtzo,(m)

where all the gradient are considered with respect to x, and not y.
One has

lu(z,t) = uo(y)| = [u(z,t) — uo()| + |u(z,t) — uo(y)| — |u(z,t) — uo(x)],

then, since [;4 p<(z — y)dy = 1 for all z in supp(¢), using
luo(2) — uo(y)] 2 [Ju(z,t) — uo(y)| — |u(z,t) — uo(2)]],

we obtain
T
/0 Dxo.oe (1) / / (2 £) — w0 (1) |G (@) pe( — y)dadydt
T
Ot X0 1+ 1) — dxd
< / N / (e, £) — o ()| (x)dedt
9l o) / / o) — o (1) [C(x)pe (& — y)dady. (1)

For all « €]0,T — t],

0ex0,e+ (I 10,7y = 1,
and then, one can let « tend to 0 in (11), so that (10) implies:

_//m(%t*)—uo(xﬂ((x)d:cdy
QJao
+2/Q/Q|UO(x)—uo(y)K(x)Ps(x—y)dxdy—!—/o Re(t)dt >0, (12)

where R. belongs to L'(0,T) for all ¢ > 0. Slnce L is dense in [0, 7], one
can let in a first step ¢t* tend to 0, so that fo <(t)dt vanishes:

lim sup / / [@(z,t*) — uo(x)|¢(x)dzdy
tr — 0 Jese
el

< 2/9/Q|u0(£v) —uo(y)|¢(z)pe(x — y)dxdy. (13)



One can now let ¢ tend to 0, and using the fact that uo belongs to Li,. (),
and that ¢ is compactly supported in 2, one gets:

lim / / [a(z,t*) — uo(x)|¢(x)dxdy = 0.
t* -0 JaJa
el

This achieves the proof of Proposition 2.1. |

3 Time continuity for any ¢t > 0

In this section, we want to prove the following proposition:

Proposition 3.1 Let u be a entropy solution in the sense of Definition 1,
then there ezists @ such that w =7 a.e. on Q x (0,T) and fulfilling

7 € C([0,T); Li,(2)).

In the sequel, we still denote by @ the representative defined using the
right Lebesgue points introduced in Definition 2. Proving the essential
continuity for every t* € L is easy. Indeed, if one replaces ¢ (z,t) by
(1 = X{b,ex)(®)%(,t) in (2), and then if one lets « tend to 0, one gets:

/tT/Q |u — K|dvpdadt + /Q [a(t*) — k| (t")dx
* /tT /Q sign(u — k) (F(u) — F(k) — Vo(u)) - Vpdzdt

T
+ /t* /Qsign(u — k)bipdzdt > 0. (14)

One can thus apply the Proposition 2.1 with ¢* instead of 0, and u(t*)
instead of ug: V¢ € DT(Q),

lim /Q /{; [@(z, s*) — u(z, t*)|¢(z)dxdy = 0.

s* —t*

s el

We will prove the uniform continuity of ¢ +— u(t) from £N[0,7 — ~] to
Li.(Q) for all ¥ € (0,T). This will give as a direct consequence that
L =1[0,T) and @ € C([0, T); Li,c(Q)). This uniform continuity will come
from Theorem 13 in the paper of Carrillo [4], which, adapted to our case,
can be stated as follow:

Theorem 3.2 Suppose that (1), (H12) hold. Let uo,vo belong to Ll (),
let by, by belong to L*((0,T); H=(Q)) N L' ((0,T); Li,o(Q)), and let u,v
be two entropy solutions associated to the choice of b = b, and initial
data uo for u and b = b, and initial data vo for v in Definition 1. Then



vy € DH(Q x [0, T),

T
/ / |u — v|Oppdadt + / |uo — vol1p(0)dx
o Ja Q

/0 / (sign(u — v)(F(u) — F(v)) — V]é(w) — d(v)]) - Vibdadt
+/O /Q sign(u — v)(by — by)pdxdt > 0. (15)

We now have all the tools for the proof of Proposition 3.1.
Proof of Proposition 3.1
Let v >0, let t* € L, = LN[0,T —~], and h € L, such that t* +h € L,
(this is the case of almost every h € (0,7 —t* —~)). Let ¢ € DT (Q), let
a €]0,T —t* —~ —hl.
Taking ¢ (z,t) = ((z)X[0,¢+((t), vo(x) = u(x,h), v(z,t) = u(z,t + h)
n (15), and letting o tend to 0 yields:

—/ |H(x,t*)—E(:c,t*+h)|C(:c)d:c—|—/ |uo(x) — u(z, h)|¢(z)dx

sign(u(z,t) — u(x,t + h))
ARG

)) F(u(z,t+ h)))
LR Jansaze o

V|¢ ,t)) — (u(x,t + h))|
We deduce from (16) that

- V(¢ (z)dzdt

/|uxt u(z, t* + h)|¢(z) dm</|uo ) —a(z, h)|¢(x)dx
T—~—h
+/0 /Q |F(u(z,t)) — F(u(z, t + h))||V((z)|dzdt
T—~—h
—|—/0 /Q [Vo(u)(z,t + h) — Vo(u)(z,t)| |V{(x)|dxdt
+/O /Q |b(x,t + h) — b(x,t)| {(x)dxdt,

and since F(u), V¢(u) and b belong to Li,.(2 x (0,7)), one can claim
that:

Ve >0,Vt* € Ly, In>0st.YVhe LN[0, T —y—t*],h<n=
/ [w(z,t*) — u(z,t* + h)|¢(z)dz < / |uo(z) — w(z, h)|¢(z)dx + . (17)
Q Q
One can now use Proposition 2.1 in (17), so that we get that

t +— T(z,t) is uniformly continuous from L to L (22,0,

which is the L'-space for measure of density ¢ w.r.t. Lebesgue measure.
We deduce that, for all v € (0,T), ¢ — T is uniformly continuous from



L to Li,.(Q), and this ensures that £, = [0, T — ~]. This holds for any
v € (0,T), and so we can claim that @ € C([0,T); Li,.(Q)). [ ]

It remains to prove the last part of Theorem 1.2 by considering some
test functions ¢ € DT(Q) instead of ¢ € DT(Q). We will need some
additional regularity on the solution:

There exists an open neighborhood U of 9Q in Q s.t. (H5)
uo € L, (U),  u € Lig.([0,T); L, (U)).

loc loc

(H5) gives the uniform (w.r.t. ¢) local equiintegrability of u (and so of
%) on a neighborhood of 2. We deduce, using @ € C([0,T); Li,.(Q)) that
7€ C((0,T); Lo (0).

End of the proof of Theorem 1.2

Suppose that (H1),(H2),(H3),(H4) hold, then thanks to Proposition 3.1,
there exists a weak solution @ € C([0, T), Li,.(Q)).

For e > 0, v € (0,T), ¢ € DY(Q), there exists n > 0 such that: V¢ €
[07 T- 7]7 Vh € [07 min(% T—1t- 7)]7

/ [@(z,t + h) —a(z,t)|¢(z)de < e.
Q
Let K be a compact subset of Q. Then there exists ¢ € D¥(Q) such that

0<(¢(z)<1lforallz € R? and ((z) =1if 2 € K. Let o > 0 and let
Ba € C*°(R%R) such that:

0<Ba(z) <1 for all z € RY,
Ba(z) =1 if d(z,09Q) < «/2,
Ba(xz) =0 if d(z,09Q) > «a.

Suppose that (H5) holds. For « small enough, one has supp((Ba) C U
and then, for all t € [0, —~], for all h € [0, T — ¢t — 7],

[ o t+ ) = (e, 06@)Bade < 2Hulliw or—pizr e 18all v
Q

where U, denotes U N supp(¢), and p’ = ﬁ < 4o00. Since ||ﬁa||Lp/(u<)
tends to 0 as « tends to 0, there exists § > 0 such that:

a<d= /Q [@(z,t + h) —a(z,t)|¢(x)Badr < €. (18)

Suppose now that o has been chosen such that (18) holds. The function
¢(1 — Ba) belongs to D1 (), and then there exists 7 such that V¢ €
[07 T— ’7]7 Vh € [07 mm(ﬂ:T -7 t)]:

/ (st + ) — (2, )¢ (@) (1 — Ba(2))da < e (19)
Q
Adding (18) and (19) shows that for all ¢ in [0, 7' —~—n], for all h € [0, 7],

/ [w(z,t + h) —a(z,t)|de < 2e. (20)
K

10



So @ is uniformly continuous from [0, T — 4] to L*(K), and then
@ € C((0,T); Lioe ().

|

To conclude this paper, let us give a counter-example to the time con-

tinuity in the case where the entropy criterion is not fulfilled for t=0.

Consider the inviscid Burgers equation, in the one dimensional case, lead-
ing to the following initial value problem.

{ du—09: (u’) =0, (z,t)€ (RxRy),

u(+,0) = ug = 0. (21)

Problem (21) admits v = 0 as unique entropy solution in the sense of
Definition 1.

We define
0 if t=0,
a(z,t)=q 0 if o[> Vi,

Then it is easy to check that:
o i€ L (RxRy),
o @€ LL(RxRy),
o Vi) € D(2 x Ry),

/Jroo/ﬂ(x,t)@tv,/)(:c,t)dxdt
0 R
+oo
02 O (z, t)dzdt = 0, 22
[ [ @00 s (22)
o Vi € DT(Q X RY), Vi € R,
/+°0/ |t — k|(x,t)0p(z, t)dxdt
0 R
+ /+OO / sign(a — k) (ﬂz(x,t) — /42) Ox(x, t)dxdt = 0. (23)
0 R

Thanks to (22), u is a weak solution of (21), and an entropy criterion
(23) is fulfilled only for ¢ > 0. The fact that the entropy criterion fails for
t = 0, and that the solution % and the flux 4* are not bounded (see [6, 12])
allows the function % to be discontinuous at ¢ = 0. Indeed, for all ¢ > 0,

- 1
a(, Ol w = B # lluollp1 gy = 0.
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