NONLINEAR ELLIPTIC EQUATIONS WITH RIGHT HAND SIDE MEASURES

L. BOCCARDO

DIPARTIMENTO DI MATEMATICA - UNIVERSITA' DI ROMA 1

T.GALLOUET

DEPARTEMENT DE MATHEMATIQUES - UNIVERSITE DE SAVOIE

§ 1 - INTRODUCTION AND STATEMENT OF RESULTS

Let Ω be an open bounded set of \mathbb{R}^N $(N\geq 1)$, $p\in (2-\frac{1}{N}, N]$ and $a:\Omega\times\mathbb{R}\times\mathbb{R}^N\to\mathbb{R}^N$ be a Caratheodory function. We assume that there exist two positive real constants α , β and a function $h(x)\in L^{p'}(\Omega)$ such that for any $s\in\mathbb{R}$, $\xi\in\mathbb{R}^N$, $\eta\in\mathbb{R}^N$ and for almost every $x\in\Omega$

(1)
$$a(x,s,\xi)\xi \geq \alpha |\xi|^{p}$$

(2)
$$|a(x,s,\xi)| \le \beta(h(x) + |s|^{p-1} + |\xi|^{p-1})$$

(3)
$$[a(x,s,\xi) - a(x,s,\eta)] [\xi - \eta] > 0 , \quad \xi \neq \eta$$

The first aim of this paper (Theorem 1) is to obtain a solution of the equation

$$A(u) = -div(a(x,u,Du)) = f$$
 in Ω

(4)

u=0 on $\partial\Omega$

in the sense of the distributions, when f is a bounded Radon measure on Ω (i.e. $f \in M_b(\Omega)$). To be more precise, we will say that u is a weak solution of (4) if u satisfies

$$u \in W_0^{1,1}(\Omega)$$
, $a(x,u,Du) \in L^1(\Omega)$

(5)

$$\int\limits_{\Omega} a(x,u,Du)Dv = < f,v> \ \ \text{for any} \ \ v \in \mathfrak{D}(\Omega)$$

We will prove the following existence theorem.

THEOREM 1 - Let $f \in M_b(\Omega)$, then there exists a solution u of (5). Furthermore one has $u \in W_0^{1,q}(\Omega)$ for any $q < \overline{q} = \frac{N(p-1)}{N-1}$.

The theorem above is already known ([BG1]) if a does not depend on u and under a more technical assumption than (3). It is also well known ([LL]) if p>N, since in this case $M_b(\Omega)\subset W^{-1,p'}(\Omega)$ and therefore one can use the theory of operators acting between Sobolev spaces in duality.

In (4), we can also consider a lower order term g(x,u) or g(x,u,Du) with a sign condition $g(\cdot,s,\cdot)s\geq 0$, as it is done in [BS], [GM1], [GM2], [BG1], [BG2].

We assume $p \in (2 - \frac{1}{N}, N]$ which is equivalent to $\overline{q} > 1$. Thus, if $1 Du does not belong to <math>L^1(\Omega)$ (to overcome this difficulty see the forthcoming paper [X]).

EQUATIONS WITH RIGHT HAND SIDE MEASURES

The existence result stated in Theorem 1 is optimal: it is possible to find some $f \in M_b(\Omega)$ (for instance $f = \delta_a$, $a \in \Omega$) or $f \in L^1(\Omega)$ such that the corresponding solution u of (4) does not belong to $W_0^{1,\overline{q}}(\Omega)$.

The existence result in this limiting case is obtained in the following theorem when $|f| \log |f| \in L^1(\Omega)$.

THEOREM 2 - Let 2 - $\frac{1}{N}$ |f|\log|f| \in L^1(\Omega). Then there exists $u \in W_0^{1,\overline{q}}(\Omega)$, $\overline{q} = \frac{(p-1)N}{N-1}$, solution of (5).

A classical method due to G. Stampacchia [S] yields a solution of (4) when A is linear (and p=2), through a duality and a regularity argument in the cases $f{\in} M_b(\Omega) \text{ or } |f|\log|f|{\in}L^1(\Omega).$

When p=N the weaker assumption $|f|(\log|f|)^{\frac{N-1}{N}} \in L^1(\Omega)$ implies $f \in W^{-1,N'}(\Omega)$ (see [G]) and therefore the existence of a solution $u \in W_0^{1,N}(\Omega)$ follows from [LL].

Finally let $\overline{m} = \frac{Np}{Np-N+p}$ (remark that p=N implies $\overline{m}=1$). If $f \in L^{\overline{m}}(\Omega)$, by Sobolev Imbedding Theorem, f lies in $W^{-1,p'}(\Omega)$ and again the existence of a solution u follows from [LL]. But if $m \in (1,\overline{m})$ and $f \in L^m(\Omega)$, the following theorem can be seen as a regularity theorem regarding the solution u obtained in Theorem 1.

THEOREM 3 - Let 2 - $\frac{1}{N}$ \bar{m} = \frac{Np}{Np-N+p} and $f \in L^m(\Omega)$, then there exists a solution u of (5) which belongs to $W^{1,(p-1)m^*}(\Omega)$.

In order to prove Theorems 1, 2, 3, in this section we will present estimates for u only depending on N, $\Omega,$ p, $\alpha,$ $||f||_{L^1}$, when f is smooth and u is a solution of (5), given by [LL]. We point out that through this section we will not use assumptions (2), (3).

 $\underline{ESTIMATE} \ \underline{1} \ - \ Let \ f \in L^1(\Omega) \ \cap \ W^{-1,p'}(\Omega), \ 1 \leq q < \overline{q} \ = \ \frac{N(p-1)}{N-1} \ \text{ and } \ 2 \cdot \frac{1}{\overline{N}} < p \leq N. \ Then$ there exists a constant c_{1} (depending only on N, $\alpha,$ $\Omega,$ p, q, $\left|\left|f\right|\right|_{T}$ 1) such that

(6)
$$\int_{\Omega} |Du|^{q} \le c_{1}.$$

 $\underline{ESTIMATE} \ \underline{2} \ - \ Let \ 2 \ - \ \frac{1}{N}$ exists c_2 (a constant depending only on N, $\alpha,\,\Omega,\,p,\,||f\,\log|f|\,||_{T^{-1}})$ such that

(7)
$$\int\limits_{\Omega} |Du|^{\overline{q}} \le c_2 \quad , \quad \overline{q} = \frac{N(p-1)}{N-1} \quad .$$

 $\underline{ESTIMATE} \quad \underline{3} \quad \text{-} \quad \text{Let} \quad 2 \cdot \frac{1}{N}$ $f{\in}L^m(\Omega)\ \cap\ W^{{-}1,p'}(\Omega).\ Then\ there\ exists\ a\ constant\ c_3\ (depending\ only\ on\ N,\ \alpha,\ \Omega,$ $p, m, ||f||_{L^m}$) such that

(8)
$$\int\limits_{\Omega}\left|\mathrm{Du}\right|^{\left(p-1\right)m^{*}}\leq c_{3}$$

Estimate 3 stated above improves Proposition 1 of [BG1] where it was proved that $Du \in L^{q}(\Omega)$, for any $q < (p-1)m^*$.

PROOF OF ESTIMATE 1 - The proof is given in (10) of [BG1] (see also Remark 4 of [BG]). In any case, a new proof can be given in the spirit of the following proofs.

In order to prove Estimates 2 and 3, we set (as in [BG1])

$$B_n = \{x \in \Omega : n \leq |u(x)| < n+1\}$$

$$A_n = \{x \in \Omega : n \le |u(x)|\} = \bigcup_{k=n}^{\infty} B_k$$

and we define

$$(9) \ \varphi(s) = \begin{cases} 0 & , & 0 \le s \le n \\ s-n & , & n < s < n+1 \end{cases}$$

$$1 & , & s \ge n+1$$

$$-\varphi(-s) & , & s < 0$$

Taking $v=\varphi(u)$ as test function in (4) we have

$$\alpha \int_{B_n} |Du|^p \le \int_{A_n} |f|$$

Our proofs of Estimates 2 and 3 relies on a sharp use of the (right hand side of) inequality (10) because f is assumed to be more "regular" than L^1 .

<u>PROOF OF ESTIMATE 2</u> - We use the inequality (10) and we put $\gamma = \frac{\overline{q}}{\overline{p}}$. Recall that $\overline{q} = \frac{N(p\text{-}1)}{N\text{-}1}$ and $\overline{q}^* = \frac{\overline{q}}{\overline{q}\text{-}p}$. Then

$$(11) \qquad \int_{\Omega} |Du|^{\overline{q}} = \int_{\Omega} \frac{|Du|^{\overline{q}}}{(1+|u|)^{\gamma}} (1+|u|)^{\gamma} \leq$$

$$\leq \left(\int_{\Omega} \frac{|Du|^{p}}{(1+|u|)}\right)^{\frac{\overline{q}}{p}} \left(\int_{\Omega} (1+|u|)^{\frac{\overline{q}}{p-\overline{q}}}\right)^{1-\frac{\overline{q}}{p}} =$$

$$\leq \left(\frac{1}{\alpha} \sum_{n=0}^{\infty} \frac{1}{1+n} \sum_{k=n}^{\infty} \int_{B_{k}} |f|\right)^{\frac{\overline{q}}{p}} \left(\int_{\Omega} (1+|u|)^{\overline{q}^{*}}\right)^{1-\frac{\overline{q}}{p}}$$

Now we use the following inequality

$$r s \le r \log (1+r) + e^s \quad \forall r, s \ge 0$$

in order to deduce

(12)
$$\int_{\Omega} |f| [1 + \log(1 + |u|)] \le \int_{\Omega} |f| + \int_{\Omega} |f| \log(1 + |f|) + \int_{\Omega} (1 + |u|) \le$$

$$\le \int_{\Omega} |f| \log(1 + |f|) + c_4 ,$$

because we have proved a bound on $\int\limits_{\Omega} |u|$ in Estimate 1.

Combining (11) and (12) we get

(13)
$$\int_{\Omega} |u|^{\overline{q}^*} \le c_5 \left(\int_{\Omega} |Du|^{\overline{q}} \right)^{\overline{q}^*} \le c_6 + c_6 \left(\int_{\Omega} |u|^{\overline{q}^*} \right)^{\frac{p-\overline{q}}{\overline{p}}, \frac{\overline{q}^*}{\overline{q}}}$$

We remark that $\frac{p-\overline{q}}{\overline{p}}$, $\frac{\overline{q}^*}{\overline{q}} < 1$ since p < N.

Thus we have proved the a priori estimate (7).

EQUATIONS WITH RIGHT HAND SIDE MEASURES

<u>PROOF OF ESTIMATE 3</u> - Let $q = (p-1)m^*$ (q < p) and $s = q^* \cdot \frac{p-q}{q}$ (>0). Using the inequality (10) as before, we have

$$(14) \qquad \int_{\Omega} |\mathrm{D}u|^{q} \leq \left(\int_{\Omega} \frac{|\mathrm{D}u|^{p}}{(1+|u|)^{s}}\right)^{q} \int_{\bar{p}} \left(\int_{\Omega} (1+|u|)^{\frac{sq}{p-q}}\right)^{1-\frac{q}{p}}$$

$$\leq \left(\frac{1}{\alpha} \sum_{n=0}^{\infty} \frac{1}{(1+n)^{s}} \sum_{k=n}^{\infty} \int_{B_{k}} |f|\right)^{\frac{q}{p}} \left(\int_{\Omega} (1+|u|)^{q^{*}}\right)^{1-\frac{q}{p}}$$

$$\leq \left(\frac{1}{\alpha} \sum_{k=0}^{\infty} \int_{B_{k}} |f| \sum_{n=0}^{k} \frac{1}{(1+n)^{s}}\right)^{\frac{q}{p}} \left(\int_{\Omega} (1+|u|)^{q^{*}}\right)^{1-\frac{q}{p}}$$

We recall that s<1 and that

$$\sum_{n=0}^{k} \frac{1}{(1+n)^{s}} \le c_7 (1 + k^{1-s}).$$

Therefore

(15)
$$\sum_{k=0}^{\infty} \int_{B_k} |f| \sum_{n=0}^{k} \frac{1}{(1+n)^5} \le c_7 \int_{\Omega} |f| + c_7 \int_{\Omega} |f| |u|^{1-5}$$

Combining (14) and (15) we have $(q^* = (1-s)m')$

$$\int\limits_{\Omega} \left| \operatorname{Du} \right|^q \leq c_8 + c_8 \left(\int\limits_{\Omega} \left| \operatorname{u} \right|^{q^*} \right)^{1-\frac{q}{p} + \frac{q}{pm}},$$

Then Estimate 3 follows by the previous inequality because $\frac{q}{q^*} > 1 - \frac{q}{p} + \frac{q}{pm}$. Indeed the choice of q is such that (N-q-Np+Nq)m'=Nq. That is [(N-1)m'-N]q=N(p-1)m', i.e. $q=(p-1)m^*$. Moreover q < p follows from the inequality $m < \bar{m}$.

REMARK 1 - In order to prove the above estimates we have used the test function (9) as in [BG], but it is also possible to use $v=\Phi(u)$, as in [BGV], where

$$\Phi(s) = \int_0^s \frac{dt}{(1+|t|)^s} .$$

Then Estimates 1, 2 and 3 can be proved with (respectively) s>1, s=1, $s=1-\frac{q^*}{m^*}(q=(p-1)m^*).$

§ 3 - PROOFS OF THEOREMS 1, 2, 3.

In this section we take $f{\in}M_b(\Omega)$ and a sequence $(f_n){\subset}\ W^{\text{-1},p'}{\cap}\ L^1(\Omega)$ converging to fand such that $||f_n||_{L^1} \leq ||f||_{\dot{M}_b}.$ We then pass to the limit in the equations

$$u_n \in W_0^{1,p}(\Omega)$$

(16)

$$A(u_n) = f_n \quad ,$$

The weak convergence obtained as a consequence of Estimate 1,2 and 3 does not permit to pass to the limit in (16) except when a is linear in Du. A pointwise convergence on Dun is needed. This is the purpose of Lemma 1 which is also related to some recent result of [BM] and [LM].

<u>PROOF OF THEOREM</u> 1 - By Estimate 1, (u_n) is bounded in $W_0^{1,q}(\Omega)$, for any

Then we can assume (for some u and for some subsequence still denoted $u_{\mathsf{n}})$ that

$$u_n \to u \quad \text{weakly in} \quad W_0^{1,q}(\Omega)$$

EQUATIONS WITH RIGHT HAND SIDE MEASURES

(18)
$$u_n \to u$$
 strongly in $L^q(\Omega)$

(10)
$$u_n \to u$$
 a.e. in Ω

This is not sufficient to pass to the limit in (16). We need, for instance $\mathrm{Du}_n\!\to\!\mathrm{Du}$ a.e. This is the content of the following Lemma.

<u>LEMMA 1</u> - Assume (1), (2), (3) and

$$(20) \hspace{1cm} f_{\mathsf{n}} \hspace{0.1cm} \mathtt{bounded} \hspace{0.1cm} \mathtt{in} \hspace{0.1cm} L^{1}(\Omega) \hspace{0.3cm} , \hspace{0.3cm} f_{\mathsf{n}} \hspace{0.1cm} \in \hspace{0.1cm} L^{1}(\Omega) \hspace{0.1cm} \cap \hspace{0.1cm} W^{\text{-1,p'}}(\Omega).$$

Then the sequence u_n defined in (16) is compact in $W_0^{1,q}(\Omega)$, for any $q < \overline{q}$.

END OF THE PROOF OF THEOREM 1 - Combining Lemma 1, (2) and (18) we deduce that

$$(21) \hspace{1cm} a(x,u_n,Du_n) \to a(x,u,Du) \hspace{0.5cm} \text{in} \hspace{0.5cm} L^r, \hspace{0.5cm} \forall r \in s, \, [\frac{N}{N-1})$$

and therefore u is a solution of (4), in the weak sense (5).

PROOF OF THEOREMS 2 AND 3 - The existence results are a consequence of Theorem 1 and Estimate 2 or 3, since

$$a(x,u_n,Du_n) \rightarrow a(x,u,Du)$$
 weakly in $L^{\frac{N}{N-1}}(\Omega)$ or in $L^{m^*}(\Omega)$

 \underline{REMARK} - With our proof of Theorem 3 the convergence of Du_n in $L^{(p-1)m}^*$ is an open problem.

Before proving Lemma 1 we recall that L1-compactness results for the gradients of a sequence of approximate solutions of nonlinear equations have been obtained in [BMP], [BM], [BG1], [LM], and we emphasize that the first result is contained in a pioneering work by Leray-Lions [LL].

In the proof we will need the following standard

<u>LEMMA 2</u> - Let (X,T,m) a measurable space, such that $m(X)<\infty$. Let γ be a measurable function, $\gamma: X \to [0,+\infty]$ such that $m(\{x \in X, \ \gamma(x)=0\})=0$. Then for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$\int\limits_{A} \gamma \ \mathrm{dm} \, \leq \, \delta$$

implies $m(A) \leq \epsilon$.

 $\underline{PROOF} \ \underline{OF} \ \underline{LEMMA} \ \underline{1} - \ By \ \underline{Estimate} \ 1, (u_n) \ is \ bounded \ in \ W_0^{1,q}(\Omega), \ for \ any \ q < \bar{q}.$ Then we can assume (for same $u \in W_0^{1,q}(\Omega)$ and for some subsequence still denoted

(22)
$$u_n \to u$$
 weakly in $W_0^{1,q}(\Omega)$

(23)
$$u_n \rightarrow u$$
 in measure

EQUATIONS WITH RIGHT HAND SIDE MEASURES

Our proof relies on the following claim

(24)
$$Du_n \rightarrow Du$$
 in measure.

In order to prove (24), given $\lambda>0$ and $\epsilon>0$ we set for some B>1, k>0 (n,m \in N)

$$\begin{split} E_1 &= \{x \in \Omega : |Du_n(x)| > B\} \cup \{x \in \Omega : |Du_m(x)| > B\} \cup \{x \in \Omega : |u_n(x)| > B\} \cup \{x \in \Omega : |u_m(x)| > B\} \ , \\ & \qquad \qquad E_2 = \{x \in \Omega : |u_n(x) - u_m(x)| > k\} \end{split}$$

$$\mathrm{E}_3 = \{ \mathrm{x} \in \Omega : |\mathrm{u}_n(\mathrm{x}) - \mathrm{u}_m| \leq k, \; |\mathrm{D}\mathrm{u}_n(\mathrm{x})| \leq B, \; |\mathrm{D}\mathrm{u}_m(\mathrm{x})| \leq B, \; |\mathrm{u}_n(\mathrm{x})| \leq B, \; |\mathrm{u}_m(\mathrm{x})| \leq B, \; |\mathrm{D}(\mathrm{u}_n - \mathrm{u}_m)| \geq \lambda \}.$$

Remark that

$$\{x \in \Omega : |D(u_n - u_m)(x)| \ge \lambda\} \subset E_1 \cup E_2 \cup E_3.$$

Since (u_n) and (Du_n) are bounded in $L^1(\Omega)$, one has meas $E_1 \le \epsilon$, for B large enough, independently of n, m. Thus we fix B in order to have.

meas $E_1 \leq \epsilon$.

We now take into account meas E3. Assumption (3) implies that there exists a real valued function $\gamma(x)$ such that

(26)
$$meas({x \in \Omega : \gamma(x) = 0}) = 0$$

and

(27)
$$[a(x,s,\xi) - a(x,s,\eta)] [\xi - \eta] \ge \gamma(x) ,$$

$$\forall \ s{\in}\mathbb{R}, \, \xi, \, \eta \in \mathbb{R}^{\mathbb{N}} : |s|, \, |\xi|, \, |\eta| \leq B \ ,$$

$$|\xi - \eta| \ge \lambda$$
 , a.e. $x \in \Omega$.

Indeed there exists a subset C of Ω such that meas(C)=0 and the function $a(x,s,\xi)$ is continuous with respect to (s,ξ) for any $x\in\Omega\setminus C$. Then assumption (3) implies that for $x \in \Omega \setminus C$ and $\xi \neq \eta$ one has

$$[a(x,s,\xi) - a(x,s,\eta)] [\xi - \eta] > 0$$
.

Define

$$K = \{(s,\xi,\eta) \in \mathbb{R}^{2N+1} : |s| \le B , |\xi| \le B , |\eta| \le B , |\xi - \eta| \ge \lambda\}$$

then

EQUATIONS WITH RIGHT HAND SIDE MEASURES $\inf\{[\mathtt{a}(\mathsf{x},\!s,\!\xi) - \mathtt{a}(\mathsf{x},\!s,\!\eta)] \; [\xi - \eta] : (s,\!\xi,\!\eta) \! \in \, \mathrm{K}\} = \gamma(\mathsf{x}) \, > \, 0 \ ,$

(28)

since K is compact.

In view of (28)

(29)
$$\int_{E_3} \gamma(x) \leq \int_{E_3} [a(x,u_n,Du_n) - a(x,u_n,Du_m) D(u_n - u_m) \leq$$

$$\leq \int_{E_3} [a(x,u_m,Du_m) - a(x,u_n,Du_m)] D(u_n - u_m) +$$

$$+ \int_{E_3} [a(x,u_n,Du_n) - a(x,u_m,Du_m)] D(u_n - u_m) .$$

If we use $T_k(u_n - u_m)$ in (16) as a test function (where T_k is the usual truncation at levels \pm k) we can say that the last integral is less than or equal to 2kM, where $M\!\ge\!||f_n||_{L^1}.$ Thus

(30)
$$\int_{E_3} \gamma(x) \le \int_{E_3} [a(x, u_m, Du_m) - a(x, u_n, Du_m)] D(u_n - u_m) + 2kM$$

In view of the continuity of $a(x,s,\xi)$ with respect to (s,ξ) , for a.e. $x\in\Omega$ and $\overline{\epsilon}>0$ there exists $\delta(x){\ge}0$ (with meas $\{x{\in}\Omega:\delta(x){=}0\}{=}0)$ such that

$$|s\text{-}s'| \leq \delta(x), \ |s|, \, |s'|, \, |\xi| \leq B \ \text{imply} \ |a(x,\!s,\!\xi) - a(x,\!s',\!\xi)| \leq \overline{\varepsilon} \ .$$

Remark that $\lim_{k\to 0}$ meas $\{x\in\Omega:\delta(x)< k\}=0$. Let now δ given from Lemma 2 (δ depends on $\epsilon).$ We choose $\overline{\epsilon}$ such that $c_9\ \overline{\epsilon}\ < \delta/3$ and $k{>}0$ such that

$$c_9 \int\limits_{E_3 \cap \{x: k > \delta(x)\}} [1+h(x)] < \delta/3$$

and

$$2k M < \delta/3$$
.

Then we have

$$\int_{E_{\alpha}} \gamma(x) < \delta$$

and we can deduce that meas $(E_3) < \epsilon$ independently of n and m.

Now we fix such a k and thanks to the fact that u_n is a Cauchy sequence in measure, we can choose n_0 such that

$$\text{meas } E_2 \leq \epsilon \quad \text{ for } \quad n,\!m \! \geq \! n_0 \ .$$

Then the convergence (24) and Estimate 1 yield the desired compactness result.

ACKNOWLEDGMENT

This work has been partially supported by MPI (40%, 60%) CNR (IAC, GNAFA), Université de Savoie.

REFERENCES.

[BG1] L.BOCCARDO, T.GALLOUET: Nonlinear elliptic and parabolic equations involving measure data - J.Funct. Anal. 87 (1989), 149-169.

[BG2] L.BOCCARDO, T.GALLOUET: Strongly non linear elliptic equations having natural growth terms and L¹ data - Nonlinear Anal. (to appear)

[BGV] L.BOCCARDO, T.GALLOUET, J.L.VAZQUEZ: Nonlinear elliptic equations in \mathbb{R}^N without growth restrictions on the second member - JDE (to appear)

[BM] L.BOCCARDO, F.MURAT: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations

[BMP] L.BOCCARDO, F.MURAT, J.P.PUEL: Existence of bounded solutions for nonlinear elliptic unilateral problems - Ann. Mat. Pura Appl. 152 (1988), 183-196.

[BS] H.BREZIS, W.STRAUSS: Semilinear elliptic equations in L¹ - J. Math. Soc. Japan 25 (1973), 565-590.

[G] T.GALLOUET: Sur les injections entre espaces de Sobolev d'Orlicz et application au comportement à l'infini pour des équations des ondes semi-lineaires - Portugaliae Mathematica Vol.42 Fasc.1 - 1983-1984.

[GM1] T.GALLOUET, J.M.MOREL: Resolution of a semilinear equation in $\rm L^1$ - Proc. Roy. Soc. Edinburgh 96 (1984), 275-288.

[GM2] T.GALLOUET, J.M.MOREL: On some semilinear problems in ${\bf L}^1$ - Boll. Un. Mat. Ital. 4 (1985) 121-131.

[LL] J.LERAY, J.L.LIONS: Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder - Bull. Soc. Math. France 93 (1965), 97-107.

[LM] P.L.LIONS, F.MURAT: Personal communication

[S] G.STAMPACCHIA: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus - Ann. Inst. Fourier Grenoble 15 (1965), 189-258

[X] P.BENILAN, L.BOCCARDO, D.GARIEPY, T.GALLOUET, M.PIERRE, J.L.VAZQUEZ: in preparation.

Received March 1991

Revised June 1991