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Abstract. We show here the convergence of the linear finite element approximate solutions of a dif-
fusion equation to a weak solution, with weak regularity assumptions on the data.c© 2002
Acad́emie des sciences/Éditions scientifiques et ḿedicales Elsevier SAS

Convergence de la ḿethodeéléments finisP1 pour une équation de diffusion
avec second membre mesure.

Résum é. On prouve la convergence des solutions approchées, par la ḿethode deśeléments finisP1,
d’une équation de diffusion avec second membre mesure, vers la solution faible de cette
équation. c© 2002 Acad́emie des sciences/Éditions scientifiques et ḿedicales Elsevier SAS

1. Introduction

The scope of this work is the discretization by the linear finite element method of diffusion problems on
triangular meshes. LetΩ be a polygonal open subset ofR2 ; the problem under study writes:

{ −∆u = µ in Ω,
u = 0 on∂Ω (1)

with the following hypotheses on the data:

µ ∈ M(Ω) , (2)

whereM(Ω) = (C(Ω))′ is the dual space ofC(Ω), which may also be identified to the set of bounded
measures onΩ. In the sequel, we shall consider the usual infinity norm onC(Ω), and we shall denote by
|| · ||M(Ω) its dual norm onM(Ω).

We consider a finite element triangular meshM of Ω (see e.g. [2]), satisfying, for some positiveζ, the
following Delaunay and non degeneracy conditions:
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(i) For any interior edge ofM, the sum of the angles facing that edge is less or equal toπ − ζ.

(ii) For any edge lying on the boundary, the facing angle is less or equal to
π

2
− ζ.

(iii) For any angleθ of any triangleT of the meshM, θ ≥ ζ.
(3)

Let V be the set of interior vertices ofM, and letφK denote the usual piecewise linear finite element basis
function associated with vertexK. The usual finite element discretization of (1) with this basis writes:

∑

L∈V

∫

Ω

∇φK(x) · ∇φL(x)uLdx =
∫

Ω

φK(x)dµ(x), ∀K ∈ V, (4)

which leads to a linear system ofN equations with theN unknownsuL, L ∈ V, with N = card(V). The
approximate solution is thereforeuM =

∑
K∈V uKφK .

2. Convergence of the scheme

The idea presented here is to compare the finite element scheme on such a mesh with the centered finite
volume scheme on the associate Voronoı̈ mesh and to use the results of [5] (or [3], where a more general
case is considered) to show the convergence of the scheme.

Indeed, letV denotes the set of vertices of the mesh on the whole domain, including the boundary; using
the fact that

∑
L∈V∇φL = 0, the scheme (4) may be written as

∑

L∈V

τK|L(uK − uL) =
∫

Ω

φK(x)dµ(x), ∀K ∈ V,

uK = 0 if K ∈ V \ V,

(5)

with τK|L = − ∫
Ω
∇φK(x) · ∇φL(x)dx, for K 6= L.

We then construct a dual mesh, denotedT, by considering the control volumes defined by the orthogonal
bisectors of the edges of the primal triangular meshM. In fact, for anyK ∈ V̄, the interior of the control
volume ofT associated toK is the set of points whose distance toK is less than its distance to any other
vertex ofV̄ (for a more detailed description of this so-called Delaunay-Voronoı̈ discretization and its use for
covolume methods, we refer to [7] and references therein). The control volumes are also chosen such that
they constitute a partition ofΩ (this assumption is important do deal with measures which have some mass
on the boundary of some control volumes). The control volume associated withK will also be denoted by
K. Let us then write the “classical” cell centered finite volume scheme with this mesh (see [5] or [3]):

∑
L∈V̄ τK|L(uK − uL) = µ(K), ∀K ∈ V,

uK = 0,K ∈ V̄ \ V.
(6)

We emphasize that the coefficientsτK|L are identical to that of the finite element scheme (5) (which is
equivalent to (4)), see e.g. [4], so that the schemes (4) and (6) are the same except for their right-hand-sides.
Indeed, ifK, L are two distinct vertices of some triangleT of M, then

−
∫

T

∇φK(x) · ∇φL(x)dx =
1
2
cotan(θK,L),

whereθK,L is the angle ofT facing the edge with verticesK andL. Hence

−
∫

Ω

∇φK(x) · ∇φL(x)dx =
mK,L

d(K, L)
,
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wheremK,L denotes the distance between the points which are located at the intersection of the orthogonal
bisectors of the edges in each of the triangles with verticesK andL, andd(K, L) denotes the distance
betweenK andL.

Thanks to the construction of this dual mesh, Condition (9) of [5] holds. (More precisely, using the
notations of [5],dK,σ = 1

2dσ for any interior edgeσ. If K is a control volume neighbouring the boundary,
and ifσ is an edge ofK on the boundary, thendK,σ = dσ = 0).

Consider a family of meshes uniformly satisfying Condition (3) for some positiveζ. Theorem 1 of [5]
holds for the dual meshes, and therefore, one gets the convergence of the piecewise constant (on the dual
cells, that is on the elements ofT) approximate solution defined by (6), towards the unique weak solution
of (1), which is defined by:

u ∈ ∩1≤p<2W
1,p
0 (Ω),∫

Ω

∇u(x) · ∇v(x)dx =
∫

Ω

v(x)dµ(x), ∀v ∈ ∪q>2W
1,q
0 (Ω).

(7)

Hence, we shall also obtain the convergence of the solution to (4), that is the finite element approximation
of (1), towards the solution of (7). Indeed, the slight difference between (4) and (6) is only due to the right
hand side.

THEOREM 2.1. – Let Ω be an open polygonal subset ofR2 and µ ∈ M(Ω). Let ζ > 0; for an
admissible triangular finite element meshM of Ω satisfying (3), letuM =

∑
K∈V uKφK be the finite

element approximation of (1), ((uL)L∈V is therefore the solution to (4) or (5)). ThenuM tends tou in
Lp(Ω), for all p ∈ [1, +∞[, and weakly inW 1,p(Ω) for all p ∈ [1, 2[, as the mesh size tends to 0, whereu
is the solution to (7).

Proof:
The proof of convergence follows that of [5]. We first prove a discrete estimate on the approximate

solution (Lemma 1 of [5]), using the test functionϕ(s) =
∫ s

0
dt

1+|t|θ , whereθ > 1. As in [5], we multiply
the first equation of scheme (5) byϕ(uK) and sum overK ∈ V. Noting that

∑

K∈V

∫

Ω

φK(x)dµ(x)ϕ(uK) ≤ Cθ‖µ‖M(Ω), with Cθ =
∫ +∞

0

dt

1 + |t|θ < +∞ sinceθ > 1,

we see that Inequality (11) of [5] is satisfied, and hence we obtain the estimates in the discreteW 1,p norm
and in theLp∗ norm (10) of [5] on the approximate solutionuT =

∑
K∈V̄ uK1K (where1K denotes the

characteristic function ofK).
In order to prove thatuM converges to the unique solution of (7), a first possibility is to use the conver-

gence ofuT. In this case we use Property (9) given further for the convergence of the right-hand-side and
the fact thatuT − uM converge to 0 inLp(Ω) for all p ∈ [1, +∞[ (however this procedure does not yield
the convergence ofuM in W 1,p weak). A more direct proof is possible, which we now give.

Thanks to the uniform Delaunay condition (3), one remarks that there exists someC1, only depending
on ζ such thatm(T ) ≤ C1mσdσ if σ is an edge ofT , not lying on the boundary (dσ is the length of
the edgeσ andmσ is the distance between the intersection points of the orthogonal bisectors of triangles
T andS if σ is common toT andS). Furthermore, thanks to the non-degeneracy assumption(iii) in
(3), if K,L andM denote the vertices of the triangleT ∈ M, there existsC2 depending only onζ such
that: |∇uM| ≤ C2 max( |uK−uL|

d(K,L) , |uK−uM |
d(K,M) , |uL−uM |

d(L,M) ) onT . Then, theW 1,p discrete estimate onuT leads

to a W 1,p
0 estimate onuM. Taking a sequence of meshes with size tending to 0, then the corresponding

approximate solutionsuM tend to some u inW 1,p weak. Letψ ∈ C∞c (Ω). One multiplies (5) byψ(K)
and sum overK to obtain

∫

Ω

∇uM(x) · ∇ψM(x)dx =
∑

K∈V

ψ(K)
∫

Ω

φK(x)dµ(x) =
∫

Ω

ψM(x)dµ(x), (8)

3
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whereψM is the finite element interpolate ofψ on M. Since∇ψM tends to∇ψ uniformly onΩ andψM

tends toψ uniformly onΩ as the mesh size tends to 0, one has:
∫

Ω

∇uM(x) · ∇ψM(x)dx tends to
∫

Ω

∇u(x) · ∇ψ(x)dx as the mesh size tends to0,

and ∫

Ω

ψM(x)dµ(x) tends to
∫

Ω

ψdµ(x) as the mesh size tends to0; (9)

Passing to the limit in (8), one obtains thatu is the solution of (7). This allows us to assert that if the
considered meshes satisfy Condition (3),uM tends to the unique solution of (7) as the mesh size tends to 0.
This concludes the proof of the theorem.

3. Conclusion

We proved here the convergence of the piecewise linear finite element scheme for the discretization of a
diffusion equation with measure data in two space dimensions.

The above analysis readily extends to the case of the operator−divk∇ wherek ∈ C(Ω̄). However,
a first important generalization would be to consider any admissible finite element mesh, using the non-
degeneracy assumption of the finite element schemeρK ≥ Ch (see [2]) without the Delaunay condition
(3). In this case we shall not haveτK|L ≥ 0 in the finite element scheme (5) (and the discrete maximum
principle will not hold). Indeed, in [5], we use the non-negativity of the transmission coefficientsτK|L.

Note also that the extension to the three-dimensional case is not straightforward, since there is no easy
condition to ensure the equivalence of the finite element and finite volume schemes in the three-dimensional
case.

Another generalization would be to deal with general diffusion operatorsdivK∇u, whereK is a2 × 2
tensor satisfying the usual continuity and coercivity conditions on the associate bilinear form. For a general
diffusion operator, it is not possible to interpret the finite element scheme as a finite volume scheme with a
two point finite difference approximation of the fluxes on the edges of the mesh. This last property is used
in the convergence proof of the finite volume scheme in [5].

For these generalizations, a direct finite element proof is probably the best way to prove convergence.
However, a difficulty arises with the fact that ifuM ∈ VM = span{φ1, . . . φN}, whereVM is the finite
element space, then the truncationsTkuM (whereTk(s) = min{max{s,−k}, k}) do not in general belong
to VM (see [1] for the use of truncations). Work in this direction is in progress.

References
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