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186 75 Prague, Czech Republic

b Laboratoire d’Analyse Topologie et Probabilités, UMR CNRS 6632, Centre de
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Abstract

We study the ability of several numerical schemes to solve a non-conservative hy-
perbolic system arising from a flow simulation of solid-liquid-gas slurries with the
so-called virtual mass effect. Two classes of numerical schemes are used: some Roe-
type finite volume schemes, which are based on the resolution of linearized Riemann
problems, and some (centered or upwind) schemes with an additional artificial dif-
fusion, such as the classical Rusanov scheme. For flow regimes of interest (steady as
well as unsteady flows), the computational process breaks down for some schemes.
Indeed, for such flows, the system has at least one eigenvalue having a small magni-
tude in the interior of the computational domain and this a possible reason for the
failure of some upwind schemes using the resolution of a linearized Riemann prob-
lem. Such a failure does not appear with, for instance, the Rusanov scheme which
is well known for its robustness. Furthermore, since the system is nonconservative,
it is not clear what a weak solution is, when the solution is discontinuous (at least,
one needs to have the nonconservative equivalent of the Rankine-Hugoniot jump
conditions) and we show that the approximate solution given by different numerical
schemes converges towards different “weak solutions”.
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1 Introduction

Our aim is to simulate the flow of a solid-liquid-gas slurry, which can be
used, e.g., for the transport of a mixture of sand, oil and air in a pipe. The
complete model is based on the so-called virtual mass effect. It can be found,
for instance, in [1], [2]. This model belongs to the class of non-conservative
hyperbolic problems with source terms, which can be written (for one space
dimension) in the form

∂w

∂t
+ C(w)

∂w

∂x
= S(w), x ∈ (0, L), t ∈ (0, T ), (1)

where w = w(x, t) : (0, L)× (0, T ) → IRN , C(w) : (0, L)× (0, T ) → IRN2

is a
N ×N matrix and S(w) : (0, L)×(0, T ) → IRN is a vector representing source
terms. Firstly we solved this problem with the aid of the centred Rusanov
scheme [3] in the papers [4] and [5]. Although systems of type (1) describe
many physical processes (e.g., multiphase flow, shallow-water problems) our
model is rather particular. For flow regimes of interest, various numerical
schemes, using upwinding and the resolution of linearized Riemann problems,
give unphysical numerical solutions and the computational processes fail. It
seems to be due by the fact that at least one eigenvalue of the matrix C(w) has
a small magnitude (in particular, it makes matrix C(W ) very sensitive with
respect to the components of W and to the rounding errors). Consequently,
the first purpose of this paper is to describe this phenomenon, demonstrate it
by numerical experiments and present numerical schemes which do not suffer
from the mentioned effect.

The concept of a weak solution of the non-conservative system (1) is not well
defined if the solution contains discontinuities. In order to define what is a
solution of a non-conservative system, it is, at least, necessary to prescribe
additionally some jump conditions. In the case of a conservative system, these
jump conditions are implicitly given and consequently, any stable conserva-
tive scheme converges to a weak solution, which satisfies the “strong” form
of the conservative system in the regular zones and the jump conditions for
discontinuities.

⋆ This work is a part of the research project MSM 0021620839 financed by MSMT
and partly supported by the Grant No. 201/05/0005 of the Grant Agency of the
Czech Republic.
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+420224810136

Email addresses: dolejsi@karlin.mff.cuni.cz (V. Doleǰśı),
gallouet@cmi.univ-mrs.fr (T. Gallouët).
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In our non-conservative problem, the jump conditions are not prescribed.
These jump conditions could be given, for instance, with the form of a ne-
glected viscosity term (as in [6] and [7]). But this viscosity term seems to be
not available. Since the model is interesting from a practical point of view, we
deal with its numerical solution although the relevant mathematical theory
does not allow us to determine what a weak solution is. The numerical exper-
iments should be used to try to give a sense what a weak solution should be.
The second interest of this paper is to remark that for the non-conservative
system the limit of approximate solutions given by a stable scheme may de-
pend on this scheme. More precisely, the limit of approximate solutions (given
by different schemes) differ from the speed of propagation of discontinuities.

There exist a lot of papers dealing with a solution of (1) with the aid of
various numerical schemes. Very popular are upwind schemes based on the
solution of the local Riemann problem at each interface of the mesh. Since the
computation of the exact solution of the local Riemann problem is difficult
and expensive for complicated systems (and not well defined, in our case. . . ),
schemes based on approximate Riemann solvers were introduced. For a survey
see, e.g., [8], [9], [10], [11], [12]. The linearized approximate Riemann solver of
Roe [13] was proposed in 1981 for the numerical solution of hyperbolic conser-
vation laws. A weak formulation of Roe’s approximate Riemann solver, based
on the choice of a path in the states space, has been introduced in [14]. This
weak formulation was applied in order to build a Roe-averaged matrix for
a conservative system governing a homogeneous equilibrium two-phase flow.
A generalization of this formulation to a hyperbolic non-conservative system
modelling a two-component two-phase flow was carried out in [15]. However,
the complexity of the considered model (defined in Section 2) gives no chance
to apply this approach since we are not able to evaluate an integration along a
suitable path in the states space. Another approach was used in [16] for the so-
lution of a two-fluids model, for comparison see [17]. Also for this method, the
complexity of the considered model does not enable to perform some matrix
operations analytically and their numerical realization leads to unsatisfactory
results.

Therefore, we deal with an alternative to the Roe scheme, the “Finite volume
Roe scheme” which was introduced in [18] to approximate solution of a two-
phase flow. Indeed, we use a variant of this scheme, called VFRoe-ncv (“vol-
umes finis” Roe with non-conservative variables) scheme, which was applied
for the solution of the Euler equations in [19], for the solution of shallow-water
equations with topography in [20] and for two-phase flow in [21]. VFRoe-ncv
scheme is based on the solution of the linearized Riemann problem at each
mesh interface in non-conservative variables. A similar approach was applied
in [22] for modelling of two-phase flows where a modification of the Roe scheme
was used.
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An application of VFRoe-ncv schemes causes some troubles. We observe that
if some eigenvalue of C in (1) has a small magnitude then the solution of the
linearized Riemann problem can be unphysical which causes the failure of the
computation process. However, we present numerical schemes which are able
to solve the considered problem. Nevertheless, different numerical schemes
converge to different weak solutions. It is caused by the non-conservativity
of the system where additional (jump) condition on discontinuities have to
be added in order to prescribe the speed of propagation of the discontinu-
ities. (Furthermore, some entropy conditions are also useful to determine the
admissibility of a discontinuity.)

The content of the rest of this paper is the following. In Section 2, we present
the model with some of its properties and we also discuss boundary conditions
for steady and unsteady flows. In Section 3, we present several schemes for
the solution of solid-liquid-gas slurry flows. The capability of the schemes to
compute steady as well as unsteady flow problems and the non-uniqueness of
the limit of approximate solutions are discussed in Section 4. Finally, we give
some concluding remarks at the end of the paper.

2 Considered problem

2.1 Governing equations

A description and a derivation of the model of the flow of a solid-liquid-gas
slurries in a pipe can be found in [1] and [2]. Based on the observation that
the liquid and gas phases of the mixture adhere to solid particles, the so-called
virtual mass effect is included in the model. For simplicity, we slightly modified
the equation by neglecting partial derivatives of pressure with respect to space,
for argumentation and details see [4].

In this paper, we deal with the following problem. Let (0, L) be a computa-
tional domain representing a pipe and T > 0 be a final time of interest. We
seek a vector function w(x, t) : (0, L) × (0, T ) → PAS ⊂ IR5 such that

Ã(w)
∂w

∂t
+

∂f̃ (w)

∂x
+ C̃(w)

∂w

∂x
= S̃(w), x ∈ (0, L), t ∈ (0, T ), (2)

where

w = (Uℓ, Us, Cℓ, Cs, P )T , (3)
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,

the indexes s, ℓ and g denote the solid, liquid and gas phases, P is the pressure
of the slurry, ρk, Ck, Kk and ak are the density, volume fraction, velocity
and wave speed of the k-phase, respectively. The volume fractions satisfy the
relation Cs + Cℓ + Cg = 1.

Further, introducing the virtual mass effect, the part of the slurry which moves
with the velocity of solid phase Us is given by Cs = Cs + KℓsCℓ + KgsCg, and
the rest of the slurry Cℓ = (1−Kℓs)Cℓ + (1−Kgs)Cg moves with the velocity
of the liquid phase Uℓ, where Kℓs and Kgs represent a relative adhesion of
the liquid and gas parts of the slurry to the solid particles, respectively. The
coefficients Kℓs and Kgs are not constant but depend on the volume fractions.
In [1], [2], the following KℓsCℓ = (K1 + K2Cs)Cs and KgsCg = K3Cg, with
K1 = K3 = 0.5, K2 = 0.25. Furthermore, the averaged densities are given by

ρs =
1

Cs

(Csρs + KℓsCℓρℓ + KgsCgρg) , (4)

ρℓ =
1

Cℓ

((1 − Kℓs)Cℓρℓ + (1 − Kgs)Cgρg) .

Moreover, the function z = z(x) in (3) gives the position of the pipe above
a horizontal ground, g is the gravity and the terms Iℓ and Iℓs represent the
hydraulic losses given by

Iℓ =
fℓ

2D
Uℓ|Uℓ|, Iℓs =

3

4

CsCD

d
(Uℓ − Us)|Uℓ − Us| (5)

where the quantity fℓ is the friction coefficient (supposed to be constant), D
is the inner pipe diameter, CD is the drag coefficient, d is the size of solid
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particles.

Finally, PAS denotes a set of Physically Admissible Solutions satisfying

PAS = {w = (w1, . . . , w5), w3 ≥ 0, w4 ≥ 0, w3 + w4 ≤ 1, w5 ≥ 0}. (6)

The system of equations (2) – (3) can be rewritten in the form corresponding
with (1) by

∂w

∂t
+ C(w)

∂w

∂x
= S(w), x ∈ (0, L), t ∈ (0, T ), (7)

where C(w) ≡ Ã
−1

(w)
[

J̃(w) + C̃(w)
]

, S(w) ≡ Ã
−1

(w)S̃(w) and J̃(w)

denotes the Jacobian matrix of f̃ (w). Matrixes Ã
−1

(·) and J̃(·) can be simply
evaluated analytically.

The system of equations (7) is supplemented by an initial condition w(x, 0) =
w0(x), x ∈ (0, L), (w0 : (0, L) → PAS is a given function) and by suitable
boundary conditions formally written B(w(x, t)) = 0, x = 0, x = L, which
are discussed in Section 2.4.

In this paper we deal with the numerical simulation of two flow regimes:

• The simulation of a steady state flow of slurry in a pipe. This flow regime
corresponds to a real situation where at the inlet of the pipe, there is a
reservoir of slurry with phase fractions CI

ℓ , CI
s and CI

g (= 1−CI
s −CI

ℓ ) and
pressure P I . At the outlet of the pipe, there is the second reservoir of slurry
with pressure P O (P O < P I). If the outlet reservoir is empty (free outlet),
we set P O = 0. Based on physical considerations this flow configuration
leads to a steady state solution with constant fractions and velocities and
linearly decreasing pressure.

• The simulation of the so called water hammer. Here the steady state solution
from the previous case is supposed to be the initial condition and at time
t = 0 the outlet of the pipe is closed. This effect leads to an unsteady flow
when the velocities Uℓ and Us are vanishing from the closed end of the pipe.
Moreover, the pressure as well as the fractions of heavier solid and liquid
particles are increasing whereas the fraction of gas goes fast to a very small
value tending to zero. These changes of fractions, velocities and pressure
propagate inside the pipe in opposite direction as the velocity of the main
steady state flow.
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2.2 Remarks to the non-conservativity of the system

Remark 1 As we mentioned at the beginning of this paper the non-conserva-
tivity of the system (7) causes a lot of troubles, namely an impossibility to
easily define a weak solution. Then a natural question arises: it is possible
to formulate the considered model in a conservation form? The first obstacle
represents the use of the virtual mass effect which was derived in a non-
conservative form, see [1], [2].

However, even in case of a simple model the reformulation of a non-conserva-
tive problem to a conservative one is possible only if some additional infor-
mation is available. For simplicity, let us consider the Burgers equation in the
non-conservative form

∂u

∂t
+ u

∂u

∂x
= 0, x ∈ IR, t ≥ 0. (8)

The equation (8) is equivalent (for regular solutions) with the equation

∂u

∂t
+

∂

∂x

(

u2

2

)

= 0, (9)

and assuming that u ≥ 0 also with, e.g.,

∂v

∂t
+

∂

∂x

(

2v3/2

3

)

= 0, where v ≡ u2. (10)

Although equations (9) and (10) are equivalent for a continuous solution, they
are different if the solution is discontinuous since both equations correspond
to different Rankine-Hugoniot conditions. Thus the non-conservative equation
(8) can be written uniquely in a conservative form only if some additional
information (defining uniquely the Rankine-Hugoniot conditions) is given. But
such a type of information (following from a physical aspect) seems not to be
available for the model of the three phase flow with the virtual mass effect.

Remark 2 Let us note that if w is a discontinuous function then the non-
conservative term

C(w)
∂w

∂x
(11)

lacks meaning as the distribution and the usual theory of hyperbolic systems
of conservation laws does not apply. There are several possibilities how to give
a unique meaning to (11). In [23], an integration along a suitable path is used

7



for the definition of (11). The approach presented in [24] relies on the form of
matrix C: some equations of the system

∂w

∂t
+ C(w)

∂w

∂x
= 0, (12)

are considered in a strong sense and the other in a weak sense. In [6] and [7],
the author adds to (12) a diffusive term −ε ∂

∂x
(D(w)∂w

∂x
) (D(w)w is a regular

matrix) and the solution of (12) is defined as the limit of “diffusive solutions”
when the diffusive term tends to zero (ε → 0). However, the limit solution
depends on the form of D(w).

In each case some extra information is added, an integration path in [23], a
type of consideration of equations in [24] or a form of a diffusive term D in
[6], [7]. Since problem (12) is non-conservative, the numerical treatments of
the mentioned approaches lead to different numerical solutions.

Unfortunately, each of the presented approaches is too complicated to apply to
the model (3) – (5). Thus, as mentioned in Section 1, we do not deal with the
meaning of the non-conservative term (11) and the weak form of the system
(7) any more. However, we observe that different schemes converge towards
different “weak solutions” (solutions with different jump conditions).

2.3 Basic properties of system (7)

System (7) exhibits a strongly nonlinear non-conservative hyperbolic problem.
The definition of the model (3) – (5) gives us no chance to analytically compute
eigenvalues and eigenvectors of matrix C(w), w ∈ PAS. Based on numerical
experiments we observe that the matrix C(w), w ∈ PAS has five real eigen-
values λl, l = 1, . . . , 5 (if w 6∈ PAS then C(w) has complex eigenvalues in
general)

λ1 = u, λ2,3 = u ± c1, λ4,5 = u ± c2, (13)

where u ∈ (min(Uℓ, Us), max(Uℓ, Us)) depends on velocities, fractions and
other model parameters but it is independent of pressure. Therefore Ul = Us

implies u = Ul = Us. The values c1, c2, 0 ≤ c1 < c2 are monotonically
increasing functions of pressure and depend also on velocities, fractions and
model parameters. Moreover, if the pressure is equal to zero then also c1 = 0
so that λ1 = λ2 = λ3 and system (7) is not strictly hyperbolic.

We observe that the matrix C(w) in (7) has at least one eigenvalue with a
vanishing magnitude in the interior of the computational domain for both flow
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regimes of interest.

• In case of a steady state flow simulation with an (almost) empty outlet
reservoir (P O is small), the velocities Uℓ and Us are positive and pressure
(almost) vanishes at the outlet of the pipe. Then there exists a point x ∈
(0, L) where c1 ≈ u and consequently λ3 ≈ 0.

• In case of a simulation of the water hammer the outlet end of the pipe is
closed, velocities Uℓ and Us are vanishing from the pipe outlet and conse-
quently λ1 also vanishes from the outlet of the pipe.

These properties are documented in Figure 1 where the eigenvalues of the
matrices C(wsteady(x)), x ∈ (0, L) and C(wwh(x, t)), x ∈ (0, L) for t =
0.002 s, t = 0.001 s and t = 0.05 s are presented. The state vector wsteady(x),
x ∈ (0, L) denotes the steady state solution and wwh(x, t)), x ∈ (0, L), t ≥ 0
the unsteady solution of the water hammer, obviously wwh(x, 0) ≡ wsteady(x),
x ∈ (0, L).

2.4 Boundary conditions

We present the boundary conditions used for a computation of the steady
state and water hammer flow regimes. We assume that slurry flows from left
to right and thus the inlet and the outlet of the pipe are located at x = 0
and x = L, respectively. Some components of vector w have to be given by
boundary conditions and the others have to be extrapolated from the interior
of the computational domain. The number of prescribed components is equal
to a number of negative values λ̄l ≡ λln, l = 1, . . . , 5, where λl, l = 1, . . . , 5
are eigenvalues of C(w), n is a 1D variant of unit outer normal, i.e., n = −1
and n = 1 for left and right end points of (0, L), respectively.

Let U I−ex
ℓ and U I−ex

s denote the liquid and solid velocities extrapolated from
the interior of the interval (0, L) at the inlet (x = 0), respectively. Similarly,
let UO−ex

ℓ , UO−ex
s , CO−ex

ℓ , CO−ex
s and PO−ex denote the velocities, volume frac-

tions and pressure extrapolated from the interior of the interval (0, L) at the
outlet(x = L), respectively. We use the following boundary conditions.

• Pipe with open ends (steady state solution): numerical examples show (see
Figure 1, left) that the number of negative values λ̄l, l = 1, . . . , 5 is equal
to 3 at the inlet and 1 at the outlet. Based on the physical argumentation,
we prescribe the values of pressure and volume fractions at the inlet and
pressure at the outlet. The other components are extrapolated from the
interior of the domain. It means that we put

w(x = 0, t) = (U I−ex
ℓ , U I−ex

s , CI
ℓ , C

I
s , P

I), t ∈ (0, T ), (14)

w(x = L, t) = (UO−ex
ℓ , UO−ex

s , CO−ex
ℓ , CO−ex

s , P O), t ∈ (0, T ), (15)
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Fig. 1. Eigenvalues of matrix C(w(x, t)), x ∈ (0, L = 100) for the simulation of
the water hammer at time t = 0 s (steady state), t = 0.002 s, t = 0.01 s and
t = 0.05 s, the whole computational domain (top) and the zooms around the pipe
outlet (bottom)

where CI
ℓ , CI

s and P I are liquid and solid fractions and pressure prescribed
at the inlet and P O is prescribed at the outlet.

• Pipe with the closed outlet (water hammer): numerical examples show (see
Figure 1) that the number of negative values λ̄l, l = 1, . . . , 5 is still equal
to 3 at the inlet but 2 at the outlet (for t ≥ η, η ≪ 1). Accordingly, we use
the boundary condition (14) at the inlet and we prescribe (zero) velocities
and extrapolate fractions and pressure at the outlet , i.e. we put

w(x = 0, t) = (U I−ex
ℓ , U I−ex

s , CI
ℓ , C

I
s , P

I), t ∈ (0, T ), (16)

w(x = L, t) = (0, 0, CO−ex
ℓ , CO−ex

s , PO−ex), t ∈ (0, T ), (17)

where CI
ℓ , CI

s and P I are liquid, solid fraction and pressure prescribed at
the inlet.
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3 Numerical methods

In this section we present several types of finite volume schemes for the solution
of (7). We investigate the ability of numerical schemes to solve three following
tasks:

C1 to keep a given steady state solution,
C2 to achieve a steady state solution,
C3 to simulate the unsteady water hammer.

Let Th = {[xi−1/2, xi+1/2], i ∈ J} be a partition of the computational domain
(0, L), where J = {1, 2, . . . , M} is an index set. Moreover, let 0 = t0 < t1 <
t2 < . . . < tr = T be a partition of the time interval (0, T ). We set hi ≡
xi+1/2 − xi−1/2, i ∈ J and τk ≡ tk+1 − tk. The mean value of w over the finite
volume [xi−1/2, xi+1/2] at the time level tk is given by

wk
i ≡

1

hi

xi+1/2
∫

xi−1/2

w(x, tk) dx, i ∈ J, k = 0, 1, . . . , r, (18)

the initial state is defined by

w0
i ≡

1

hi

xi+1/2
∫

xi−1/2

w0(x) dx, j ∈ J, (19)

where w0 is given by initial condition. Finally, let wk
0, wk

M+1, k = 0, . . . , r−1
denote the values on “fictitious” elements obtained with the aid of boundary
conditions, see Section 2.4.

3.1 Centred scheme with numerical diffusion

In [4], we used a modification of the so-called Rusanov scheme [3] for the
solution of (7). The Rusanov scheme was used also in [21] for the simulation
of two-phase flows using the two-fluid two-pressure approach. In this paper, we
present the modified Rusanov scheme for the comparison with other methods.
Taking, for simplicity, hi = h for all i, the scheme reads:

wk+1
i = wk

i −
τk

h

[

C(wk
i )(w̄

k
i+ 1

2

−w̄k
i− 1

2

)−
rk
i

2
(wk

i+1−2wk
i +wk

i−1)−hSk
i

]

,

i ∈ J, k = 0, 1, . . . , r, (20)
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where

w̄k
i± 1

2

=
1

2

(

wk
i + wk

i±1

)

, i ∈ J, k = 0, . . . , r − 1, (21)

rk
i =λmax(C(wk

i )), i ∈ J, k = 0, . . . , r − 1,

Sk
i =S(wk

i ), k = 0, . . . , r − 1,

and λmax(C(wk
i ) denotes the maximum absolute value of eigenvalues of matrix

C(wk
i ). The advantage of scheme (20) is that we have to calculate only the

maximum eigenvalue of matrix C and do not need any other decompositions
of C. Consequently, the maximal eigenvalue can be computed numerically
without any essential loss of accuracy.

3.2 Non-centred upwind schemes

Further, we use finite volume schemes based on approximate Riemann solvers.
It is known that in presence of source terms standard methods can fail in ap-
proximating steady or nearly steady flows, see [10]. In order to ensure the
approximation of steady flows, the so-called well-balanced schemes were pre-
sented in [25]. This approach has been extended in many papers, see, e.g.,
[20], [26], [27] and the references therein. Since we observed some troubles
for approximating a steady state solution, we follow the approach from [25]
and add to the system of equation (7) one “partial” differential equation of a
known function σ(x) = x. Then we obtain the following problem

∂w

∂t
+ C(w)

∂w

∂x
− S(w)

∂σ

∂x
= 0, (22)

∂σ

∂t
= 0, x ∈ (0, L), t ∈ (0, T ),

which can be written in more compact form

∂W

∂t
+ B(W )

∂W

∂x
= 0, x ∈ (0, L), t ∈ (0, T ), (23)

where W = (w, σ)T is the vector with 6 components and the block structured
6 × 6 matrix B is given by

B(W ) =







C(w) −S(w)

0 0





 . (24)
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The regular solution of problem (23) is equivalent with the solution of (7) and,
moreover, system (23) is homogeneous. The eigenvalues of matrix B(W ) are
the eigenvalues of C(w) and, additionally, the eigenvalue zero.

Another possibility how to handle the source terms is a fractional-step method.
However, numerical experiments show that by using this approach it is not
possible to achieve a steady-state solution.

In the following we present several types of the so-called VFRoe-ncv (“vol-
umes finis” Roe non-conservative variables) schemes for the numerical solution
of (23). We briefly introduce an application of the VFRoe-ncv scheme for a
general conservative system see e.g., [19], [20], [21] and then we describe its
modifications for the non-conservative system (23). Furthermore, in Section 4
we discuss their abilities to solve problems C1 – C3.

3.2.1 VFRoe-ncv schemes for conservative system

Let us consider a general conservative hyperbolic system

∂U

∂t
+

∂f (U)

∂x
= 0, x ∈ (0, L), t ∈ (0, T ), (25)

where U : (0, L)× (0, T ) → IRN is an unknown and f : IRN → IRN is a given
flux. A general finite volume scheme can be written in the form

U k+1
i = U k

i −
τk

hi

(

Φk
i+1/2 − Φk

i−1/2

)

, i = 1, . . . , M (26)

where Φk
i+1/2, i = 0, . . . , M is a numerical flux through xi+1/2 which is usually

defined in the form

Φk
i+1/2 ≡ Φ(U k

i , U
k
i+1), i = 1, . . . , M (27)

where Φ : IRN × IRN → IRN is a suitable flux function.

The basic idea of the VFRoe-ncv scheme is the following. We consider a trans-
formation of variables U → Y = Ψ(U), where Ψ is a smooth function. Al-
though the function Ψ does not need to be necessary invertible (see [28]), for
simplicity we assume that that there exists the inverse mapping Ψ−1. Then
system (25) reads in the non-conservative form

∂Y

∂t
+ B̄(Y )

∂Y

∂x
= 0, where B̄ ≡

(

DΨ

DU

)

Df

DU

(

DΨ

DU

)−1

. (28)
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Symbol DX
DU

denotes the Jacobian matrix of a vector-valued function X. Sys-

tems (25) and (28) are equivalent for smooth solutions.

At each interface xi+1/2, i ∈ J we solve the following linearized Riemann
problem

∂Y

∂t
+ B̄

∂Y

∂x
= 0, (29)

Y (x, t = 0) =











Y L, if x < 0,

Y R, if x > 0,

where B̄ ≡ B(Ŷ ) and Ŷ is an average state depending on Y L and Y R, and
satisfying Ŷ = Y if Y L = Y R = Y . Obviously, we can put Ŷ = (Y L+Y R)/2.
If no eigenvalue of B̄ vanishes then the solution of (29) at the interface (i.e.
for x

t
= 0) is given by

Y ∗(B̄, Y L, Y R) ≡ Y (
x

t
→ 0)=Y L +

∑

λp<0

(

lTp · (Y R − Y L)
)

rp (30)

=Y R −
∑

λp>0

(

lTp · (Y R − Y L)
)

rp,

where λp, p = 1, . . . , N are real eigenvalues of B̄ and lp and rp, p = 1, . . . , N
are the corresponding left and right eigenvectors, respectively, normalized so
that lp ·rp = 1, p = 1, . . . , N , for more detail see, e.g., [11]. Then the numerical
flux in (27) is defined by

Φ(UL, UR) ≡ f(Ψ−1(Y ∗(B̄, Y L, Y R))). (31)

Finally, the VFRoe-ncv scheme can be written in the form

U k+1
i = U k

i −
τk

hi

(

f (Ψ−1(Y ∗
i+1/2)) − f (Ψ−1(Y ∗

i−1/2))
)

, (32)

for i = 1, . . . , M , where Y ∗
i+1/2 ≡ Y ∗(B̄, Y i, Y i+1), i = 0, . . . , M and Y i ≡

Ψ(U i), i = 0, . . . , M + 1.

There are some reasons why non-conservative variables Y = Ψ(W ) are used.
In [19], this approach was used in order to preserve numerically Riemann
invariants through the contact discontinuity. In [20], the VFRoe-ncv approach
was applied to shallow-water equations with topography. Two different choices
of non-conservative variables are presented there. The first one avoids troubles
related with an occurrence of dry areas and the second one is suitable in order

14



to preserve all steady state solutions (not only those with a vanishing velocity).
In [21], a transformation to non-conservative variables was used in order to
obtain some properties of the approximate solution similar to properties of
the exact solution, e.g., a positiveness of some quantities.

3.2.2 VFRoe-ncv schemes for the non-conservative system

Our aim is to apply the VFRoe-ncv scheme presented in Section 3.2.1 to the
non-conservative system (23). Since one eigenvalue of B̄ is identically equal
to zero, we define two states at the interface (x

t
= 0) from left and right

Y ∗,L(B̄, Y L, Y R) ≡ Y (
x

t
→ 0−)= Y L +

∑

λp<0

(

lTp · (Y R − Y L)
)

rp (33)

= Y R −
∑

λp≥0

(

lTp · (Y R − Y L)
)

rp,

Y ∗,R(B̄, Y L, Y R) ≡ Y (
x

t
→ 0+)= Y L +

∑

λp≤0

(

lTp · (Y R − Y L)
)

rp

= Y R −
∑

λp>0

(

lTp · (Y R − Y L)
)

rp.

Moreover, we define the averaged solution

Y ∗,LR(B̄, Y L, Y R) ≡
1

2

(

Y ∗,L(B̄, Y L, Y R) + Y ∗,R(B̄, Y L, Y R)
)

. (34)

We also recall a definition of the positive and negative parts of matrix B̄ given
by

B̄
±
≡ RDiag(λ±

1 , . . . , λ±
6 )LT, (35)

where L and R are matrices whose columns are the left and right eigenvec-
tors of B̄, respectively, Diag(λ±

1 , . . . , λ±
6 ) is a diagonal matrix, where λi, i =

1, . . . , 6 are eigenvalues of B̄ and a+ = max(a, 0), a− = min(a, 0).

It is possible to observe that the solutions of the local Riemann problem satisfy
the relations

B̄Y ∗,L(B̄, Y L, Y R) = B̄Y ∗,R(B̄, Y L, Y R) = B̄Y ∗,LR(B̄, Y L, Y R)

= B̄Y R − B̄
+
(Y R − Y L) = B̄Y L − B̄

−
(Y R − Y L). (36)

In case that B̄ is a regular matrix the previous relations imply that

Y ∗,L(B̄, Y L, Y R) = Y ∗,R(B̄, Y L, Y R),
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which is in agreement with the existence of a unique solution of the linearized
Riemann problem at x

t
= 0 for B̄ having no vanishing eigenvalues.

We will use Y ≡ W in (28). It would be possible to consider different (non-
conservative) variables. However, as the matrix B(W ) is defined by rather
complicated relations the choice of other variables than the mentioned one
will probably still increase the complexity of the problem. From the point of
view that the transformation of variables is the identity (Ψ ≡ identity) the
following schemes can be called as the VFRoe scheme. However, since the
components of W are non-conservative we still use the notation “VFRoe-ncv
scheme”.

In the following, we set W k
i ≡ (wk

i , xi)
T, i = 0, . . . , M + 1, k = 0, . . . , r −

1, where xi is the centre of interval [xi−1/2, xi+1/2], i = 1, . . . , M and x0 =
2x1/2 − x1, xM+1 = 2xM+1/2 − xM , which denote discrete values of W on
the “fictitious” elements. It means that we put σL = xi−1 and σR = xi for
the Riemann problem considered at the face localized at xi+1/2. This choice
has no influence on the solution of the Riemann problem, e.g., the choice
σL = σR = xi+1/2 produces very similar results for the “physical” components
of the solution.

Provided that we formally replace f (U) by B(U)U in (32) and take into
account that Ψ is the identity, we obtain the following form of the VFRoe-ncv
scheme for the non-conservative system (23) (with no vanishing eigenvalues)

W k+1
i = W k

i −
τk

hi

[

B(W k,∗

i+ 1

2

)W k,∗

i+ 1

2

− B(W k,∗

i− 1

2

)W k,∗

i− 1

2

]

, (37)

for i ∈ J, k = 0, . . . , r− 1, where vectors W
k,∗

i+ 1

2

, i = 0, . . . , M, k = 0, 1, . . . , r

are the solutions of the local Riemann problems.

Another possibility is to replace the arguments of the matrix B(·) in (37) by
the volume mean of W on [xi−1/2, xi+1/2], then we have

W k+1
i = W k

i −
τk

hi

[

B(W k
i )
(

W
k,∗

i+ 1

2

− W
k,∗

i− 1

2

)]

. (38)

Further, we can modify the scheme (38) by

W k+1
i = W k

i −
τk

hi

[

B

(

1

2
(W k,∗

i+ 1

2

+ W
k,∗

i− 1

2

)
)(

W
k,∗

i+ 1

2

− W
k,∗

i− 1

2

)]

(39)

or by

W k+1
i = W k

i −
τk

hi

[

1

2

(

B(W k,∗

i+ 1

2

) + B(W k,∗

i− 1

2

)
)(

W
k,∗

i+ 1

2

− W
k,∗

i− 1

2

)]

. (40)
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All four variants of the VFRoe-ncv schemes (37) – (40) are identical for a linear
system of hyperbolic equations (i.e., if B is constant) and are well-defined. The
schemes were defined rather heuristically and some numerical analysis should
be carried out. Unfortunately, the complexity of the model does not allow us to
derive analytically some properties of the matrix B and therefore to analyse
the schemes (37) – (40). On the other hand we suppose that a numerical
analysis carried out for some simplified problem will produce results which
will not correspond to the original model. However, our aim is not to derive
and to analyse the VFRoe-ncv scheme for a general non-conservative system
but to show that these variants of the VFRoe-ncv scheme (using the solution
of a linearized Riemann problem) can not be used for flow simulation of solid-
liquid-gas slurries with the virtual mass effect (at least for the configurations
studied in this paper). An application of VFRoe-ncv schemes to another non-
conservative problem is quite open. In [21] the VFRoe-ncv scheme of type (40)
was applied for a discretization of non-conservative terms in a modelling of
two-phase flows using two-fluid two-pressure approach.

Since one eigenvalue of B in (23) is identically equal to zero, we have two
possible solutions of the linearized Riemann problem and therefore with the
aid of (33) – (34) we define more variants of VFRoe-ncv schemes for (23). Let
Bk

i+1/2 ≡ B((W k
i + W k

i+1)/2), i = 0, . . . , M, k = 0, . . . , r − 1 and

W
k,∗,L

i+ 1

2

= Y ∗,L(Bk
i+1/2, W

k
i , W

k
i+1), (41)

W
k,∗,R

i+ 1

2

= Y ∗,R(Bk
i+1/2, W

k
i , W

k
i+1),

W
k,∗,LR

i+ 1

2

= Y ∗,LR(Bk
i+1/2, W

k
i , W

k
i+1),

where i = 0, . . . , M, k = 0, . . . , r−1. Based on (40) we define the first variant
of the VFRoe-ncv scheme by

W k+1
i = W k

i −
τk

hi

[

1

2

(

B(W k,∗,L

i+ 1

2

) + B(W k,∗,R

i− 1

2

)
)

(42)
(

W
k,∗,L

i+ 1

2

− W
k,∗,R

i− 1

2

)]

,

and the second one by

W k+1
i = W k

i −
τk

hi

[

1

2

(

B(W k,∗,LR

i+ 1

2

) + B(W k,∗,LR

i− 1

2

)
)

(43)
(

W
k,∗,LR

i+ 1

2

− W
k,∗,LR

i− 1

2

)]

,

where i ∈ J, k = 0, . . . , r − 1.
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Based on (38) we introduce two variants of the simplified VFRoe-ncv scheme,
the first one by

W k+1
i = W k

i −
τk

hi

[

B(W k
i )
(

W
k,∗,L

i+ 1

2

− W
k,∗,R

i− 1

2

)]

, (44)

and the second by

W k+1
i = W k

i −
τk

hi

[

B(W k
i )
(

W
k,∗,LR

i+ 1

2

− W
k,∗,LR

i− 1

2

)]

, (45)

where again i ∈ J, k = 0, . . . , r − 1. It would be possible to define additional
numerical schemes based on (37) and (39) of course, but computational ex-
periments show that the numerical results obtained by these variants behave
very similarly as the schemes (42) and (43), see [5]. That is why we do not
introduce them.

On the other hand, we define a scheme which is a direct generalization of
the pure upwind scheme for a linear system of equations. Let B

k,±

i+ 1

2

be the

positive and negative parts of Bk
i+ 1

2

= B((W k
i +W k

i+1)/2), i = 0, . . . , M, k =

0, . . . , r − 1 given by (35). Then we define the generalized upwind scheme

W k+1
i = W k

i −
τk

hi

[

B
k,−

i+ 1

2

(

W k
i+1 − W k

i

)

+ B
k,+

i− 1

2

(

W k
i − W k

i−1

)

]

, (46)

where i ∈ J, k = 0, . . . , r − 1. With the aid of (36), scheme (46) can be
rewritten in the equivalent form as

W k+1
i =W k

i −
τk

hi

[

Bk
i+ 1

2

(

W k
i − W

k,∗,P

i+ 1

2

)

− Bk
i− 1

2

(

W
k,∗,P

i− 1

2

− W k
i

)]

,(47)

where k,∗,P represents either k,∗,L or k,∗,R or k,∗,LR. The scheme (47) is the
scheme of Chakravarthy et al. presented in [29]. Although the schemes (46)
and (47) are analytically identical the numerical examples in Section 4 show
that their implementations produce rather different numerical solutions.

We have introduced six non-centred numerical schemes (42) – (47) for the
solution of (23). If B is a regular constant matrix (i.e. system (23) is linear)
then with the aid of (36) we observe that all these schemes are identical. In
order to guarantee the stability of these schemes we use the stability condition

τk≤CFL min









min
i=1,...,M

hi

λmax

(

B(W k
i )
) , min

i=1,...,M−1

P=L,R

(hi + hi+1)/2

λmax

(

B(W k,∗,P

i+ 1

2

)
)









, (48)
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where k = 0, . . . , r − 1 and CFL ∈ (0, 1).

4 Numerical examples

4.1 Problem data

In this section we discuss the ability of schemes (20), (42) – (47) to solve the
tasks C1 – C3 introduced in Section 3. Using data from [2] the calculations
were carried out with the following values of the model parameters in (3) – (5)
corresponding to a sand (solid), water (liquid) and air (gas): ρs = 2600 kg.m−3,
ρl = 1000 kg.m−3, ρg = 1.28 kg.m−3, as = 7000 m.s−1, al = 500 m.s−1,
ag = 300 m.s−1, fℓ = 0.04, D = 0.1m, CD = 0.1, d = 5.10−4m, dz

dx
= 0 and the

length of the pipe is L = 100 m. Moreover, the following initial and boundary
conditions were used for the tasks C1 – C3 defined at the beginning of Section
3:

C1 We use the boundary conditions (14) – (15) with CI
ℓ = 0.89, CI

s = 0.1,
P I = 5.5 · 105 Pa and P O = 0 Pa. The initial condition is defined by the
steady state solution

w0 = wsteady ≡ (5.049, 5.219, 0.89, 0.1, 5.5 · 105(1 − x/L)), (49)

which corresponds to the mentioned boundary conditions. It was computed
numerically but can be easily verified analytically. We investigate the ability
of the schemes to keep the steady state solution (49) for t → ∞.

C2 We use the same boundary conditions as in C1 and the initial condition

w0 = (6.5, 6.5, 0.89, 0.1, 5.5 · 105(1 − x/L)). (50)

We investigate the ability of the schemes to converge to the steady state
solution (49) for t → ∞.

C3 We investigate the ability of the schemes to simulate the unsteady water
hammer. We use the boundary conditions (16) – (17) with CI

ℓ = 0.89,
CI

s = 0.1, P I = 5.5 · 105 Pa and the (steady state) initial condition (49).
We compute the solution for time interval (0, 0.3) s during whose the water
hammer propagates up to the pipe inlet.

The comparison of the numerical methods were performed mostly for 25 sub-
intervals of (0, L) (M = 25), some calculations on finer meshes are presented.
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4.2 Discussion of numerical results

Based on many numerical experiments, the following interesting but unpleas-
ant property of the linearized Riemann solutions (33) – (34) was observed. By
W = (w, σ)T ∈ PAS we mean that w ∈ PAS, see (6). There exist vectors
W L ∈ PAS and W R ∈ PAS such that

Y ∗,P (B((W L + W R)/2), W L, W R) 6∈ PAS, (51)

where Y ∗,P represents either Y ∗,L or Y ∗,R or Y ∗,LR. This property was ob-
served in regions of the computational domain (0, L), where one (not identi-
cally vanishing) eigenvalue of B((W L + W R)/2) is close to zero. The matrix
B contains one eigenvalue identically equal to zero (vanishing eigenvalue) but
it does not cause any troubles in computations.

The property (51) is documented in Table 1, where examples of the solutions
Y ∗,L and Y ∗,R of the linearized Riemann problem (29) for four pairs of vectors
W L and W R are shown. The nonphysical quantities are bolted and the table
also contains the corresponding eigenvalues λi, i = 1, . . . , 6 of the matrix
B((W L +W R)/2). The physical inadmissibility of Y ∗,L and Y ∗,R is probably
the main reason of the disability of the schemes using the solution of the
linearized Riemann problem to solved satisfactory the tasks C1 – C3. The fact
that the solution of the linearized Riemann problem can be unphysical may
depend on the choice of the variable for the linearization process in VFRoe-
ncv, see [30]. But for the considered model, as we mentioned in Section 3.2.2,
we do not know what natural choice (better than the used one) of the variables
for the linearization process could be done. The nonphysical solutions of the
linearized Riemann problem appear also for conservative systems, see, e.g, [31]
where the vacuum scenario of the Euler equations is investigated. We suppose
that the situation from [31] differs from those ones presented in Table 1 since
the velocity directions are completely different.

In the following, we discuss the obtained numerical results for each group of
the schemes separately.

Modified Rusanov scheme The modified Rusanov scheme (20) gives sat-
isfactory numerical results for all three tasks. It keeps the steady state solution
in the task C1 and the solution of the task C2 do not suffer from any unphys-
ical oscillations. Finally, Figure 2 shows the simulation of the water hammer.
We observe that the Rusanov scheme yields to a slower propagation of changes
of the state vector for the water hammer in comparison with other schemes,
compare Figures 2 and 6.
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example W L W R Y ∗,L Y ∗,R λ1, . . . , λ6

Uℓ 6.500 6.500 4.457 6.401 104.7
Us 6.500 6.500 17.223 6.820 -98.2

E1 Cℓ 0.890 0.890 1.052 0.885 13.4
Cs 0.100 0.100 -0.055 0.1050 6.5
P 93500. 82500. 85624. 79369 -0.43
σ 83. 85. 83. 85. 0.

Uℓ 6.616 6.690 -9.940 4.499 105.3
Us 5.670 4.930 80.672 19.093 -98.2

E2 Cℓ 0.890 0.890 1.906 0.705 13.2
Cs 0.100 0.100 -0.882 0.280 6.0
P 115917. 105766 67914 126308 -2.3
σ 79. 81. 79. 81. 0.

Uℓ 6.963 7.259 -147.844 -11.931 107.1
Us 3.177 0.221 477.934 302.555 -98.3

E3 Cℓ 0.890 0.890 7.638 -2.744 9.8
Cs 0.100 0.100 -6.466 3.872 -5.5
P 117170 109562 655575 791811 4.0
σ 79. 81. 79. 81. 0.

Uℓ 3.563 0. 6.651 27.828 14.991
Us 4.317 0. -13.841 19.019 -6.480

E4 Cℓ 0.899 0.899 0.7282 250.115 3.9
Cs 0.102 0.102 0.272 1.692 0.2
P 214037 214037 250072 -6.15E+10 0.2
σ 98. 102. 98. 102. 0.

Table 1
Examples of solutions Y ∗,L and Y ∗,R of the linearized Riemann problem for four
pairs of Y L and Y R and the corresponding eigenvalues λi, i = 1, . . . , 6, physically
inadmissible quantities are bolted

VFRoe-ncv schemes (42) and (43) Scheme (43) is not able to solve
the task C1 what is documented in Figure 3, where the dependence of the
velocities Uℓ and Us at the cell with xi = 91 on the number of time steps is
presented. We observe that after approximately 50 time steps some instabilities
of the numerical solution arise and consequently the solution blows up very
fastly. This instability is not caused by a violation of a stability condition with
respect to the length of the time step (the presented results were obtained
with CFL = 0.005 in (48)) but we suppose that these instabilities come from
a very high sensitivity of the solution of the Riemann problem with respect to
rounding errors. It make no sense in applying the schemes (43) to the tasks
C2 and C3.

Scheme (42) is able to solve the task C1 but not the task C2. The failures of the
scheme is caused by the property (51) since B(W k,∗,P

i+ 1

2

) becomes meaningless

for W
k,∗,P

i+ 1

2

6∈ PAS. Here ∗,P represent ∗,L or ∗,R or ∗,LR and i corresponds to

the finite volume with the unphysical state vector. The example E1 in Table

21



 0.89

 0.892

 0.894

 0.896

 0.898

 0.9

 0  25  50  75  100

’C_l:t=0.0’
’C_l:t=0.1’
’C_l:t=0.2’
’C_l:t=0.3’

 0.1

 0.1005

 0.101

 0.1015

 0.102

 0.1025

 0.103

 0  25  50  75  100

’C_s:t=0.0’
’C_s:t=0.1’
’C_s:t=0.2’
’C_s:t=0.3’

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0  25  50  75  100

’C_g:t=0.0’
’C_g:t=0.1’
’C_g:t=0.2’
’C_g:t=0.3’

Cl Cs Cg

-1

 0

 1

 2

 3

 4

 5

 6

 0  25  50  75  100

’U_l:t=0.0’
’U_l:t=0.1’
’U_l:t=0.2’
’U_l:t=0.3’

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0  25  50  75  100

’U_s:t=0.0’
’U_s:t=0.1’
’U_s:t=0.2’
’U_s:t=0.3’

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0  25  50  75  100

’P:t=0.0’
’P:t=0.1’
’P:t=0.2’
’P:t=0.3’

Ul Us P

Fig. 2. Task C3, M = 25, modified Rusanov scheme (20), simulation of the water
hammer, distributions of Cℓ, Cs, Cg, Uℓ, Us and P at t = 0, t = 0.1, t = 0.2 and
t = 0.3

1 corresponds to the application of the scheme (43) to the task C2. It make
no sense in applying the scheme (43) to the task C3.

Simplified VFRoe-ncv schemes Schemes (44) – (45) give significantly
better results than schemes (42) – (43). It is caused by the fact that solutions
of linearized Riemann problems are not used as arguments of matrix B but
they appear in (44) and (45) only as differences W

k,∗,L

i+ 1

2

−W
k,∗,R

i− 1

2

and W
k,∗,LR

i+ 1

2

−

W
k,∗,LR

i− 1

2

, respectively. We observed the following situation

W
k,∗,L

i+ 1

2

6∈ PAS and W
k,∗,R

i− 1

2

6∈ PAS, but (W k,∗,L

i+ 1

2

− W
k,∗,R

i− 1

2

) ∈ PAS, (52)
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Fig. 3. Task C1, M = 50, VFRoe-ncv scheme (43), dependence of Uℓ and Us at the
cell with xi = 91 on the number of time steps

which causes trouble for scheme (42) but not for (44). This explains the better
behaviour of (44) – (45) compared to (42) – (43).

The scheme (45) solves well the tasks C1 and C2. The scheme (44) solves well
the task C1, but for the task C2 it converges to an unphysical “steady state”
solution containing spurious oscillations, which are localized near a node where
a non-vanishing eigenvalue is close to zero, see Figure 4. It is interesting that
these oscillations are completely independent of the value of CFL number used
in the stability condition (48)) and the oscillating solution represents a steady
state solution form the numerical point of view, i.e., there exists k0 > 0 such
that wk+1

i = wk
i , i = 1, . . . , M for any k ≥ k0.

On the other hand, both schemes (44) – (45) are able to solve the task C3,
but the solutions suffer from instabilities near the pipe outlet, where one non-
vanishing eigenvalue is small. These instabilities are stronger for the scheme
(44) and can not be suppressed by reducing the time step. Figure 5 shows
the simulation of the water hammer obtained by the scheme (44), where the
instabilities are observed.

Generalized upwind schemes Although schemes (46) and (47) are ana-
lytically identical they give numerically identical results only for tasks C1 and
C2. They solve very well C1 but for C2 converge to an unphysical steady state
solution, similarly as scheme (44), see Figure 4.

However, schemes (46) – (47) are also able to solve the unsteady problem
C3. Using (46) we obtain a very good simulation of the water hammer for
the similar CFL number (CFL = 0.3) as the modified Rusanov scheme (20),
see Figure 6. On the other hand with the aid of scheme (47) the calculation
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Fig. 4. Task C2, M = 25, simplified VFRoe-ncv scheme (44), unphysical “steady
state” solution, distributions of Cs, Uℓ, and P
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Fig. 5. Task C3, M = 25, simplified VFRoe-ncv scheme (44), simulation of the
water hammer, distributions of Cs, Uℓ and P at t = 0, t = 0.1, t = 0.2 and t = 0.3

can be carried out successfully only if CFL ≤ 0.2 in (48)). This is a very
important observation that two analytically identical schemes have different
computational properties. This is caused probably by the fact that the scheme
(47) uses the solution of linearized Riemann problems whose computation is
more sensitive with respect to the rounding errors. Therefore smaller time step
should be used in order to avoid instabilities caused probably by rounding
errors. The example E4 from Table 1 corresponds to the solution of the water
hammer obtained by the scheme (47) with CFL = 0.29 in the third time
step. We observe that the solution of the linearized Riemann problem at x =
100 (the pipe outlet) is very unphysical P ≪ 0. On the other hand, using
the numerical solution obtained by the scheme (47) with CFL = 0.29 after
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Fig. 6. Task C3, M = 25, generalized upwind scheme (46), simulation of the water
hammer, distributions of Cs, Uℓ and P at t = 0, t = 0.1, t = 0.2 and t = 0.3

Computational task

method C1 C2 C3

Rusanov (20) OK OK OK

VFRoe-ncv1 (42) OK fails –

VFRoe-ncv2 (43) fails fails –

VFRoe-ncv-sim1 (44) OK OK OK
stable oscillations unstable oscillations

VFRoe-ncv-sim2 (45) OK OK OK
unstable oscillations

upwind1 (46) OK OK OK
stable oscillations if CFL ≤ 0.3

upwind2 (47) OK OK OK
stable oscillations if CFL ≤ 0.2

Table 2
Properties of numerical schemes (20), (42) – (47)

two time steps as an initial condition for the scheme (46) we obtain results
practically identical with those presented in Figure 6. Based (not only) on
this observation we suppose that numerical schemes based on the solution
of the linearized Riemann problem are not suitable for a flow simulation of
solid-liquid-gas slurries.
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4.3 Summary of the results

The properties of the numerical schemes (20), (42) – (47) observed in Section
4.2 are summarised in Table 2. The numerical examples presented in Section
4.2 indicate that none of the numerical schemes (42) – (47) is able to solve
the tasks C1 – C3. The best results were obtained by scheme (46) whose
simulation of the water hammer looks realistic and CFL number in (48))
is not too restrictive. The only drawback of (46) is that it converges to an
unphysical steady state solution for the task C2. This lack can be overcome
by adding a small dissipative term to the scheme, e.g.,

W k+1
i = W k

i −
τk

hi

[

B
k,−

i+ 1

2

(

W k
i+1 − W k

i

)

+ B
k,+

i− 1

2

(

W k
i − W k

i−1

)

(53)

−ǫ
rk
i

2
(W k

i+1 − 2W k
i + W k

i−1)

]

, i ∈ J, k = 0, . . . , r − 1,

where ǫ > 0. Numerical examples show that the value of ǫ ≥ 0.01 ensures that
numerical solution of the task C2 converges to a physical steady state (49).
On the other hand, the presence of artificial viscosity causes a retarding and a
small smearing of the solution for the task C3. Figure 7 compares simulations
of the water hammer obtained by the Rusanov scheme (20) and scheme (53)
with ǫ = 1, ǫ = 0.1 and ǫ = 0.01 (= scheme (46)) with M = 50, M = 200
and M = 800, respectively (for ǫ ≤ 0.01 the results are almost identical with
the results obtained with ǫ = 0). We observe an increase of the retardation
for propagation of discontinuities for increasing ǫ. Moreover, this figure shows
that with the aid of a finer partitioning of (0, L) we obtain a sharper capturing
of discontinuities but the same retardation for each numerical scheme.

Therefore, we conclude that the Rusanov scheme and the schemes (53) with
different parameter ǫ converge to different “weak” solutions (differing by the
speed of the propagation of the discontinuities). This is in agreement with
the arguments presented in the introduction and Remark 2 of this paper, i.e.,
without additional (jump) conditions we can not define a proper weak solution
and then different stable numerical schemes produce different solutions.

5 Conclusion

We dealt with the numerical simulation of steady and unsteady flows of solid-
liquid-gas slurries which leads to a non-conservative system of equations with
source terms. Although the non-conservativity and complexity of the prob-
lems prevented us from introducing the concept of a weak solution we solved
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Fig. 7. Task C3, M = 50, M = 200 and M = 800, details of comparison of Rusanov
scheme (Rusanov) and scheme (53) with ǫ = 1 (upw+e=1.0), ǫ = 0.1 (upw+e=0.1)
and ǫ = 0.01 (upw+e=0.01), distributions of Cℓ, Cs and P at t = 0.3
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this industrial challenging problem numerically. We tested several numerical
schemes which are based on the solution of linearized Riemann problems and
we observed that instabilities can cause a collapse of a calculation. These
troubles may have the following reasons:

• unphysical intermediate states in the computation of the linearized Riemann
problem,

• a high sensitivity of the non-conservative terms with respect to their argu-
ments and consequently to the rounding errors namely when a non-vanishing
eigenvalue of the matrix of the linearized Riemann problem has a small mag-
nitude.

On the other hand, the Rusanov scheme and the generalized upwind scheme
with an artificial dissipative term (53) solved very well the steady as well
as the unsteady flow problems. These schemes do not evaluate directly the
solution of the linearized Riemann problem and therefore, do not suffer from
the instability mentioned above. The presented numerical examples show
that it is not easy to design a reliable numerical scheme for a non-conservative
system ignoring completely the non-conservative equivalent of the Rankine-
Hugoniot jump conditions. Various ’upwind-like’ schemes produce different
results and one has no clue as to what is physically reasonable, since the
numerical results all look plausible. In order to obtain a unique solution,
we have to add some extra information. There should be taken into account a
more physical character of the model. This is a subject for the future research.
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[30] T. Gallouët, J. M. Hérard, N. Seguin, On the use of symmetrizing variables for
vacuum, Calcolo 40 (3) (2003) 163–194.

[31] B. Einfeldt, C. D. Munz, P. L. Roe, B. Sjögreen, On Godunov-type methods
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