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Synopsis
et =RY or 0 be a bounded regular open set of BY and let v{x, s): xR —R be a continuous
rondecreasing function in s, measurable in x, such that +(x, 0) =0 almost everywhere. We solve, for
fe LYQ), the problem (P): —Au+vy(,u)=f in O, u=0 on 3. (In fact, for this resuft, instead of
assuming that v is nondecreasing in s we need only that v(x, §)s=0.) We deduce an ‘‘almost”
necessary and sufficient condition on f& @'((}), in order that (P) has a soluticn. Roughly speaking, this
condition is f=—AV +g with g LX) and v{,, V)eL'{)).

1. Introduction

1.1. Problem and results

Let Q< RY be an open set and y(x, s): A xR — R a function measurable in x, and
continuous nondecreasing in s, with y(x, 0)=0 almost everywhere. This paper
treats first the problem

—Au+v(, w)=f in DY,
(P){u =( on 0(},

where feLY{(}). We shall consider two cases: when O=R" and when Q is a
smooth bounded set of RY. When v(x, s) = ¥(s) does not depend on x, Problem
(P) has been completely solved in [1] for the case where {1 = Y, and in [2], for the
case where () is a bounded open subset of RY with smooth boundary. In the
second case, the proofs involve properties of the maximal monotone graph of v in
RxR. They cannot be extended to include the dependence of v on x, and,
moreover, apply to Q=R" only under a coerciveness condition on vy of the type
v(u) . uz eu®

Let us now explain the difference between our technique and that employed in
[1]. It is easy to find, by a variational argument, a solution for a regularized
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version of (P} given by
1
(P,)—Au, o +Yules Un) = Ffr

where v, is a truncation of v and f, € L*(Q). The difficulty in passing to the limit
as (1/n)—0, is to prove weak precompactness in L1 (Q) of the sequence
(¥a (- U e

In [1], the authors make use of a classical compactness theorem of Kolmogorov.
Moreover, they describe the functional framework for solving problems which,
like (P), involve the Laplacian with range in L' (RY). We shall use their results
extensively, and our proofs often follow theirs step by step. But, instead of
Kolmogorov’s theorem, we base our proof on a compactness argument due to
Vitali. The main idea is t0 obtain equiintegrability of the sequence v, (., u,) by
proving the relation

[ mGwiaxs]  iglax

[, f2=t] [u =]

Since, for the case O =R", we will need to use, as in [1] properties of A~ on
LYRY), it is not surprising that the fundamental solution of the Laplacian plays an
important role. In partricular, it will be necessary to handle separately the cases
NzZ3 N=2 N=1.

We now give the plan of this paper, and summarize the main results.

In section 2, we first solve (P) in RY for N=3. We assume that the function
x—>v(x, 1) is in LL.®"Y), for all R, and then show that (P) admits a unique
solution u in MMNDERNY, with v(, w)e L'RY), where MP(R™) denotes the
Marcinkiewicz (or weak-I*) space (see below). The existence part of this result
does not require v to be nondecreasing in s, but only that y{x, s)s =0 (assuming
moreover that sup |v(x, s}le LLRY) for all teR"Y).

fsi=t
Later in section 2, we deduce an “almost’ necessary and sufficient condition on
fe @' [RY) for problem (P) to have a solution; roughly speaking, this condition is
f=—-AV+g with g= L'YR™) and v{(., V)e L'®E).
In section 3, we solve (P) in BY for N=2 and N=1, fe L'. In addition to the
assumption of section 2, we require as in [1] some coerciveness on the nonlinear
term, namely:

A, C, >0, meas {x, v(x, CP=Cyor y(x, —C)= — Cyp <o,

For N =2, we obtain a solution, unique up to a constant, to the problem

{#Aqu'y(., u)=f, )
y(, we L'@), Vule M*R?), ue Wi(R).
If N=1, we prove the same result for the problem
{—u"w(., W=, .
vy wel'®), ueliR).

As in section 2, the assumption that v is nondecreasing can be weakened to the
assumption that v(x, s)s=0. We can also treat the case fe @'(RY).
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In section 4, we solve (P) on a bounded regular open set of R (N =1). Under
the assumption v(., 1) e LL.{) for all tcR, we obtain, for all f<L'(0)), a uniaue
solution to the problem

{—Au%—*y(.,u):fin '), @)

ue Wyl (Q), (., u)eL'D.

As in the preceding sections, for the existence part of this result, the assumption
that y is nondecreasing in s can again be weakened fo y{x, s)s={0. Then we
deduce an “‘almost™ necessary and sufficient condition on e &'(Q)) for (3) to have
a (unique) solution. Roughly speaking, this condition is f=—-AV-+g with ge
LYY and (., V)e LX),

As a corollary, we show that the probiem

{uAu + ]uli’_lu =,
uelP{), ueWiHQ),

has a solutjon if and only if the distribution g is in LX)+ W 2?({}) We examine
the relation of this proposition to a theorem of {4].

1.2. Some notation and definitions

When QcRY is Lebesgue measurable, we denote its measure by meas (. For
feL'(Q), Jo f(x) dx denotes the integral of f over  with respect to Lebesgue
measure but this is shortened to fg fdx, or { f when Q=R". The norm in L*(Q}) is
denoted by |ll- or ||, 1=p=ee. Let u be a measurable function on RY, 1 <p <Coo
and {1/p)+(1/p)=1. Set '

|2¢]lae = min {CE [0, o], J luix)| dx = C(meas K)¥?, K measurable C[REN}.
K

MP" (RV) is the set of measurable functions u on R™ satisfying |[ulay <<, It is easy
to verify that M® (RY) is 2 Banach space under the norm ||.|,; it is called the
Marcinkiewicz space. H u is a function on RY, [lul> 1] denotes {x eRY, ju(x)|>
A} If k=0 is an integer and 1= p=c, W*P({}) is the Sobolev space of functions
u on the open set Q< RY for which D'u € 12(£)) when |I| = k, with its usual norm.
WER(£)) is the closure of @(Q) = C5(Q) in WeP ().

If p =2, we write H* for W*2. A function u lies in W2(Q) if fu e WSP(()) for
all £ € % (€)). We denote by () the set of bounded Radon measures on {}, with
the norm: [[pjle = [p! ().

2. The equation —Au +v(., u)=f in I"R™) with N=3

ToeEorREM 1. Let y(x, s}:RY xR —R be a funcion measurable in x which is
continuous and nondecreasing in s. Assume that y(x, 0) =0 almost everywhere and
that the function x — (%, t) is in LL(R™) for all t in R. Then, for every f in L'\R"),
the following problem has a unique solution:

{—Au +v(, W) =F in B'REYY,
v, u)e L'@YY, ueMYEIRY).

(4)
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Remark 1. In Theorem 1, instead of —A we can have a more general uniformly

elliptic second order operator. ar

In the proof of existence in Theorem I, we do not need the assumption that
v(x, s) is nondecreasing in s. It is enough to assume that v{(x, s)s =0 almost w,

everywhere in x €RY, for all s €R; and Sup |v(x, s)|e LL(R") for all teR,

is|=t p(

Proof of Theorem 1. (a) Uniqueness of the soluiion. Let u and v be two solutions

of {(4). Then (u—v)e M™®™=2 and —A{u—v)e L' Thus it is “easy” to show (see

% 1, Lemma A.10]) that, for every function p in €={p=C'NL"{R), p'=0,
i? p(0) =03}, one has O

J. —Alu—viplu—v) dx =0,
RN

!

!g? Thus, § (v(., )= (., v)pu—v)=0.

: g% Since y{x, s) is nondecreasing in s and we can choose p increasing, we deduce E W
;ig that (., u)=v(., v) almost everywhere, and therefore u = v almost everywhere. |

iég Indeed, from (., u) = v(., v} almost everywhere, we deduce —A{u—v)=0 almost

i everywhere, and since u—ve MMM we can conclude that u=v almost

i everywhere (see [1, Lemma A.5]). .
(b) Existence of a solution for Problem (4). We ﬁrst solve a penahzed version of = B

Problem (P). th

LemMa 1. Assume only Nz 1. Let v be as in Theorem 1, but assume moreover T

that suply(., 9)le L*®Y). Let f be in I’RY). Then, for all >0, the following "

sl

problem has a unique solution se
: { —Au+eu+v(,u)=f, )
u e HYRN).
: T
Proof. Set j(x,5)=[ v{x. t) dt and : d

Eu)== J.IVu!zder Jiulzdx+j1( u) dx — jfudx.

This functional is well defined for u in H'(RY). Indeed, one has 0=j(., u)=

uy(, u)e L'RY) (since ue*(®Y)). Note that E is strictly convex and that

‘- E(u) — -+ as ||ujy: — +oo. Thus, by minimizing E on HY(RY), we obtain a unique
solution u for the associated Buler equation (5). Moreover, from u e L*(RY), s >
Au s LARY), we deduce u e HA(RY). [
Next, we provide some estimates on the solution of (5) for N=3.

Lemma 2. Let N=3. Let v and f be as in Lemma 1, and assume moreover that
feL'®™). Let £>0. Then, the solution u of (5) satisfies the following inequalities
(with v, (., u) = eu+vy(., u)):

J Ive ., u)| dx EJ- \fldxforalltin R, (&)
{lee|=1} {lu|=t}

el = e I 7

od T e
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and
HVM!!M“/‘N") Zdy “f“LH

where cx and dy depend only on the dimension Nz 3.

Proof. Let pe€={pecC'R), p(0)=0, p'=0, p’'c L. Since ucH', we have
p(u)e HY®R™), and since u = H?, on applying Green’s formula we obtain

I(—Au)p(u) dx=0.
On multiplying (5) by p{u) and integrating, we obtain
J”Ys (., wp(u) dx= pr(u) dx. (8)

We can easily find a sequence (p,), in €, such that

pax) T 1, for x>t

p.(x)=0, for —t=x=4,

pixyl—1, for x<—t
By using the monotone convergence theorem and the dominated convergence
theorem, we can pass to the limit in (8) with p, instead of p. Hence, we obtain (6)

Then (7) is a direct application of the following lemma, which has already been
used in the first part of the proof of Theorem 1.

Lemvma A. ({1, Lemma A.5]). Let N=3, ueLl ®R™), Aue L'(R™), and let u
satisfy

n—oo

lim n‘NJ. lu(¥)| dy =0.
n=ly|=2n

Then, ue MY [Vule MYND®RY), and ||ullyme o= i Al [[Vilymm—m =
dijiaul), ., for some constants ¢4 and d4 independent of wu.

Indeed, on applying (6) with t =0 and using (5), we obtain ||Aul|; =2 ||fllz+, and
by Lemma A we obtain (7) with ¢y = 2¢f, and dy = 2dy.

As a final step, we have to pass to the limit in {5) to obtain a sohstion to (4).

Let f, e @(R™) be a sequence such that f, — f in LYRY) as n — +w. Choose
pc@RY), with 0=¢=1, ¢=1 on B;={xeR"Y, |x|<1}, ¢=0 on BS={xcRY,
x]= 2}, and set '

@, (%)= cp(g) neN*, xeRY,

{vn(x,S)—v(x,S)fpn(x), if lvix, s)|=n,
Yo (%, §) = rsgn (v(x, s)e.(x), i |y(xs)>n

According to Lemma 1, there exists u,e M’ such that —Au, +(1/n)u, + v,
(., u,) = f,. By applying Lemma 2, with w, and (1/n)u, + v, (., u,) instead of u and
v., one sees that the sequence (u,), is bounded in M™™ 2 and (Vu,), in
MN®U Thys (u,), and (Vu,), are bounded in L1 R™), and therefore (u,),, is
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bounded in Wi:RY). So (u,),, is a precompact sequence in LL (RY), and we may
assume that

u, —u in Li,; and almost everywhere.

Moreover, applying Fatou’s lemma to u, vields ue M¥®™-2_ But we have
Yulos ) = v(., 1) almost everywhere, and then using (6) with t =0, we see that
(v.(., u.)),. is a bounded sequence in L'(R™). Then, by Fatou’s lemma, we also
have v(., u}e L'(R™). In order to prove the convergence of (v,(., 1)), t© v{., u)
in L;,(R™), it remains (by a classical theorem of Vitali) to show that (v, (., u,)), is
equiintegrable on every bounded measurable set B of RY.

Let B be a bounded measurable set of RY and £>>0. We want to prove that
there exists § >0 such that for every measurable set K of B one has

measK;S:}f (el )| dx=e, VneN*,
g4

We first remark that, since (u,), is bounded in M™®"2 we have meas ({|u,|=
1) — 0 as t — oo, uniformly in n eN*. Then, since (f,),, is equiintegrable on RY,
we have, for some 1,0,

tét(]:}J. Il dx=e, VreN*
(TNE=H
By using (6}, we obtain
Izt0$J e, w )l dx =g, VneN*, (9)
e It}
Now, for 1 =1, and for every measurable set K< B, we have
t,
J 1y G5 1) dx%j (v(s o+ v, ~to)]) dx +—meas K.
e, |<tg} 'K : n
Since (., t)e LL.([®Y) for all tR, there exists 6 >0 such that

J (v(, =t +|v(, to)]) dx +t;, meas (K) < e for meas (K)=38. (10}
K
From relations {9) and (10), we conclude that
meas K= 8§ :>j .h/n(., u,)| dx =2e for all n in N*.
K

Thus, (v.(, ), is equiintegrable on B, and, therefore, v,(., u,)—> v(,, &) in
L1, (R™). Thus, all the terms of equation (5) tend to the terms of equation (4), and
therefore (4) is verified by u in the sense of distributions.

We now give some consequences of Theorem 1.

CororLary 1. Let y(x, s): R¥ *R—R be measurable in x, continuous and
nondecreasing in s. Let Ve L (R™) be such that y(x, V(x))= LYR™), and for
every t in R, y(x, t+ V(x))e LL(RY). Then, for every f in LY(R™), there exists a
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unique function u such that

{-—Au +y(, u)=—AV+{ (in G'RYY),

u—VeMYY DMWY (., u)e LYRY). an

Proof. On setting w=u-V, we see that (11) is equivalent to

{AW +y(,w+V)—y(, Vi=f—v(, V),
weMY®N Dy, w+ VI—y(, Ve LYRYV).

This is equation (4}, with f(x)=f(x)~v(x, V{x))eL' instead of f(x), and
¥(x, 5) =v(x, s+ V(x))— y(x, V{x)} instead of y. We still have ¥(x, 0} =0 almost
everywhere, and ¥(x, t)e LL (E™) for all ¢ in ®.

Note that the result of Corollary 1 has an ‘“almost full” generality. Indeed, let
ge B'(RY), so that if there exists a solution u to the problem

“Au+y{,ul=g
{v(-, uye L,

then g has the form indicated in Corollary 1, namely,
g=-AV+{ with fel(R™) and ~{, V)eL'{®™).

{We may take, for instance, V=u and f=+v(., u).)
This corollary can be used to prove the following result of Bénilan and Brezis:

TreorEm A {Brezis [3]). Assume v is nondecresing and continuous, v(0)=0,
and y(x1f|xye L' near x =0. Then, for every bounded measure p € MR}, there
exists a unique u solution to

—Au+y(w) = p,
{u e MR, ~+v(uw)eL'(®).

Remark. The proof of Theorem A as a consequence of Corollary 1 is rather
technical. Let us give this proof in the easy case where p has compact suport. We
choose a function ¢ e PRY) with ¢=1 near 0 and write ©w=f—AV with
V=p#*gf|-| and f = —A(p *1—¢/]-|). The fact that fe LX{R™)} is an easy consequ-
ence of o=1 near 0. Since ¢f|-|c M*RY), - we have Ve M*RY). (Recall that
M?#4f = M) Then, the assumption. on vy gives v(V}e L'(R™). (In fact, the
assumption y(+1/|x))e L* near x =0 gives v(W)e Li(R") for all We M3*RY).
This is proved in [3, pp. 58-59).

3. Thecases N=2and N=1

THEOREM 2. Let v(x, s): RY xR — R be a function measurable in x, and continu-
ous and nondecreasing in s. Assume that v(x, 0) = 0 almost everywhere and that the
function x — y(x, ) is in LL ™) for all t in R.

(1) If N=2, assume moreover that for some C, and C, in R™* one has

meas {x, v(x, C)=C, or vy(x,—C)=—C}< +w, (12)
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Then the following problem has a solution, unique up to a constant:

—Auty(,u)=f
22 1.1 2 (13)
v, W e LR, |[Vule MPRD), ue WHIR?.
(2) If N=1, assume also that for some C, and C, in R, one has (12).
Then the following problem has a solution, unique up to a constant:
- ”+ s = 2
{ u'+y(,u)=f, (14)
v, wel'R), ueL (R).

Remark 2. Same as Remark 1 (with an obvious modification of (12) for
the second part of Remark 1),

Proof of Theorem 2 in the case N =2. The proof is similar to that of Theorem 1,
so we only indicate the necessary modifications.

(@) Uniqueness (up to a constant). Instead of [1, Lemma A.10], we use the
following:

Lemva B [1, Lemma A.13]. Let ue Wist(R?), |[Vule MXR?), Auc L (R?), and
let p be a function in € ={pc C'NL*R), p'=0}. If there is a k>0 for which
meas [[u| > k] <, then

J. p'(u) |grad uIEJrJ- Aup{u)=0.
ixd R2

To apply this lemima to u—v, where u and v are two solutions to (13), we have
only to show that meas [|u|>k]<« for some k when u is a solution to (13). But
(., u}is in LYR?), and so meas [Jv(x, u){>>C,] is finite. Thus, by (12), meas [Jui>
C,] is also finite. On taking p increasing, we obtain S Mu—2)plu—1)20 and
then [ge (y(., w)—v(, ©)p(u—2)=0. Consequently, v{.,u)= v(.,,v) almost
everywhere and therefore A(u—v}=0. We conclude the proof by applying the
following lemma (instead of [1, Lemma A.5] for N=3),

Lemva € (1, Lemma A1) Let uecWL'(RY, Aucl® and

loc

lim 1, e [Vu(x)] dx =0. Then |grad u|e M*(R?) and |jgrad Ul = d5 A,

L

where d} is independent of u.

By applying Lemma C, we obtain Vu = Vv almost everywhere and hence u and
v differ by a constant.

(b} Existence of a solution to Problem (13). Let us first observe that since N = 2,
Lemma 1 in the discussion of problem (4} continues to hold.
Now set v, (., u)=eu+v(., u). We have

LemMa 2 bis. Let v and f be as in Lemma 1, and assume moreover that
feL'R?). (Here N=2.) Then the solution u of (5) satisfies the following ine- -
qualities:

-[ Iya(.,u)|dxéj |f| dx for all ¢ in R, (6)
{lul=e} {

Jul=t}

[Vttllnzmn = da Ifll 1, with d, = 2d5 independent of u. (15)
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Proof. For (&), identical to that of (6) in Lemma 2, for (15), by application of
Lemma C instead of Lemma A.

Next, we define v, and u, as in the final part of the proof of Theorem 1. The
arguments are identical, except for the three following relations:

R1. The sequence (u,), is bounded in WEl{R).

R2. meas (BN{lu, |z }) — 0 as t — +oo, uniformly in neN*.

R3. The limit u verifies |V e M2(R?).

Proof of R1. We apply the following lemma,

Lemva D (1, Lemma A.16]). Let B be a ball of radius R in BY and
we WHP(B), with 1<<p <<N. Then there is a constant C depending only on p and N
such that if o =meas [Ju|<A]>0, then

meas B)” P

lleellr oy = A {meas B)P*+ C(( + 1) (W eally oy

where 1/p* = (1/p)~(1/N).

Recall that w, is in H*(R?), and therefore in WEX(B) for 1=£p< +w. By (15),
(V). is bounded in M*(®?). Thus it is bounded in LP(B) for all 1=p<2. To
prove that (u,),..n is bounded in IP"*(B) (and therefore in L(B)), we just have to
show that for some & >>0 and some A >0, meas{\u,|<<A]> &, independently of n.
Since by (6) (v.{,u.)), is bounded in L', one sees that e, =
meas {x, v, (x, u,)| = C,}) is bounded independently of n. Set E={x, v(x, C,) = C,
or y{x, —C,)=—C,} and recall that

Yol th, ) =y (%, u, (X)) if |y(x u,(x)|=n and |x]=n,
¥ (6w, (X)) = e sgn (y(x, w,(x))) if - |y(x w.(x)Di=n and |x|=n.

Thus, on choosing ny>C,, and setting B, = B(0, n), one has (xeB,\E and
lu, ) > C) = (v (x, w0, (D> C5) for m=n, Thus, by (12), meas{x<B,,
|, () > Cl} =, +meas ESM  independent of n, and therefore meas ({x e
B,, i, (x){ << C}) — o0 as n — +oo, By applying Lemma D, we conclude that (w,),
is bounded in LI, and therefore in LL,.

Since (Vu,),, is bounded in M?, it s bounded in L%, and so (u,), is a bounded
sequence in WiEl(R™.

Proof of R2. The proof is immediate, since we have seen that (u.), is a
bounded sequence in L'(B) for every ball B.

Proof of R3. R3 is a direct consequence of the following.

Levma. Assume u, —> u in @'(R%) and that the sequence (Vu,), is bounded in
MAR?). Then Vue MAR?).

Proof. As (Vu, ), is bounded in M2(R?), it is also bounded in L2 (R?) for ail
1=p<2. So we may assume, eventually by extracting a subsequence, that
Vu, — Vu in LE -weak, and therefore in L. _-weak. Set ¢ =sgn (3ufox;)1x for
i=1, 2 and K compact in R%. We have [ (du/o%) . ¢ =|Vu, e (meas KE=M
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{meas K. On letting n — +¢¢, we obtain

J’ ‘ du
x 10%
By the monotone convergence theorem, this relation is still true for any K clR?
with finite measure. We hence conclude that Vi e MAR?).

=M (meas K.

Proof of Theorem 2 in the Case N=1. (i) Following a method given in 1], we
first obtain some simple estimates on a solution to (14). It follows from u" = LYR)
that u' e L™(R) and the limits u'(Eeo) exist If, e g u'(+0) £ 0, then [ue(x)] ~> 4o as
x —-+oo. By using (12), it is easy to see that this contradicts vi, u}e L'R). Thus
u'(+t=)=0, and so .

flee'll == "]l . (16)

(if) Uniqueness up to a constant. 1et peC'R, ) be a nondecreasing function
with p and p’e L*(R), p(0)=0. It is not difficult to show that if u”"c L) and
u'eL”, then p'(u)u"?e LYR) and

Jp’(u)u'2+_l-p(u)u"§0. (17N

By using (17) in the same way as Lemma B, we deduce that the solution u to (14)
is unique up to a constant.

(ill) Existence of a solution for problem (14). We proceed as in the case N=2, by
again first noting that Lemma 1 holds for N= 1. Secondly, we have

Lemma 2, ter. Let N=1 and f and v be as in Lemma 1, and assume in addition
that fe LNR). Then the solution u of (5) satisfies the following inequality:

J I"yg(.,u)[dxéj‘ Ifl dx for all t in R. (6)
ful=t

Ju|=1

Proof. This is identical to that of (6) in Lemma 2.

We conclude in similar fashion to the case N = 2, but use (16) and (6) to obtain
u’ bounded in LE,.. Indeed, from (6) with =0 and (16), we deduce that the
solution w, of (5) verifies |Ju/l,-=2 If,[l,-.

4. The equation —Au+v(., u}=f in J (1))

In this section, £} is a bounded open set in R™Y (N= 1), and we assume that its
boundary is smooth.

Our main result is the following.

THEOREM 3. Let v(x, 1): QxR —R be a function measureable in x, continuous
and nondecreasing in 1. Assume that v(x, 0}=0 almost everywhere in (), and that

y(., ) e L, () for every teR. Then, for any f in L), the following problem
has a unique solution:

(18)

{—Au+y(., ) =f in B()
ue We'(Q), ~(,u)eL Q).
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Remark 3. This is the same as Remark 1 with ) instead of RY.

Proof. Here, once again, we follow step by step the proof of Theorem 1. Let us
first give a lemma similar to {1, Lemma A.10].

EEMMA 3. Let pe CHR,R), with pe L™R), p'=0, p(0)=0. Then, for all u in
WELH with —Au e ILYQ), one has

L —Aup{u)=0.

Proof. 1et u, €% () be a sequence such that
u, — uin Wyi{€y,
—Au, — —Au in L),
By Green’s formula, we have {q —Au,p(u,) = Jqo [Vu, ’p'(14,) = 0. Since peL”, on

passing to the limit, we obtain
— J. Aup(u)=0.

Uniqueness of a solution to (18). By applying Lemma 3 to the difference u—v
of two solutions of (18), we obtain

J (v(., W)=y, v)plu—v)=0.
0

On assuming p' >0, we deduce v(., u) = y(., v} almost everywhere, and therefore
—A(u—v) =0 almost everywhere. Since u—v e W§'(Q), this implies u = v almost
everywhere.

Existence of a solution io (18). Lemma 1 still holds with Q instead of RY =0
and HL(Q) instead of H'Y®Y). The proof is identical. Thus we obtain the following

result.

Lemma 4. Let y be as in Theorem 3, and assume in addition that sup |v(., s)|€

i
12, Let f be in L*(QY). Then the following problem has a urnique solution:
—Au-ty(.,u)=
{ 1 v, u)=f 19)
u < Hy().

Note that since —Au e L3(€)), we still have u e H*(Q).

Tnstead of the estimates in Lemma 2, we shall need those given in the following.

Lemma 5. Let y and f be as in Lemma 4, and assume in addition that fe LYQ).

" Then the solution u to (19) satisfies the following inequalities:

1?(-:”)!5_[ \fl dx for t R, (20)

Orif|u)=1]
leellporoiy = C if e, where pe[1, NFN—1[, and C only depends on p and £}.
21

Jﬂm[!m;r]
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Proof. The proof of (20) is identical to that of (6) in Lemma 2 (with Q instead
of RN, £ =0, and H3((Y) instead of HY(R™)). On using (20) with ¢ =0, we obtain
I-Aul, =2 llf]l; .. Using the continuous embedding L'(}) & W () for 1=p <
N/(N—1) and a classical result of regularity for the Laplacian, we have

lullwrncy = C' - Atdlyry = C" |- Aualy 20,

where C' and C" only depend on p and ().
Let £, € L*() with f, —f in LX) as n — . Set, for n=1,

{Vn(x, si=7y(xs) i ly(x s)l=n,
Yo% 8)=nsgn (y(x, s} if |[v(x, s)|>n

According to Lemma 4, the following problem has a solution u,:
—Au, +v,(,u,)="Ff in @'Y,

Un +Vu (s ) =1, ) (22)
u,, € H5(L1).

By applying relations (20) and (21} of Lemma 5, one sees that (x4, ), is bounded in
WP for 1=p << N/(N—1). Thus, we may assume w, — u in L'(}), WiP-weak,
and almost everywhere. The proof that (v, (., it,)), = v(., u) in LL_{0) is identical
to that of the last step in Theorem 1. Then, on passing to the limit in {22) and
applying Fatou’s lemma, a solution u to (18} is obtained.

We now give some consequences of Theorem 3.

CoroLLARY 1. Let y(x, 5): QO XR—R be a function measurable in x, continuous
and nondecreasing in s. Let VeLl (0} be such that v(x, V(x))e LY{Q) and
v, y+ VX e LLIQ) for all t in R. Let felY€Y). Then there exists a unigue
solution to

{—Au+7(., uy=Ff—AV,
y(, wWelYQ), (u—V)e Wi'.

Proof. Apply Theorem 3 with ¥(x, s)=v(x, s+ V(x))— v(x, V(x)) instead of
v{x, s) and f(x)=f(x)—y(x, V(x)) instead of f(x).

Note that, as for Corollary 1 to Theorem 1, this result has an “almost full”
generality. In fact, assume that g€ @'()) is such that there exists a solution to

—Autvy(,u)=g
{'y(., w)e L', wue Wi,

Then one has g =F—AV with f=~(., u)e LYQ) and V =ue W () is such that
(., u)e L'(€}). Then, using Corollary 1, the necessary and “almost” sufficient
condition on ge @(€)) for (P) to have a solution is g=f—AV with fe L'(?) and -
Ve Wi'(Q) such that v(., V)e L.X0). We say “almost” sufficient because, in the
hypothesis of Corollary 1, we also need (., t+ V)eLL () for all tcR. This
condition is a consequence of (., Vie LX) if y(x,s) is not “too rapidly”
increasing in 5 as § — +oo,

(23)

(23)*

Let us apply this corollary to the case v(x, u) =1ulP"*u (p>1).
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CororLary 2. Let p>1, p e @'(Q). Consider the problem
{—Au +lulPlu=p,

weIP(Q), ue WHiQ). (24

Then
(a) If pé L+ W > (Q), (24) has no solution,
B) If pe L)+ W =), (24) has a unique solution.

Proof. (a) If (24) has a solution u, one has u < L?(Q), and then —Auc WP ().
(b) If w=Ff+g with feL' and ge W7, then there exists VeL?(()N Wat(Q)
such that —AV = g (This is a classical result.) So (24) is equivalent to

{—Au+Lulp_1u =f—AV,
welP(Q), u-VeWi'Q).

(25) can be solved by direct application of Corollary 1.
Corollary 2 may be considered as a generalization of the following result (see

Baras and Pierre [4]).

(25)

Tueorem B ([4]). Let ¢ be a bounded measure on . Then the problem

{-—Au HulPru=p in @ €Q), (p>1), 26)
ueIP(HN WD),
has a solution if and only if p satisfies the following condition:

lj] (A) =0 for every subset of Q2 whose W=P_capacity is zero. 27

Remark. Let K<RY be a compact set. The W>?-capacity of K is C; (K)=
inf {jlolfr-r, @< BRY), ¢ =1 on a neighbourhood of K}. If w is open, we set
C, @) = sup {C; ,{K)}, and finally for E =RN, C AE)= int{C, ()},

Kcw w>E

In fact, Corollary 2 is more general than Theorem B, but Theorem B provides a
very useful criterion for a measure v to have the form f—AVe L'+ W2r,

Let us prove Theorem B from Corollary 2. We just have to prove that the
following properties are equivalent for all measures & ()

|w] (A} =0 for évery subset A of  with C, ,{A)=0, (27)
e LHO) + W22 (Q). (28)

The proof that (28) = (27) is straightforward (see [4, Lemma 4.1]). To show the
converse we use an argument due to Ancona. Assume p Z(. {If not, we write
u = 1" — p".) As a consequence of the Hahn~Banach theorem (see [4, Lemma 4.2]),
one has p =Yr_g i,.; where the sum converges in A and p, is a bounded
positive measure on {2, with compact support, and u, € W2 (Q). Let p,. € BRY)
be a sequence of mollifiers. One has w, *p, — W, in W2P ag m — +oo, and

et * pralle ey = Mot llae -

Choose 2 sequence m,, — oo such that the sum g =3, (g, — fin * P, ) 18 absolutely
convergent in WP(Q). As the sum f=¥, u,*p,, is absolutely convergent in
LX), we obtain g =f+ g, with fe L'(Q)) and g W>P(Q).
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