raft.

s. Proc.

envalue

ndental

8-211.

(1980),

Resolution of a semilinear equation in L^1

Thierry Gallouët

Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie, 4 place Jussieu, 75230 Paris Cedex 05, France

and

Jean-Michel Morel

Département de Mathématique-Informat, Faculté des Sciences de Luminy, Université d'Aix-Marseille II, 13288 Marseille Cedex 09, France

(MS received 10 June 1983. Revised MS received 17 October 1983)

Synopsis

Let $\Omega = \mathbb{R}^N$ or Ω be a bounded regular open set of \mathbb{R}^N and let $\gamma(x,s)\colon \Omega \times \mathbb{R} \to \mathbb{R}$ be a continuous nondecreasing function in s, measurable in x, such that $\gamma(x,0)=0$ almost everywhere. We solve, for $f \in L^1(\Omega)$, the problem $(P): -\Delta u + \gamma(.,u) = f$ in Ω , u=0 on $\partial \Omega$. (In fact, for this result, instead of assuming that γ is nondecreasing in s we need only that $\gamma(x,s)s \geq 0$.) We deduce an "almost" necessary and sufficient condition on $f \in \mathcal{D}'(\Omega)$, in order that (P) has a solution. Roughly speaking, this condition is $f = -\Delta V + g$, with $g \in L^1(\Omega)$ and $\gamma(.,V) \in L^1(\Omega)$.

1. Introduction

1.1. Problem and results

Let $\Omega \subset \mathbb{R}^N$ be an open set and $\gamma(x, s)$: $\Omega \times \mathbb{R} \to \mathbb{R}$ a function measurable in x, and continuous nondecreasing in s, with $\gamma(x, 0) = 0$ almost everywhere. This paper treats first the problem

$$(P) \begin{cases} -\Delta u + \gamma(., u) = f \text{ in } \mathcal{D}'(\Omega), \\ u = 0 \text{ on } \partial\Omega, \end{cases}$$

where $f \in L^1(\Omega)$. We shall consider two cases: when $\Omega = \mathbb{R}^N$ and when Ω is a smooth bounded set of \mathbb{R}^N . When $\gamma(x,s) = \gamma(s)$ does not depend on x, Problem (P) has been completely solved in [1] for the case where $\Omega = \mathbb{R}^N$, and in [2], for the case where Ω is a bounded open subset of \mathbb{R}^N with smooth boundary. In the second case, the proofs involve properties of the maximal monotone graph of γ in $\mathbb{R} \times \mathbb{R}$. They cannot be extended to include the dependence of γ on x, and, moreover, apply to $\Omega = \mathbb{R}^N$ only under a coerciveness condition on γ of the type $\gamma(u)$. $u \ge \varepsilon u^2$.

Let us now explain the difference between our technique and that employed in [1]. It is easy to find, by a variational argument, a solution for a regularized

version of (P) given by

$$(P_n) - \Delta u_n + \frac{1}{n} u_n + \gamma_n(., u_n) = f_n,$$

where γ_n is a truncation of γ and $f_n \in L^2(\Omega)$. The difficulty in passing to the limit as $(1/n) \to 0$, is to prove weak precompactness in $L^1_{loc}(\Omega)$ of the sequence $(\gamma_n(., u_n))_n$.

In [1], the authors make use of a classical compactness theorem of Kolmogorov. Moreover, they describe the functional framework for solving problems which, like (P), involve the Laplacian with range in $L^1(\mathbb{R}^N)$. We shall use their results extensively, and our proofs often follow theirs step by step. But, instead of Kolmogorov's theorem, we base our proof on a compactness argument due to Vitali. The main idea is to obtain equiintegrability of the sequence $\gamma_n(., u_n)$ by proving the relation

$$\int_{[|u_n| \ge t]} |\gamma_n(., u_n)| dx \le \int_{[|u_n| \ge t]} |f_n| dx.$$

Since, for the case $\Omega = \mathbb{R}^N$, we will need to use, as in [1] properties of Δ^{-1} on $L^1(\mathbb{R}^N)$, it is not surprising that the fundamental solution of the Laplacian plays an important role. In partricular, it will be necessary to handle separately the cases $N \ge 3$, N = 2, N = 1.

We now give the plan of this paper, and summarize the main results.

In section 2, we first solve (P) in \mathbb{R}^N for $N \ge 3$. We assume that the function $x \to \gamma(x, t)$ is in $L^1_{loc}(\mathbb{R}^N)$, for all $t \in \mathbb{R}$, and then show that (P) admits a unique solution u in $M^{N/(N-2)}(\mathbb{R}^N)$, with $\gamma(., u) \in L^1(\mathbb{R}^N)$, where $M^p(\mathbb{R}^N)$ denotes the Marcinkiewicz (or weak- L^p) space (see below). The existence part of this result does not require γ to be nondecreasing in s, but only that $\gamma(x, s)s \ge 0$ (assuming moreover that $\sup_{|s| \le r} |\gamma(x, s)| \in L^1_{loc}(\mathbb{R}^N)$ for all $t \in \mathbb{R}^+$).

Later in section 2, we deduce an "almost" necessary and sufficient condition on $f \in \mathcal{B}'(\mathbb{R}^N)$ for problem (P) to have a solution; roughly speaking, this condition is $f = -\Delta V + g$ with $g \in L^1(\mathbb{R}^N)$ and $\gamma(., V) \in L^1(\mathbb{R}^N)$.

 $f = -\Delta V + g$ with $g \in L^1(\mathbb{R}^N)$ and $\gamma(., V) \in L^1(\mathbb{R}^N)$. In section 3, we solve (P) in \mathbb{R}^N for N = 2 and N = 1, $f \in L^1$. In addition to the assumption of section 2, we require as in [1] some coerciveness on the nonlinear term, namely:

$$\exists C_1, C_2 > 0$$
, meas $\{x, y(x, C_1) \le C_2 \text{ or } \gamma(x, -C_1) \ge -C_2\} < \infty$.

For N=2, we obtain a solution, unique up to a constant, to the problem

$$\begin{cases} -\Delta u + \gamma(., u) = f, \\ \gamma(., u) \in L^1(\mathbb{R}^2), \quad |\nabla u| \in M^2(\mathbb{R}^2), \quad u \in W^{1, 1}_{loc}(\mathbb{R}^2). \end{cases}$$
 (1)

If N=1, we prove the same result for the problem

$$\begin{cases} -u'' + \gamma(., u) = f, \\ \gamma(., u) \in L^1(\mathbb{R}), \quad u \in L^1_{loc}(\mathbb{R}). \end{cases}$$
 (2)

As in section 2, the assumption that γ is nondecreasing can be weakened to the assumption that $\gamma(x, s)s \ge 0$. We can also treat the case $f \in \mathcal{D}'(\mathbb{R}^N)$.

In secti the assum solution t

As in the that γ is deduce an a (unique $L^1(\Omega)$ and As a co

has a solu the relation

1.2. Some

When Ω of $f \in L^1(\Omega)$, measure 1 denoted be and $(1/p^n)$

 $\|u\|_{M^p}=$

THEORE continuou that the follow

In section 4, we solve (P) on a bounded regular open set of \mathbb{R}^N $(N \ge 1)$. Under the assumption $\gamma(.,t) \in L^1_{loc}(\Omega)$ for all $t \in \mathbb{R}$, we obtain, for all $f \in L^1(\Omega)$, a unique solution to the problem

 $\begin{cases}
-\Delta u + \gamma(., u) = f \text{ in } \mathcal{D}'(\Omega), \\
u \in W_0^{1,1}(\Omega), \quad \gamma(., u) \in L^1(\Omega).
\end{cases}$ (3)

As in the preceding sections, for the existence part of this result, the assumption that γ is nondecreasing in s can again be weakened to $\gamma(x,s)s \ge 0$. Then we deduce an "almost" necessary and sufficient condition on $f \in \mathcal{D}'(\Omega)$ for (3) to have a (unique) solution. Roughly speaking, this condition is $f = -\Delta V + g$ with $g \in L^1(\Omega)$ and $\gamma(\cdot, V) \in L^1(\Omega)$.

As a corollary, we show that the problem

$$\begin{cases} -\Delta u + |u|^{p-1}u = \mu, \\ u \in L^p(\Omega), \quad u \in W_0^{1,1}(\Omega), \end{cases}$$

has a solution if and only if the distribution μ is in $L^1(\Omega) + W^{-2,p}(\Omega)$ We examine the relation of this proposition to a theorem of [4].

1.2. Some notation and definitions

When $\Omega \subset \mathbb{R}^N$ is Lebesgue measurable, we denote its measure by meas Ω . For $f \in L^1(\Omega)$, $\int_{\Omega} f(x) \, dx$ denotes the integral of f over Ω with respect to Lebesgue measure but this bortened to $\int_{\Omega} f dx$, or $\int f$ when $\Omega = \mathbb{R}^N$. The norm in $L^p(\Omega)$ is denoted by $\|.\|_{L^p}$ or $\|.\|_p$, $1 \le p \le \infty$. Let u be a measurable function on \mathbb{R}^N , 1 and <math>(1/p') + (1/p) = 1. Set

$$\|u\|_{M^p} = \min \Big\{ C \in [0, \infty], \quad \int_K |u(x)| \ dx \le C (\operatorname{meas} K)^{1/p'}, \quad K \text{ measurable} \subset \mathbb{R}^N \Big\}.$$

 M^p (\mathbb{R}^N) is the set of measurable functions u on \mathbb{R}^N satisfying $\|u\|_{M^p} < \infty$. It is easy to verify that M^p (\mathbb{R}^N) is a Banach space under the norm $\|.\|_{M^p}$; it is called the Marcinkiewicz space. If u is a function on \mathbb{R}^N , $[|u| > \lambda]$ denotes $\{x \in \mathbb{R}^N, |u(x)| > \lambda\}$. If $k \ge 0$ is an integer and $1 \le p \le \infty$, $W^{k,p}(\Omega)$ is the Sobolev space of functions u on the open set $\Omega \subseteq \mathbb{R}^N$ for which $D^l u \in L^p(\Omega)$ when $|l| \le k$, with its usual norm. $W_0^{k,p}(\Omega)$ is the closure of $\mathfrak{D}(\Omega) = C_0^\infty(\Omega)$ in $W^{k,p}(\Omega)$.

If p=2, we write H^k for $W^{k,2}$. A function u lies in $W^{k,p}_{loc}(\Omega)$ if $\zeta u \in W^{k,p}(\Omega)$ for all $\zeta \in \mathcal{D}(\Omega)$. We denote by $\mathcal{M}(\Omega)$ the set of bounded Radon measures on Ω , with the norm: $\|\mu\|_{\mathcal{M}} = |\mu|(\Omega)$.

2. The equation $-\Delta u + \gamma(., u) = f$ in $L^1(\mathbb{R}^N)$ with $N \ge 3$

THEOREM 1. Let $\gamma(x, s): \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ be a function measurable in x which is continuous and nondecreasing in s. Assume that $\gamma(x, 0) = 0$ almost everywhere and that the function $x \to \gamma(x, t)$ is in $L^1_{loc}(\mathbb{R}^N)$ for all t in \mathbb{R} . Then, for every f in $L^1(\mathbb{R}^N)$, the following problem has a unique solution:

$$\begin{cases} -\Delta u + \gamma(., u) = f, \text{ in } \mathcal{D}'(\mathbb{R}^N), \\ \gamma(., u) \in L^1(\mathbb{R}^N), \quad u \in M^{N/(N-2)}(\mathbb{R}^N). \end{cases}$$
(4)

the limit

mogorov. ns which, \exists ir results nstead of \exists t due to $(., u_n)$ by

If Δ^{-1} on plays an the cases

function a unique totes the his result assuming

dition on dition is

on to the conlinear

n

(1)

(2)

d to the

Remark 1. In Theorem 1, instead of $-\Delta$ we can have a more general uniformly elliptic second order operator.

ar

p(

 \mathbf{O}

V

В

tl T

u

 $S\ell$

 \mathcal{T}

d

b

In the proof of existence in Theorem 1, we do not need the assumption that $\gamma(x,s)$ is nondecreasing in s. It is enough to assume that $\gamma(x,s)s \ge 0$ almost everywhere in $x \in \mathbb{R}^N$, for all $s \in \mathbb{R}$; and $\sup_{|s| \le t} |\gamma(x,s)| \in L^1_{\mathrm{loc}}(\mathbb{R}^N)$ for all $t \in \mathbb{R}$.

Proof of Theorem 1. (a) Uniqueness of the solution. Let u and v be two solutions of (4). Then $(u-v)\in M^{N/(N-2)}$ and $-\Delta(u-v)\in L^1$ Thus it is "easy" to show (see [1, Lemma A.10]) that, for every function p in $\mathscr{C}=\{p\in C^1\cap L^\infty(\mathbb{R}),\ p'\geqq 0,\ p(0)=0\}$, one has

$$\int_{\mathbb{R}^N} -\Delta(u-v)p(u-v) dx \ge 0.$$

Thus, $\int (\gamma(., u) - \gamma(., v)) p(u - v) \leq 0$.

Since $\gamma(x, s)$ is nondecreasing in s and we can choose p increasing, we deduce that $\gamma(., u) = \gamma(., v)$ almost everywhere, and therefore u = v almost everywhere. Indeed, from $\gamma(., u) = \gamma(., v)$ almost everywhere, we deduce $-\Delta(u - v) = 0$ almost everywhere, and since $u - v \in M^{N/(N-2)}$, we can conclude that u = v almost everywhere (see [1, Lemma A.5]).

(b) Existence of a solution for Problem (4). We first solve a penalized version of Problem (P).

LEMMA 1. Assume only $N \ge 1$. Let γ be as in Theorem 1, but assume moreover that $\sup_{s \in \mathbb{R}} |\gamma(.,s)| \in L^2(\mathbb{R}^N)$. Let f be in $L^2(\mathbb{R}^N)$. Then, for all $\varepsilon > 0$, the following problem has a unique solution

$$\begin{cases}
-\Delta u + \varepsilon u + \gamma(., u) = f, \\
u \in H^1(\mathbb{R}^N).
\end{cases}$$
(5)

Proof. Set $j(x, s) = \int_0^s \gamma(x, t) dt$ and

$$E(u) = \frac{1}{2} \int |\nabla u|^2 \, dx + \frac{\varepsilon}{2} \int |u|^2 \, dx + \int f(., u) \, dx - \int fu \, dx.$$

This functional is well defined for u in $H^1(\mathbb{R}^N)$. Indeed, one has $0 \le j(., u) \le u\gamma(., u) \in L^1(\mathbb{R}^N)$ (since $u \in L^2(\mathbb{R}^N)$). Note that E is strictly convex and that $E(u) \to +\infty$ as $||u||_{H^1} \to +\infty$. Thus, by minimizing E on $H^1(\mathbb{R}^N)$, we obtain a unique solution u for the associated Euler equation (5). Moreover, from $u \in L^2(\mathbb{R}^N)$, $\Delta u \in L^2(\mathbb{R}^N)$, we deduce $u \in H^2(\mathbb{R}^N)$.

Next, we provide some estimates on the solution of (5) for $N \ge 3$.

LEMMA 2. Let $N \ge 3$. Let γ and f be as in Lemma 1, and assume moreover that $f \in L^1(\mathbb{R}^N)$. Let $\varepsilon > 0$. Then, the solution u of (5) satisfies the following inequalities (with $\gamma_{\varepsilon}(., u) = \varepsilon u + \gamma(., u)$):

$$\int_{\{|u| \ge t\}} |\gamma_{\varepsilon}(., u)| \, dx \le \int_{\{|u| \ge t\}} |f| \, dx \text{ for all } t \text{ in } \mathbb{R}, \tag{6}$$

$$||u||_{M^{N/(N-2)}} \le c_N ||f||_{L^1}$$
 (7)

l uniformly

nption that ≥0 almost

 $t \in \mathbb{R}$.

o solutions show (see \mathbb{R}), $p' \ge 0$,

we deduce verywhere. = 0 almost = v almost

version of

e moreover : following

(5)

 $\leq j(., u) \leq$ and that 1 a unique $1 \in L^2(\mathbb{R}^N)$,

reover that nequalities

(6)

(7)

and

$$\|\nabla u\|_{\mathcal{M}^{N/(N-1)}} \le d_N \|f\|_{L^1},$$

where c_N and d_N depend only on the dimension $N \ge 3$.

Proof. Let $p \in \tilde{\mathcal{C}} = \{p \in C^1(\mathbb{R}), p(0) = 0, p' \ge 0, p' \in L^\infty\}$. Since $u \in H^1$, we have $p(u) \in H^1(\mathbb{R}^N)$, and since $u \in H^2$, on applying Green's formula we obtain

$$\int (-\Delta u)p(u) \ dx \ge 0.$$

On multiplying (5) by p(u) and integrating, we obtain

$$\int \gamma_{\varepsilon}(., u) p(u) \, dx \le \int f p(u) \, dx. \tag{8}$$

We can easily find a sequence $(p_n)_n$ in $\tilde{\mathscr{C}}$, such that

$$\begin{cases} p_n(x) \uparrow 1, & \text{for } x > t, \\ p_n(x) = 0, & \text{for } -t \le x \le t, \\ p_n(x) \downarrow -1, & \text{for } x < -t. \end{cases}$$

By using the monotone convergence theorem and the dominated convergence theorem, we can pass to the limit in (8) with p_n instead of p. Hence, we obtain (6) Then (7) is a direct application of the following lemma, which has already been used in the first part of the proof of Theorem 1.

LEMMA A. ([1, Lemma A.5]). Let $N \ge 3$, $u \in L^1_{loc}(\mathbb{R}^N)$, $\Delta u \in L^1(\mathbb{R}^N)$, and let u satisfy

$$\lim_{n\to\infty} n^{-N} \int_{n\leq |y|\leq 2n} |u(y)| \, dy = 0.$$

Then, $u \in M^{N/(N-2)}$, $|\nabla u| \in M^{N/(N-1)}(\mathbb{R}^N)$, and $||u||_{M^{N/(N-2)}} \le c'_N ||\Delta u||_{L^1}$, $||\nabla u||_{M^{N/(N-1)}} \le d'_N ||\Delta u||_{L^1}$, for some constants c'_N and d'_N independent of u.

Indeed, on applying (6) with t=0 and using (5), we obtain $\|\Delta u\|_{L^1} \le 2 \|f\|_{L^1}$, and by Lemma A we obtain (7) with $c_N = 2c_N'$ and $d_N = 2d_N'$.

As a final step, we have to pass to the limit in (5) to obtain a solution to (4).

Let $f_n \in \mathcal{D}(\mathbb{R}^N)$ be a sequence such that $f_n \to f$ in $L^1(\mathbb{R}^N)$ as $n \to +\infty$. Choose $\varphi \in \mathcal{D}(\mathbb{R}^N)$, with $0 \le \varphi \le 1$, $\varphi = 1$ on $B_1 = \{x \in \mathbb{R}^N, |x| < 1\}$, $\varphi = 0$ on $B_2^c = \{x \in \mathbb{R}^N, |x| \ge 2\}$, and set

$$\varphi_n(x) = \varphi\left(\frac{x}{n}\right), \quad n \in \mathbb{N}^*, \quad x \in \mathbb{R}^N,$$

$$\begin{cases} \gamma_n(x, s) = \gamma(x, s)\varphi_n(x), & \text{if } |\gamma(x, s)| \leq n, \\ \gamma_n(x, s) = n \text{ sgn } (\gamma(x, s))\varphi_n(x), & \text{if } |\gamma(x, s)| > n. \end{cases}$$

According to Lemma 1, there exists $u_n \in H^2$ such that $-\Delta u_n + (1/n)u_n + \gamma_n$ $(., u_n) = f_n$. By applying Lemma 2, with u_n and $(1/n)u_n + \gamma_n$ $(., u_n)$ instead of u and γ_e , one sees that the sequence $(u_n)_n$ is bounded in $M^{N/(N-2)}$, and $(\nabla u_n)_n$ in $M^{N/(N-1)}$. Thus $(u_n)_n$ and $(\nabla u_n)_n$ are bounded in $L^1_{loc}(\mathbb{R}^N)$, and therefore $(u_n)_n$ is

bounded in $W_{loc}^{1,1}(\mathbb{R}^N)$. So $(u_n)_n$ is a precompact sequence in $L_{loc}^1(\mathbb{R}^N)$, and we may assume that

$$u_n \rightarrow u$$
 in L_{loc}^1 and almost everywhere.

Moreover, applying Fatou's lemma to u_n yields $u \in M^{N/(N-2)}$. But we have $\gamma_n(., u_n) \to \gamma(., u)$ almost everywhere, and then using (6) with t = 0, we see that $(\gamma_n(., u_n))_n$ is a bounded sequence in $L^1(\mathbb{R}^N)$. Then, by Fatou's lemma, we also have $\gamma(., u) \in L^1(\mathbb{R}^N)$. In order to prove the convergence of $(\gamma_n(., u_n))_n$ to $\gamma(., u)$ in $L^1_{loc}(\mathbb{R}^N)$, it remains (by a classical theorem of Vitali) to show that $(\gamma_n(., u_n))_n$ is equiintegrable on every bounded measurable set B of \mathbb{R}^N .

Let B be a bounded measurable set of \mathbb{R}^N and $\varepsilon > 0$. We want to prove that there exists $\delta > 0$ such that for every measurable set K of B one has

meas
$$K \leq \delta \Rightarrow \int_{K} |\gamma_{n}(., u_{n})| dx \leq \varepsilon, \quad \forall n \in \mathbb{N}^{*}.$$

We first remark that, since $(u_n)_n$ is bounded in $M^{N/(N-2)}$, we have meas $(\{|u_n| \ge t\}) \to 0$ as $t \to +\infty$, uniformly in $n \in \mathbb{N}^*$. Then, since $(f_n)_n$ is equiintegrable on \mathbb{R}^N , we have, for some $t_0 > 0$,

$$t \ge t_0 \Rightarrow \int_{\{|u_n| \ge t\}} |f_n| dx \le \varepsilon, \quad \forall n \in \mathbb{N}^*.$$

By using (6), we obtain

$$t \ge t_0 \Rightarrow \int_{\{|u_n| \ge t\}} |\gamma_n(., u_n)| \, dx \le \varepsilon, \quad \forall n \in \mathbb{N}^*.$$
 (9)

Now, for $t = t_0$ and for every measurable set $K \subseteq B$, we have

$$\int_{K \cap \{|u_n| < t_0\}} |\gamma_n(., u_n)| \, dx \leq \int_K (|\gamma(., t_0)| + |\gamma(., -t_0)|) \, dx + \frac{t_0}{n} \operatorname{meas} K.$$

Since $\gamma(.,t) \in L^1_{loc}(\mathbb{R}^N)$ for all $t \in \mathbb{R}$, there exists $\delta > 0$ such that

$$\int_{K} (|\gamma(., -t_0)| + |\gamma(., t_0)|) dx + t_0 \operatorname{meas}(K) < \varepsilon \text{ for meas } (K) \le \delta.$$
 (10)

From relations (9) and (10), we conclude that

$$\operatorname{meas} K \leq \delta \Rightarrow \int_{K} |\gamma_{n}(., u_{n})| \, dx \leq 2\varepsilon \text{ for all } n \text{ in } \mathbb{N}^{*}.$$

Thus, $(\gamma_n(., u_n))_n$ is equiintegrable on B, and, therefore, $\gamma_n(., u_n) \to \gamma(., u_n)$ in $L^1_{loc}(\mathbb{R}^N)$. Thus, all the terms of equation (5) tend to the terms of equation (4), and therefore (4) is verified by u in the sense of distributions.

We now give some consequences of Theorem 1.

COROLLARY 1. Let $\gamma(x, s): \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ be measurable in x, continuous and nondecreasing in s. Let $V \in L^1_{loc}(\mathbb{R}^N)$ be such that $\gamma(x, V(x)) \in L^1(\mathbb{R}^N)$, and for every t in \mathbb{R} , $\gamma(x, t+V(x)) \in L^1_{loc}(\mathbb{R}^N)$. Then, for every f in $L^1(\mathbb{R}^N)$, there exists a

un

Th

 $\tilde{\gamma}(ev)$

g€

th

(V

ar ex

te ch

V er M

as

T]

0

f1

we may

re have see that we also $\gamma(., u)$ $(u_n)_n$ is

ve that

 $(\{|u_n| \ge$ on \mathbb{R}^N ,

(9)

(10)

 ι_n) in), and

and d for ists a

unique function u such that

$$\begin{cases} -\Delta u + \gamma(., u) = -\Delta V + f \text{ (in } \mathcal{D}'(\mathbb{R}^N)), \\ u - V \in M^{N/(N-2)}(\mathbb{R}^N), \gamma(., u) \in L^1(\mathbb{R}^N). \end{cases}$$
(11)

Proof. On setting w = u - V, we see that (11) is equivalent to

$$\begin{cases} -\Delta w + \gamma(., w+V) - \gamma(., V) = f - \gamma(., V), \\ w \in M^{N/(N-2)}, \quad \gamma(., w+V) - \gamma(., V) \in L^1(\mathbb{R}^N). \end{cases}$$

This is equation (4), with $\tilde{f}(x) = f(x) - \gamma(x, V(x)) \in L^1$ instead of f(x), and $\tilde{\gamma}(x,s) = \gamma(x,s+V(x)) - \gamma(x,V(x))$ instead of γ . We still have $\tilde{\gamma}(x,0) = 0$ almost everywhere, and $\tilde{\gamma}(x,t) \in L^1_{loc}(\mathbb{E}^N)$ for all t in \mathbb{R} .

Note that the result of Corollary 1 has an "almost full" generality. Indeed, let $g \in \mathcal{D}'(\mathbb{R}^N)$, so that if there exists a solution u to the problem

$$\begin{cases}
-\Delta u + \gamma(., u) = g, \\
\gamma(., u) \in L^1,
\end{cases}$$

then g has the form indicated in Corollary 1, namely,

$$g = -\Delta V + f$$
, with $f \in L^1(\mathbb{R}^N)$ and $\gamma(., V) \in L^1(\mathbb{R}^N)$.

(We may take, for instance, V = u and $f = \gamma(., u)$.)

This corollary can be used to prove the following result of Bénilan and Brezis:

THEOREM A (Brezis [3]). Assume γ is nondecressing and continuous, $\gamma(0) = 0$, and $\gamma(\pm 1/|x|) \in L^1$ near x = 0. Then, for every bounded measure $\mu \in \mathcal{M}(\mathbb{R}^3)$, there exists a unique μ solution to

$$\begin{cases} -\Delta u + \gamma(u) = \mu, \\ u \in M^3(\mathbb{R}^3), \quad \gamma(u) \in L^1(\mathbb{R}^3). \end{cases}$$

Remark. The proof of Theorem A as a consequence of Corollary 1 is rather technical. Let us give this proof in the easy case where μ has compact suport. We choose a function $\varphi \in \mathcal{D}(\mathbb{R}^N)$ with $\varphi \equiv 1$ near 0 and write $\mu = f - \Delta V$ with $V = \mu * \varphi/|\cdot|$ and $f = -\Delta(\mu * 1 - \varphi/|\cdot|)$. The fact that $f \in L^1(\mathbb{R}^N)$ is an easy consequence of $\varphi \equiv 1$ near 0. Since $\varphi/|\cdot| \in M^3(\mathbb{R}^N)$, we have $V \in M^3(\mathbb{R}^N)$. (Recall that $M^3 * \mathcal{M} \subset M^3$.) Then, the assumption on φ gives $\varphi(V) \in L^1(\mathbb{R}^N)$. (In fact, the assumption $\varphi(\pm 1/|x|) \in L^1$ near z = 0 gives $\varphi(W) \in L^1_{loc}(\mathbb{R}^N)$ for all $W \in M^3(\mathbb{R}^N)$. This is proved in [3, pp. 58–59]).

3. The cases N=2 and N=1

THEOREM 2. Let $\gamma(x, s): \mathbb{R}^N \times \mathbb{R} \to \mathbb{R}$ be a function measurable in x, and continuous and nondecreasing in s. Assume that $\gamma(x, 0) = 0$ almost everywhere and that the function $x \to \gamma(x, t)$ is in $L^1_{loc}(\mathbb{R}^N)$ for all t in \mathbb{R} .

(1) If N=2, assume moreover that for some C_1 and C_2 in \mathbb{R}^{+*} one has

$$\operatorname{meas} \{x, \gamma(x, C_1) \leq C_2 \quad \text{or} \quad \gamma(x, -C_1) \geq -C_2\} < +\infty. \tag{12}$$

Then the following problem has a solution, unique up to a constant:

$$\begin{cases} -\Delta u + \gamma(., u) = f \\ \gamma(., u) \in L^{1}(\mathbb{R}^{2}), \quad |\nabla u| \in M^{2}(\mathbb{R}^{2}), \quad u \in W^{1, 1}_{loc}(\mathbb{R}^{2}). \end{cases}$$
(13)

(2) If N=1, assume also that for some C_1 and C_2 in \mathbb{R}^{+*} , one has (12). Then the following problem has a solution, unique up to a constant:

$$\begin{cases}
-u'' + \gamma(., u) = f, \\
\gamma(., u) \in L^1(\mathbb{R}), \quad u \in L^1_{loc}(\mathbb{R}).
\end{cases}$$
(14)

Remark 2. Same as Remark 1 (with an obvious modification of (12) for the second part of Remark 1).

Proof of Theorem 2 in the case N=2. The proof is similar to that of Theorem 1, so we only indicate the necessary modifications.

(a) Uniqueness (up to a constant). Instead of [1, Lemma A.10], we use the following:

LEMMA B [1, Lemma A.13]. Let $u \in W^{1,1}_{loc}(\mathbb{R}^2)$, $|\nabla u| \in M^2(\mathbb{R}^2)$, $\Delta u \in L^1(\mathbb{R}^2)$, and let p be a function in $\mathscr{C} = \{p \in C^1 \cap L^{\infty}(\mathbb{R}), p' \geq 0\}$. If there is a k > 0 for which meas $[|u| > k] < \infty$, then

$$\int_{\mathbb{R}^2} p'(u) |\operatorname{grad} u|^2 + \int_{\mathbb{R}^2} \Delta u p(u) \leq 0.$$

To apply this lemma to u-v, where u and v are two solutions to (13), we have only to show that meas $[|u|>k]<\infty$ for some k when u is a solution to (13). But $\gamma(.,u)$ is in $L^1(\mathbb{R}^2)$, and so meas $[|\gamma(x,u)|>C_2]$ is finite. Thus, by (12), meas $[|u|>C_1]$ is also finite. On taking p increasing, we obtain $-\int_{\mathbb{R}^2} \Delta(u-v)p(u-v)\geq 0$ and then $\int_{\mathbb{R}^2} (\gamma(.,u)-\gamma(.,v))p(u-v)\leq 0$. Consequently, $\gamma(.,u)=\gamma(.,v)$ almost everywhere and therefore $\Delta(u-v)=0$. We conclude the proof by applying the following lemma (instead of [1, Lemma A.5] for $N\geq 3$).

LEMMA C ([1, Lemma A.11]). Let $u \in W^{1,1}_{loc}(\mathbb{R}^2)$, $\Delta u \in L^1(\mathbb{R}^2)$ and $\lim_{n \to \infty} n^{-2} \int_{n \leq |x| \leq 2n} |\nabla u(x)| \ dx = 0$. Then $|\operatorname{grad} u| \in M^2(\mathbb{R}^2)$ and $|\operatorname{grad} u|_{M^2} \leq d_2' \|\Delta u\|_{L^1}$, where d_2' is independent of u.

By applying Lemma C, we obtain $\nabla u = \nabla v$ almost everywhere and hence u and v differ by a constant.

(b) Existence of a solution to Problem (13). Let us first observe that since N = 2, Lemma 1 in the discussion of problem (4) continues to hold. Now set $\gamma_{\varepsilon}(., u) = \varepsilon u + \gamma(., u)$. We have

LEMMA 2 bis. Let γ and f be as in Lemma 1, and assume moreover that $f \in L^1(\mathbb{R}^2)$. (Here N=2.) Then the solution u of (5) satisfies the following inequalities:

$$\int_{\{|u|\geq t\}} |\gamma_{\varepsilon}(.,u)| \, dx \leq \int_{\{|u|\geq t\}} |f| \, dx \text{ for all } t \text{ in } \mathbb{R}, \tag{6}$$

$$\|\nabla u\|_{\mathbf{M}^2(\mathbb{R}^2)} \le d_2 \|f\|_{L^1}$$
, with $d_2 = 2d_2'$ independent of u . (15)

Proof. For (6), identical to that of (6) in Lemma 2, for (15), by application of Lemma C instead of Lemma A.

Next, we define γ_n and u_n as in the final part of the proof of Theorem 1. The arguments are identical, except for the three following relations:

R1. The sequence $(u_n)_n$ is bounded in $W_{loc}^{1,1}(\mathbb{R}^2)$.

R2. meas $(B \cap \{|u_n| \ge t\}) \to 0$ as $t \to +\infty$, uniformly in $n \in \mathbb{N}^*$.

R3. The limit u verifies $|\nabla u| \in M^2(\mathbb{R}^2)$.

Proof of R1. We apply the following lemma.

LEMMA D ([1, Lemma A.16]). Let B be a ball of radius R in \mathbb{R}^N and $u \in W^{1,p}(B)$, with $1 . Then there is a constant C depending only on p and N such that if <math>\sigma = \text{meas} \lceil |u| < \lambda \rceil > 0$, then

$$\|u\|_{L^{p*}(B)} \le \lambda \text{ (meas } B)^{1/p*} + C\left(\left(\frac{\text{meas } B}{\sigma}\right)^{1/p*} + 1\right) \|\nabla u\|_{L^{p}(B)}$$

where $1/p^* = (1/p) - (1/N)$.

Recall that u_n is in $H^2(\mathbb{R}^2)$, and therefore in $W^{1,1}_{loc}(B)$ for $1 \leq p < +\infty$. By (15), $(\nabla u_n)_n$ is bounded in $M^2(\mathbb{R}^2)$. Thus it is bounded in $L^p(B)$ for all $1 \leq p < 2$. To prove that $(u_n)_{n \in \mathbb{N}}$ is bounded in $L^{p*}(B)$ (and therefore in $L^1(B)$), we just have to show that for some $\varepsilon > 0$ and some $\lambda > 0$, meas $[|u_n| < \lambda] > \varepsilon$, independently of n. Since by (6) $(\gamma_n(., u_n))_n$ is bounded in L^1 , one sees that $\alpha_n = \max\{\{x, |\gamma_n(x, u_n)| \geq C_2\}$) is bounded independently of n. Set $E = \{x, \gamma(x, C_1) \leq C_2\}$ or $\gamma(x, -C_1) \geq -C_2\}$ and recall that

$$\gamma_n(x, u_n(x)) = \gamma(x, u_n(x)) \quad \text{if} \quad |\gamma(x, u_n(x))| \le n \quad \text{and} \quad |x| \le n,$$

$$\gamma_n(x, u_n(x)) = n \operatorname{sgn} \left(\gamma(x, u_n(x))\right) \quad \text{if} \quad |\gamma(x, u_n(x))| \ge n \quad \text{and} \quad |x| \le n.$$

Thus, on choosing $n_0 > C_2$, and setting $B_n = B(0, n)$, one has $(x \in B_n \setminus E)$ and $|u_n(x)| > C_1 \Rightarrow (||\gamma_n(x, u_n(x))| > C_2)$ for $n \ge n_0$. Thus, by (12), meas $\{x \in B_n, |u_n(x)| > C_1\} \le \alpha_n + \text{meas } E \le M$ independent of n, and therefore meas $(\{x \in B_n, |u_n(x)| < C_1\}) \to \infty$ as $n \to +\infty$. By applying Lemma D, we conclude that $(u_n)_n$ is bounded in $L_{loc}^{p^*}$, and therefore in L_{loc}^1 .

Since $(\nabla u_n)_n$ is bounded in M^2 , it is bounded in L^1_{loc} , and so $(u_n)_n$ is a bounded sequence in $W^{1,1}_{loc}(\mathbb{R}^2)$.

Proof of R2. The proof is immediate, since we have seen that $(u_n)_n$ is a bounded sequence in $L^1(B)$ for every ball B.

Proof of R3. R3 is a direct consequence of the following.

LEMMA. Assume $u_n \to u$ in $\mathfrak{D}'(\mathbb{R}^2)$ and that the sequence $(\nabla u_n)_n$ is bounded in $M^2(\mathbb{R}^2)$. Then $\nabla u \in M^2(\mathbb{R}^2)$.

Proof. As $(\nabla u_n)_{n\in\mathbb{N}}$ is bounded in $M^2(\mathbb{R}^2)$, it is also bounded in $L^p_{loc}(\mathbb{R}^2)$ for all $1 \le p < 2$. So we may assume, eventually by extracting a subsequence, that $\nabla u_n \to \nabla u$ in L^p_{loc} -weak, and therefore in L^1_{loc} -weak. Set $\varphi = \operatorname{sgn}(\partial u/\partial x_i)1_K$ for i=1, 2 and K compact in \mathbb{R}^2 . We have $\int (\partial u_n/\partial x_i) \cdot \varphi \le ||\nabla u_n||_{M^2}$ (meas K) $^{\frac{1}{2}} \le M$

(13)

2).

(14)

(12) for

ieorem 1,

use the

 (\mathbb{R}^2) , and for which

we have [13]. But $as [|u| > 0] \ge 0$ and almost ying the

2) and $2 \|\Delta u\|_{L^1}$,

æ u and

e N = 2

ver that

(6)

(15)

 $(\text{meas } K)^{\frac{1}{2}}$. On letting $n \to +\infty$, we obtain

$$\int_{K} \left| \frac{\partial u}{\partial x_{i}} \right| \leq M \text{ (meas } K)^{\frac{1}{2}}.$$

By the monotone convergence theorem, this relation is still true for any $K \subset \mathbb{R}^2$ with finite measure. We hence conclude that $\nabla u \in M^2(\mathbb{R}^2)$.

Proof of Theorem 2 in the Case N=1. (i) Following a method given in [1], we first obtain some simple estimates on a solution to (14). It follows from $u'' \in L^1(\mathbb{R})$ that $u' \in L^{\infty}(\mathbb{R})$ and the limits $u'(\pm \infty)$ exist If, e.g. $u'(+\infty) \neq 0$, then $|u(x)| \to +\infty$ as $x \to +\infty$. By using (12), it is easy to see that this contradicts $\gamma(., u) \in L^1(\mathbb{R})$. Thus $u'(\pm \infty) = 0$, and so

$$||u'||_{L^{\infty}} \leq ||u''||_{L^{1}}. \tag{16}$$

(ii) Uniqueness up to a constant. Let $p \in C^1(\mathbb{R}, \mathbb{R})$ be a nondecreasing function with p and $p' \in L^{\infty}(\mathbb{R})$, p(0) = 0. It is not difficult to show that if $u'' \in L^1(\mathbb{R})$ and $u' \in L^{\infty}$, then $p'(u)u'^2 \in L^1(\mathbb{R})$ and

$$\int p'(u)u'^2 + \int p(u)u'' \le 0. \tag{17}$$

By using (17) in the same way as Lemma B, we deduce that the solution u to (14) is unique up to a constant.

(iii) Existence of a solution for problem (14). We proceed as in the case N=2, by again first noting that Lemma 1 holds for N=1. Secondly, we have

Lemma 2, ter. Let N=1 and f and γ be as in Lemma 1, and assume in addition that $f \in L^1(\mathbb{R})$. Then the solution u of (5) satisfies the following inequality:

$$\int_{|u|\geq t} |\gamma_{\varepsilon}(.,u)| \, dx \leq \int_{|u|\geq t} |f| \, dx \text{ for all } t \text{ in } \mathbb{R}.$$
 (6)

Proof. This is identical to that of (6) in Lemma 2.

We conclude in similar fashion to the case N=2, but use (16) and (6) to obtain u' bounded in L^p_{loc} . Indeed, from (6) with t=0 and (16), we deduce that the solution u_n of (5) verifies $\|u'_n\|_{L^\infty} \le 2\|f_n\|_{L^1}$.

4. The equation $-\Delta u + \gamma(., u) = f$ in $L^1(\Omega)$

In this section, Ω is a bounded open set in \mathbb{R}^N $(N \ge 1)$, and we assume that its boundary is smooth.

Our main result is the following.

THEOREM 3. Let $\gamma(x,t)\colon \Omega\times\mathbb{R}\to\mathbb{R}$ be a function measureable in x, continuous and nondecreasing in t. Assume that $\gamma(x,0)=0$ almost everywhere in Ω , and that $\gamma(t,t)\in L^1_{loc}(\Omega)$ for every $t\in\mathbb{R}$. Then, for any f in $L^1(\Omega)$, the following problem has a unique solution:

$$\begin{cases} -\Delta u + \gamma(., u) = f \text{ in } \mathcal{D}'(\Omega) \\ u \in W_0^{1,1}(\Omega), \quad \gamma(., u) \in L^1(\Omega). \end{cases}$$
 (18)

F

F first

 $oldsymbol{W}^{ ext{L}}_{0}$

P

By (

 $\frac{U}{\text{of ty}}$

On ε $-\Delta(\iota$ ever

E) and resul

LE $L^2(\Omega)$

Note

Ins LE

Then

lu

Remark 3. This is the same as Remark 1 with Ω instead of \mathbb{R}^N .

Proof. Here, once again, we follow step by step the proof of Theorem 1. Let us first give a lemma similar to [1, Lemma A.10].

LEMMA 3. Let $p \in C^1(\mathbb{R}, \mathbb{R})$, with $p \in L^{\infty}(\mathbb{R})$, $p' \ge 0$, p(0) = 0. Then, for all u in $W_0^{1,1}(\Omega)$ with $-\Delta u \in L^1(\Omega)$, one has

$$\int_{\Omega} -\Delta u p(u) \ge 0.$$

Proof. Let $u_n \in \mathcal{D}(\overline{\Omega})$ be a sequence such that

$$u_n \to u \text{ in } W_0^{1,1}(\Omega),$$

 $-\Delta u_n \to -\Delta u \text{ in } L^1(\Omega).$

By Green's formula, we have $\int_{\Omega} -\Delta u_n p(u_n) = \int_{\Omega} |\nabla u_n|^2 p'(u_n) \ge 0$. Since $p \in L^{\infty}$, on passing to the limit, we obtain

$$-\int \Delta u p(u) \ge 0.$$

Uniqueness of a solution to (18). By applying Lemma 3 to the difference u-v of two solutions of (18), we obtain

$$\int_{\Omega} (\gamma(.,u) - \gamma(.,v)) p(u-v) \leq 0.$$

On assuming p'>0, we deduce $\gamma(.,u)=\gamma(.,v)$ almost everywhere, and therefore $-\Delta(u-v)=0$ almost everywhere. Since $u-v\in W^{1,1}_0(\Omega)$, this implies u=v almost everywhere.

Existence of a solution to (18). Lemma 1 still holds with Ω instead of \mathbb{R}^N , $\varepsilon = 0$ and $H_0^1(\Omega)$ instead of $H^1(\mathbb{R}^N)$. The proof is identical. Thus we obtain the following result.

LEMMA 4. Let γ be as in Theorem 3, and assume in addition that $\sup_{s \in \mathbb{R}} |\gamma(., s)| \in L^2(\Omega)$. Let f be in $L^2(\Omega)$. Then the following problem has a unique solution:

$$\begin{cases}
-\Delta u + \gamma(., u) = f \\
u \in H_0^1(\Omega).
\end{cases}$$
(19)

Note that since $-\Delta u \in L^2(\Omega)$, we still have $u \in H^2(\Omega)$.

Instead of the estimates in Lemma 2, we shall need those given in the following.

LEMMA 5. Let γ and f be as in Lemma 4, and assume in addition that $f \in L^1(\Omega)$. Then the solution u to (19) satisfies the following inequalities:

$$\int_{\Omega \cap [|u| \ge t]} |\gamma(., u)| \le \int_{\Omega \cap [|u| \ge t]} |f| \, dx \, for \, t \in \mathbb{R}, \tag{20}$$

 $\|u\|_{W^{1,p}(\Omega)} \le C \|f\|_{L^1(\Omega)}$, where $p \in [1, N/N-1[$, and C only depends on p and Ω . (21)

 $\subseteq \mathbb{R}^2$

, we .¹(ℝ)

∞ as

Thus

(16)

tion and

(17)

(14)

, by

tion

(6)

ain the

its

ous hat

18)

Proof. The proof of (20) is identical to that of (6) in Lemma 2 (with Ω instead of \mathbb{R}^N , $\varepsilon = 0$, and $H^1_0(\Omega)$ instead of $H^1(\mathbb{R}^N)$). On using (20) with t = 0, we obtain $\|-\Delta u\|_{L^1} \leq 2\|f\|_{L^1}$. Using the continuous embedding $L^1(\Omega) \hookrightarrow W^{-1,p}(\Omega)$ for $1 \leq p < N/(N-1)$ and a classical result of regularity for the Laplacian, we have

$$||u||_{W^{1,p}(\Omega)} \le C' ||-\Delta u||_{W^{-1,p}(\Omega)} \le C'' ||-\Delta u||_{L^{1}(\Omega)},$$

where C' and C'' only depend on p and Ω .

Let $f_n \in L^2(\Omega)$ with $f_n \to f$ in $L^1(\Omega)$ as $n \to \infty$. Set, for $n \ge 1$,

$$\begin{cases} \gamma_n(x, s) = \gamma(x, s) \text{ if } |\gamma(x s)| \leq n, \\ \gamma_n(x, s) = n \text{ sgn } (\gamma(x, s)) \text{ if } |\gamma(x, s)| > n. \end{cases}$$

According to Lemma 4, the following problem has a solution u_n :

$$\begin{cases} -\Delta u_n + \gamma_n(., u_n) = f_n \text{ in } \mathcal{B}'(\Omega), \\ u_n \in H_0^1(\Omega). \end{cases}$$
 (22)

By applying relations (20) and (21) of Lemma 5, one sees that $(u_n)_n$ is bounded in $W_0^{1,p}(\Omega)$ for $1 \le p < N/(N-1)$. Thus, we may assume $u_n \to u$ in $L^1(\Omega)$, $W_0^{1,p}$ -weak, and almost everywhere. The proof that $(\gamma_n(.,u_n))_n \to \gamma(.,u)$ in $L^1_{loc}(\Omega)$ is identical to that of the last step in Theorem 1. Then, on passing to the limit in (22) and applying Fatou's lemma, a solution u to (18) is obtained.

We now give some consequences of Theorem 3.

COROLLARY 1. Let $\gamma(x, s) \colon \Omega \times \mathbb{R} \to \mathbb{R}$ be a function measurable in x, continuous and nondecreasing in s. Let $V \in L^1_{loc}(\Omega)$ be such that $\gamma(x, V(x)) \in L^1(\Omega)$ and $\gamma(x, y + V(x)) \in L^1_{loc}(\Omega)$ for all t in \mathbb{R} . Let $f \in L^1(\Omega)$. Then there exists a unique solution to

$$\begin{cases} -\Delta u + \gamma(., u) = f - \Delta V, \\ \gamma(., u) \in L^{1}(\Omega), \quad (u - V) \in W_{0}^{1,1}(\Omega). \end{cases}$$
 (23)

Proof. Apply Theorem 3 with $\tilde{\gamma}(x, s) = \gamma(x, s + V(x)) - \gamma(x, V(x))$ instead of $\gamma(x, s)$ and $\tilde{f}(x) = f(x) - \gamma(x, V(x))$ instead of f(x).

Note that, as for Corollary 1 to Theorem 1, this result has an "almost full" generality. In fact, assume that $g \in \mathcal{D}'(\Omega)$ is such that there exists a solution to

$$\begin{cases} -\Delta u + \gamma(., u) = g, \\ \gamma(., u) \in L^{1}(\Omega), \quad u \in W_{0}^{1,1}(\Omega). \end{cases}$$
 (23)+

Then one has $g = f - \Delta V$ with $f = \gamma(., u) \in L^1(\Omega)$ and $V = u \in W_0^{1,1}(\Omega)$ is such that $\gamma(., u) \in L^1(\Omega)$. Then, using Corollary 1, the necessary and "almost" sufficient condition on $g \in \mathcal{D}'(\Omega)$ for (P) to have a solution is $g = f - \Delta V$ with $f \in L^1(\Omega)$ and $V \in W_0^{1,1}(\Omega)$ such that $\gamma(., V) \in L^1(\Omega)$. We say "almost" sufficient because, in the hypothesis of Corollary 1, we also need $\gamma(., t + V) \in L^1_{loc}(\Omega)$ for all $t \in \mathbb{R}$. This condition is a consequence of $\gamma(., V) \in L^1(\Omega)$ if $\gamma(x, s)$ is not "too rapidly" increasing in s as $s \to +\infty$.

Let us apply this corollary to the case $\gamma(x, u) = |u|^{p-1}u$ (p > 1).

Cor

Then

Proc (b) If such t

(25) c Cor Baras

Тне

has a

Rer

inf $\{ \| \varphi \|_{C_{2,p'}}(\epsilon) \}$ In f very τ

Let follow

The property converges $\mu = \mu$ one property be a second converges $\mu = \mu$

Choo: conve $L^1(\Omega)$

instead 0 obtain $1 \le p < 0$

7

$$\begin{cases} -\Delta u + |u|^{p-1}u = \mu, \\ u \in L^{p}(\Omega), \quad u \in W_{0}^{1,1}(\Omega). \end{cases}$$
 (24)

Then

(a) If $\mu \notin L^1(\Omega) + W^{-2,p}(\Omega)$, (24) has no solution, (b) If $\mu \in L^1(\Omega) + W^{-2,p}(\Omega)$, (24) has a unique solution.

COROLLARY 2. Let p > 1, $\mu \in \mathcal{D}'(\Omega)$. Consider the problem

Proof. (a) If (24) has a solution u, one has $u \in L^p(\Omega)$, and then $-\Delta u \in W^{-2,p}(\Omega)$. (b) If $\mu = f + g$ with $f \in L^1$ and $g \in W^{-2,p}$, then there exists $V \in L^p(\Omega) \cap W_0^{1,1}(\Omega)$ such that $-\Delta V = g$. (This is a classical result.) So (24) is equivalent to

$$\begin{cases}
-\Delta u + |u|^{p-1}u = f - \Delta V, \\
u \in L^{p}(\Omega), \quad u - V \in W_{0}^{1,1}(\Omega).
\end{cases}$$
(25)

(25) can be solved by direct application of Corollary 1.

Corollary 2 may be considered as a generalization of the following result (see Baras and Pierre [4]).

Theorem B ([4]). Let μ be a bounded measure on Ω . Then the problem

$$\begin{cases}
-\Delta u + |u|^{p-1}u = \mu \text{ in } \mathfrak{D}'(\Omega), & (p>1), \\
u \in L^p(\Omega) \cap W_0^{1,1}(\Omega),
\end{cases}$$
(26)

has a solution if and only if μ satisfies the following condition:

$$|\mu|(A) = 0$$
 for every subset of Ω whose $W^{2,p'}$ -capacity is zero. (27)

Remark. Let $K \subset \mathbb{R}^N$ be a compact set. The $W^{2,p'}$ -capacity of K is $C_{2,p'}(K) = \inf\{\|\phi\|_{W^{2,p'}}^{p'}, \ \phi \in \mathcal{D}(\mathbb{R}^N), \ \phi = 1 \text{ on a neighbourhood of } K\}$. If ω is open, we set $C_{2,p'}(\omega) = \sup_{K \subset \omega} \{C_{2,p'}(K)\}$, and finally for $E \subset \mathbb{R}^N$, $C_{2,p'}(E) = \inf_{\omega \supset E} \{C_{2,p'}(\omega)\}$.

In fact, Corollary 2 is more general than Theorem B, but Theorem B provides a very useful criterion for a measure μ to have the form $f - \Delta V \in L^1 + W^{-2,p}$.

Let us prove Theorem B from Corollary 2. We just have to prove that the following properties are equivalent for all measures $\mu \in \mathcal{M}(\Omega)$:

$$|\mu|(A) = 0$$
 for every subset A of Ω with $C_{2,p}(A) = 0$, (27)

$$\mu \in L^1(\Omega) + W^{-2,p}(\Omega). \tag{28}$$

The proof that $(28)\Rightarrow (27)$ is straightforward (see [4, Lemma 4.1]). To show the converse we use an argument due to Ancona. Assume $\mu \geq 0$. (If not, we write $\mu = \mu^+ - \mu^-$.) As a consequence of the Hahn-Banach theorem (see [4, Lemma 4.2]), one has $\mu = \sum_{n=0}^{\infty} \mu_n$; where the sum converges in $\mathcal{M}(\Omega)$ and μ_n is a bounded positive measure on Ω , with compact support, and $\mu_n \in W^{-2,p}(\Omega)$. Let $\rho_m \in \mathcal{D}(\mathbb{R}^N)$ be a sequence of mollifiers. One has $\mu_n * \rho_m \to \mu_n$ in $W^{-2,p}$ as $m \to +\infty$, and

$$\|\mu_n * \rho_m\|_{L^1(\mathbb{R}^N)} \leq \|\mu_n\|_{\mathcal{M}(\mathbb{R}^N)}.$$

Choose a sequence $m_n \to +\infty$ such that the sum $g = \sum_n (\mu_n - \mu_n * \rho_{m_n})$ is absolutely convergent in $W^{-2,p}(\Omega)$. As the sum $f = \sum_n \mu_n * \rho_{m_n}$ is absolutely convergent in $L^1(\Omega)$, we obtain $\mu = f + g$, with $f \in L^1(\Omega)$ and $g \in W^{-2,p}(\Omega)$.

(22)

nded in ^p-weak, lentical 22) and

tinuous 1) and unique

(23)

ead of

t full"
on to

 $(23)^{+}$

h that ficient 1) and in the . This pidly"

Acknowledgment

We thank Professors H. Brezis, A. Ancona and L. Boccardo for many valuable suggestions.

References

- 1 Ph. Bénilan, H. Brezis and M. Crandall. A semilinear equation in L^1 . Ann. Scuola Norm. Sup. Pisa
- Cl. Sci. 2 (1975), 523-555.

 H. Brezis and W. Strauss. Semilinear elliptic equations in L¹. J. Math. Soc. Japan 25 (1973), 565-590.
- 3 H. Brezis. Some variational problems of the Thomas-Fermi type. In Variational Inequalities,
- 51. Brezis. Sonie variational proticins of the Thomas-Fermi type. In variational inequations, 53–73 (Ed. Cottle, Gianessi-Lions) (New York: Wiley, 1980).
 4 P. Baras and M. Pierre. Singularités éliminables d'équations elliptiques semi-linéaires. C.R. Acad. Sci. Paris Sér. I 295 (1982), 519–522 and Ann. Inst. Fourier (to appear).

(Issued 13 August 1984)