
Combined Triangular FV – Triangular FE Method
for Nonlinear Convection-Diffusion Problems 1
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Introduction

The finite volume method (FVM) represents an efficient and robust method for the
solution of conservation laws and inviscid compressible flow. This technique is based on
expressing the balance of fluxes of conserved quantities through boundaries of control
volumes, combined with approximate Riemann solvers. On the other hand, the finite
element method (FEM), based on the concept of a weak solution defined with the
aid of suitable test functions is quite natural for the solution of elliptic and parabolic
problems. However, it is not mandatory to adhere to these paths of discretization in their
respective regimes of common use. The finite (control) volume method (cell–centred or
vertex centred) may also be used for the discretization of elliptic problems (see [9], [23]).
Often the control volume approach is used in the framework of the FE methods in order
to gain stability from an upwinding ([2], [27], [28]). For applications to compressible
flow, see e. g. [17], [18], [19],...

In the solution of convection–diffusion problems, including viscous compressible flow,
it is quite natural to try to employ the advantages of both FV and FE methods in such a
way that the FVM is used for the discretization of inviscid Euler fluxes, whereas the FEM
is applied to the approximation of viscous terms. This idea leads us to the combined
finite volume–finite element method (FV–FE method) proposed in [13]. (Sometimes it

1The research of M. Feistauer was a part of the research project MSM 0021620839 financed by the
Ministry of Education of the Czech Republic.
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is also called the mixed FV–FE method.) The analysis and applications of this method
were investigated in [14], [15], [16], [1] [8]. The numerical computations for the system
of compressible viscous flow ([7], [12], [8], [6], [24]) demonstrate that the combined
FV–FE method is feasible and produces good numerical results for technically relevant
problems. The idea of using a combination of the FV and FE methods appears also in
[3]), [21] and [22]. In [5] the combined FV–FE method was applied to the solution of a
complex coupled problem.

In [15] the convergence and error estimates were studied for the combination of piece-
wise linear finite elements and the dual finite volumes constructed over a triangular mesh.
The paper [8] is concerned with the combination of nonconforming Crouzeix-Raviart
piecewise linear finite elements and barycentric finite volumes. Numerical experiments
using combined FV–FE techniques for the solution of compressible viscous flow however
show that in some complicated problems the best results can be achieved with the aid
of comforming triangular piecewise linear finite elements for the discretization of vis-
cous terms, combined with triangular finite volumes for the discretization of convective
terms. The theoretical analysis of this method has been still missing. Therefore, our
goal is to fill in this gap and to derive error estimates for this combined FV–FE method.

1 Continuous problem

Let Ω ⊂ R2 be a bounded polygonal domain and (0, T ), where T > 0, time interval. We
consider the following initial-boundary value problem: Find the solution of the equation

∂u

∂t
+

2∑
s=1

∂fs(u)

∂xs

= ε ∆u + g v QT = Ω× (0, T ) (1.1)

with the initial condition
u(x, 0) = u0(x), x ∈ Ω, (1.2)

and the boundary condition
u|∂Ω×(0,T ) = 0. (1.3)

We assume that the data have the following properties:
a) fs ∈ C1(R), fs(0) = 0, s = 1, 2,
b) ε > 0,
c) g ∈ C([0, T ]; L2(Ω)),
d) u0 ∈ L2(Ω).
Let the functions fs, s = 1, 2, have a bounded derivative: |f ′s| ≤ Cf ′ . Then they

satisfy the Lipschitz condition with the constant C∗
L = Cf ′ . The constant ε is the

diffusion coefficient and the functions fs are fluxes of the quantity u in the direction xs.
In what follows we shall use the standard notation for function spaces: Lp(ω) –

Lebesgue space, W k,p(ω), Hk(ω) = W k,2(ω) Sobolev spaces, Lp(0, T ; X) – Bochner space
of functions defined in (0, T ) with values in a Banach space X, Ck([0, T ]; X) – space of
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k-times continuously differentiable mappings of the interval [0, T ] with values in X (ω
is a bounded domain, k ≥ 0 integer, p ∈ [1,∞]) – see, e. g. [25].

If p ∈ [1,∞) and | · |X is a seminorm in X, then by | · |Lp(0,T ;X) we denote a seminorm
in Lp(0, T ; X) defined by

|u|Lp(0,T ;X) =

(∫ T

0

|u(t)|pX dt

)1/p

for u ∈ Lp(0, T ; X). (1.4)

We shall use the following notation:

(u, v) =

∫
Ω

u v dx, u, v ∈ L2(Ω), (1.5)

a(u, v) = ε

∫
Ω

∇u · ∇v dx, u, v ∈ H1(Ω), (1.6)

b(u, v) =
2∑

s=1

∂fs(u)

∂xs

v dx, u ∈ H1(Ω) ∩ L∞(Ω), v ∈ L2(Ω), (1.7)

|u|H1(Ω) =

∫
Ω

|∇u|2dx

1/2

, u ∈ H1(Ω) (1.8)

(seminorm in H1(Ω)).

2 Discrete problem

2.1 Triangulation

Let Th be a partition of the closure Ω of the domain Ω formed by a finite number of
closed triangles K called finite elements. We number all elements in such a way that
we can write Th = {Ki}i∈I , where I ⊂ Z+ = {0, 1, 2, . . . } is a suitable index set. We
assume that the triangulation Th satisfies the following conditions:

Ω =
⋃
i∈I

K (2.9)

and two different elements Ki, Kj are either disjoint or have a common vertex or a
common side.

Further, we shall consider a mesh Dh = {Di}i∈J formed by closed convex polygonal
setsDi, which will be called finite volumes. Symbol J ⊂ Z+ denotes a suitable index
set. We assume that the mesh Dh has the same properties as the triangulation Th. If
two finite volumes Di, Dj ∈ Dh have a common side, we call them neighbours. Then we
set

Γij = ∂Di ∩ ∂Dj = Γji (2.10)
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and
s(i) = {j ∈ J ; j 6= i, Dj is a neighbour of Di}. (2.11)

The sides of finite volumes adjacent to the boundary ∂Ω, which form this boundary,
will be denoted by Sj and numbered by indices j ∈ JB ⊂ Z− = {−1,−2, . . . }. Thus,
J ∩ JB = ∅ and ∂Ω =

⋃
j∈JB

Sj. For a finite volume Di adjacent to the boundary ∂Ω
we write

γ(i) = {j ∈ JB; Sj ⊂ ∂Ω ∩ ∂Di} , (2.12)

Γij = Sj, for j ∈ γ(i).

If Di is not adjacent to ∂ Ω, then we set γ(i) = ∅. We set

S(i) = s(i) ∪ γ(i), (2.13)

Then

∂Di =
⋃

j∈S(i)

Γij, (2.14)

∂Di ∩ ∂Ω =
⋃

j∈γ(i)

Γij,

|∂Di| =
∑

j∈S(i)

|Γij|,

where |∂Di| is the length of ∂Di and |Γij| is the length of the side Γij. By nij we shall
denote the unit outer normal to ∂Ki on the side Γij.

For k ∈ Z+, K ∈ Th we denote by Pk(K) the space of all polynomials on K of degree
≤ k. In what follows the following finite element spaces

Xh = {vh ∈ C(Ω); vh|K ∈ P1(K) ∀K ∈ Th}, (2.15)

Vh = {vh ∈ Xh; vh|∂Ω = 0}. (2.16)

and the finite volume space

Yh = {vh ∈ L2(Ω); vh|Di
∈ P0(Di) ∀i ∈ J} (2.17)

will be used.
The relation between the FE and FV spaces is given by the so-called lumping oper-

ator Lh : Xh → Yh or, more general, Lh : C(Ω) → Yh.
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2.2 Derivation of the method

Let u be a classical solution of problem (1.1) – (1.3). We multiply equation (1.1) by
a test function v ∈ Vh, integrate over Ω and apply Green’s theorem. We obtain the
identity (

∂u

∂t
, v

)
+
∑
i∈J

∫
Di

2∑
s=1

∂fs(u)

∂xs

v dx + a(u, v) = (g, v). (2.18)

In order to approximate the terms with fluxes fs, the test function v is replaced by Lhv:

∑
i∈J

∫
Di

2∑
s=1

∂fs(u)

∂xs

v dx ≈
∑
i∈J

Lhv|Di

∫
Di

2∑
s=1

∂fs(u)

∂xs

dx (2.19)

If we apply Green’s theorem to the right-hand side and approximate fluxes with the aid
of a so-called numerical flux H, we get∫

Di

2∑
s=1

∂fs(u)

∂xs

dx =

∫
∂Di

2∑
s=1

fs(u) ns dS =
∑

j∈S(i)

∫
Γij

2∑
s=1

fs(u) ns dS

≈
∑

j∈S(i)

H(Lhu|Di
, Lhu|Dj

, nij) |Γij| (2.20)

For the faces Γij ⊂ ∂Ω (i. e. j ∈ γ(i)) we use the boundary condition (1.3), on the basis
of which we set H(Lhu|Di

, Lhu|Dj
, nij) = 0. As a result we obtain the approximation of

the convective terms represented by the form

bh(u, v) =
∑
i∈J

Lhv|Di

∑
j∈s(i)

H(Lhu|Di
, Lhu|Dj

, nij) |Γij|. (2.21)

Definition 1. We define an approximate solution of problem (1.1) – (1.3) as a function
uh ∈ C1([0, T ]; Vh) satisfying the conditions

a)

(
∂uh

∂t
, vh

)
+ bh(uh, vh) + a(uh, vh) = (g, vh), ∀vh ∈ Vh (2.22)

b) uh(0) = u0
h = Πhu

0,

where Πh is the operator of Xh-interpolation.

Condition (2.22) a) is equivalent to a system of ordinary differential equations, which
can be solved, e. g. by the Runge-Kutta method.

3 Theoretical analysis

In what follows, in the domain Ω, we shall consider systems {Th}h∈(0,h0) of finite element
meshes and {Dh}h∈(0,h0) of finite volume meshes, with h0 > 0. (For simplicity, we shall
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not emphasize the dependence of index sets I and J on h by notation.) We shall use
the notation hK = diam(K), h = maxK∈Th

hK and by ρK we denote the radius of the
largest circle inscribed into the element K ∈ Th.

3.1 Assumptions

Let us assume that the system {Th}h∈(0,h0) is shape regular. This means that there
exists a constant CT independent of K and h such that

hK

ρK

≤ CT , K ∈ Th, h ∈ (0, h0). (3.1)

Further, let
diam(Di) ≤ CD h, ∀i ∈ J, (3.2)

with a constant CD > 0 independent of i and h.
Let us define the set ω(Di) by

ω(Di) = ∪{K ∈ Th; K ∩Di 6= ∅} . (3.3)

For a given element K ∈ Th, let RK be the number of sets ω(Di) containing the element
K; we assume that there exists R < +∞, independent of h, such that RK ≤ R for any
K ∈ Th. This means that each element K ∈ Th intersects at most R finite volumes Di.
Then ∑

i∈J

|vh|2H1(ω(Di))
≤ R |vh|2H1(Ω). (3.4)

Moreover, let the inverse assumption be satisfied: There exists a constant CI > 0
such that

h ≤ CIhK ∀K ∈ Th, h ∈ (0, h0). (3.5)

Now we shall specify properties of the numerical flux H:
Assumptions (H):

1. H(u, v, n) is defined in R2 × B1, where B1 = {n ∈ R2; |n| = 1}, and Lipschitz-
continuous with respect to u, v:

|H(u, v, n)−H(u∗, v∗, n)| ≤ CH(|u− u∗|+ |v − v∗|), (3.6)

u, v, u∗, v∗ ∈ R, n ∈ B1.

2. H(u, v, n) is consistent:

H(u, u, n) =
2∑

s=1

fs(u) ns, u ∈ R, n = (n1, n2) ∈ B1. (3.7)

3. H(u, v, n) is conservative:

H(u, v, n) = −H(v, u,−n), u, v ∈ R, n ∈ B1. (3.8)
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In view of (3.6) and (3.7), the functions fs, s = 1, 2, are Lipschitz-continuous with
constant 2CH .

In the sequel we shall consider the lumping operator Lh defined by

Lhv|Di
=

1

|Di|

∫
Di

v dx, i ∈ J, (3.9)

for functions v locally integrable in Ω.

Remark 1. Other choices of lumping operators are possible. For instance, if one as-
sumes that the triangular finite element mesh Th satisfies the Delaunay condition, and
one takes for Dh the dual Voronöı mesh, a possible choice for Lh is:

Lhv|Di
= v(Si), i ∈ J,

With this choice, the piecewise linear method on the mesh Th yields a diffusion matrix
which is identical to that of the finite volume method on the dual Voronöı mesh. Hence,
with the spatial discretization given in Definition 1, and an explicit or implicit Euler
scheme together with a mass lumping technique for the time derivative term, using a
monotone flux H, we get a scheme which is identical, up to the right–hand–side, to a
finite volume scheme which was previously studied in [10, 26]. In fact in these latter
papers, convergence is proven for a more general operator, namely a degenerate nonlinear
parabolic equation, using a Kruzkov-like technique. This proof can easily be adpated to
the right hand side which occurs when using the scheme of Definition 1. However, no
error estimate is known yet.

In virtue of (1.6) and (2.18), the exact solution of problem (1.1) satisfies the identity(
∂u

∂t
, vh

)
+ b(u, vh) + a(u, vh) = (g, vh), ∀vh ∈ Vh, (3.10)

where

b(u, v) =

∫
Ω

2∑
s=1

∂fs(u)

∂xs

v dx. (3.11)

Substituting here the approximate solution uh insted of u, we obtain(
∂uh

∂t
, vh

)
+ b(uh, vh) + a(uh, vh) = (g, vh) + ε̂h(uh, vh), (3.12)

where the term ε̂h = ε̂h(uh, vh) represents the truncation error for the convection term.
By (2.22) a), it is possible to express the truncation error ε̂h in the form

ε̂h(uh, vh) = b(uh, vh)− bh(uh, vh). (3.13)
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Subtracting (3.10) from (3.12), we find that(
∂(uh − u)

∂t
, vh

)
+ b(uh, vh)− b(u, vh) + a(uh − u, vh) = ε̂h(uh, vh). (3.14)

Our main goal is to derive the estimate for the error of the method eh = uh − u.
By Πh we shall denote the operator of the Xh-interpolation. One possibility is to use
the Lagrange interpolation: For a function ϕ ∈ C(Ω) we define Πh ϕ as an element
Πhϕ ∈ Xh such that (Πhϕ)(P ) = ϕ(P ) for all vertices P of the triangulation Th. The
error eh can be expressed as eh = ξ + η, where

ξ = uh − Πhu, η = Πhu− u. (3.15)

Since ξ ∈ Vh, we can use vh := ξ in (3.14). This yields the identity(
∂ξ

∂t
, ξ

)
+ a(ξ, ξ) = ε̂h(uh, ξ) + b(u, ξ)− b(uh, ξ)−

(
∂η

∂t
, ξ

)
− a(η, ξ), (3.16)

which will serve as the basis for the derivation of the error estimate.

3.2 Auxiliary results

The symbols C and c will denote generic constants which can attain different values at
different places.

Lemma 1. There exists a constant CL > 0 such that

|b(u, vh)− b(w, vh)| ≤ CL ||u− w||L2(Ω) |vh|H1(Ω), u, w ∈ H1(Ω), vh ∈ Vh. (3.17)

Proof Using the definition of the form b, apply Green’s theorem and equality vh|∂Ω = 0,
we find that

|b(u, vh)− b(w, vh)| =

∣∣∣∣∣∣
∫
Ω

2∑
s=1

(
∂fs(u)

∂xs

− ∂fs(w)

∂xs

)
vh dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
∫
Ω

2∑
s=1

(fs(u)− fs(w))
∂vh

∂xs

dx

∣∣∣∣∣∣
≤ C∗

L

∫
Ω

|u− w| |∇vh| dx

≤ C∗
L ||u− w||L2(Ω) |vh|H1(Ω)

Thus, we have (3.17) with CL = C∗
L.

In what follows, we shall derive several estimates important for the proof of the
consistency of the method. Namely, we shall verify the validity of the estimate

|bh(uh, vh)− b(uh, vh)| ≤ C h |uh|H1(Ω) |vh|H1(Ω), uh, vh ∈ Vh. (3.18)
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Lemma 2. For vh ∈ Vh, x ∈ Di, Di ∈ Dh, we have

|vh(x)− Lhvh|Di
| ≤ C |vh|H1(ω(Di)), (3.19)

where ω(Di) is defined by (3.3).

Proof By the definition (3.9) of the lumping operator, we can write

vh(x)− Lhvh|Di
= vh(x)− 1

|Di|

∫
Di

vh(y) dy

=
1

|Di|

∫
Di

(vh(x)− vh(y)) dy (3.20)

Let x, y ∈ Di. The straight segment connecting x with y intersects several elements
from Th. We shall denote these intersections by ∆r,xy, r = 1, . . . , kxy. The length of
∆r,xy will be denoted by hr,xy. See Figure 3.22. In view of (3.2),∑

r

hr,xy ≤ diam(Di) ≤ c h. (3.21)

y

x

∆2xy

Γij

a1xy

a2xy

hrxy

∆1xy

Di

Figure 1: Estimation of |vh(x)− vh(y)|

Using the linearity of vh on each element K ∈ Th, we find that

|vh(x)− vh(y)| = |vh(x)− vh(a1,xy) + vh(a1,xy)− vh(a2,xy) + · · · − vh(y)|
≤ |vh(x)− vh(a1,xy)|︸ ︷︷ ︸

∇vh|∆1,xy
·(x−a1,xy)

+ |vh(a1,xy)− vh(a2,xy)|︸ ︷︷ ︸
∇vh|∆2,xy

·(a1,xy−a2,xy)

+ . . .

≤
kxy∑
r=1

hr,xy |∇vh|∆r,xy︸ ︷︷ ︸
const

≤ c h max
Di

|∇vh|. (3.22)
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It follows from (3.20) and (3.22) that

|vh(x)− Lhvh|Di
| ≤ c

1

|Di|
h

∫
Di

max
Di

|∇vh| dy

= c
1

|Di|
|Di|h max

Di

|∇vh|

= c h max
Di

|∇vh| ≤

≤ c h max
ω(Di)

|∇vh| (3.23)

Further, we use the inverse assumption (3.5), which implies the so-called inverse
estimate: there exists a constant C? > 0 independent of K, h, vh such that

||∇vh||L∞(K) = |vh|W 1,∞(K) ≤
C?

h
|vh|H1(K) (3.24)

∀vh ∈ P 1(K), ∀K ∈ Th, ∀h ∈ (0, h0). (3.25)

(For proof, see, e. g. [4], Section 3.2.)
Now, it is possible to estimate maxω(Di) |∇vh|. The inverse estimate and the in-

equality

max
n=1,...,m

|an| ≤

(
m∑

n=1

|an|2
)1/2

(3.26)

imply that

max
ω(Di)

|∇vh| = max
K⊂ω(Di)

|∇vh|K | ≤ c
1

h
max

K⊂ω(Di)
|vh|H1(K)

≤ c
1

h

 ∑
K⊂ω(Di)

|vh|2H1(K)

1/2

= c
1

h
|vh|H1(ω(Di)). (3.27)

Substituting (3.27) in (3.23), we obtain estimate (3.19).
Furthermore, we shall estimate the expression Lhvh|Di

− Lhvh|Dj
, where the finite

volumes Di and Dj are neighbours. Let x ∈ Di, y ∈ Dj and let Q be the centre
of the segment Γij. See Figure 3.2. The segment Qx connecting the point Q with x
intersects several elements Kr,Qx ∈ Th, r = 1, . . . , nQx. These parts of the segment can

be represented by vectors ~hr,Qx, r = 1, . . . , nQx. Then vh(x) can be expressed in the
form

vh(x) = vh(Q) +

nQx∑
r=1

∇vh|Kr,Qx
· ~hr,Qx. (3.28)
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Dj

x

y

r = 3

r = 2

r = 1

Q

Di

Figure 2: Estimation of Lhvh|Di
− Lhvh|Dj

Similarly we can write

vh(y) = vh(Q) +

nQy∑
r=1

∇vh|Kr,Qy
· ~hr,Qy. (3.29)

Lemma 3. There exists a constant c > 0 such that∣∣Lhvh|Di
− Lhvh|Dj

∣∣ ≤ c (|vh|H1(ω(Di)) + |vh|H1(ω(Dj))). (3.30)

Proof Both expressions in the estimate can be expressed with the aid of the integral
average (3.9) and then (3.28) and (3.29) can be used. Obviously,

∑
r |~hr,Qx| ≤ ch.
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Further, in view of (3.22) and the inverse estimate,

|Lhvh|Di
− Lhvh|Dj

| =

∣∣∣∣∣∣∣
1

|Di|

∫
Di

vh(x) dx− 1

|Dj|

∫
Dj

vh(y) dy

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
1

|Di|

∫
Di

vh(Q) dx− 1

|Dj|

∫
Dj

vh(Q) dy

+
1

|Di|

∫
Di

nQx∑
r=1

∇vh|Kr,Qx
· ~hr,Qx dx

− 1

|Dj|

∫
Dj

nQy∑
r=1

∇vh|Kr,Qy
· ~hr,Qy dy

∣∣∣∣∣∣∣
≤ c h (max

Di

|∇vh|+ max
Dj

|∇vh|)

≤ c h (max
ω(Di)

|∇vh|+ max
ω(Dj)

|∇vh|)

≤ C (|vh|H1(ω(Di))
+ |vh|H1(ω(Dj))

) (3.31)

This proves estimate (3.30).

Lemma 4. There exists a constant Cc > 0 such that

|ε̂h(uh, vh)| = |bh(uh, vh)− b(uh, vh)| ≤ Cc h |uh|H1(Ω) |vh|H1(Ω). (3.32)

Proof We can write

|ε̂h(uh, vh)| = |b(uh, vh)− bh(uh, vh)| ≤ (3.33)

≤ |b(uh, vh)− b(uh, Lhvh)|︸ ︷︷ ︸
σ1

+ |b(uh, Lhvh)− bh(uh, vh)|︸ ︷︷ ︸
σ2

.

Our goal is to estimate σ1 and σ2. We have

|σ1| ≤

∣∣∣∣∣∣
∫
Ω

2∑
s=1

∂fs(uh)

∂xs

(vh − Lhvh) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫
Ω

2∑
s=1

fs
′(uh)

∂uh

∂xs

(vh − Lhvh)dx

∣∣∣∣∣∣
≤ 2 Cf ′

∫
Ω

|∇uh| |vh − Lhvh|

≤ 2 Cf ′ |uh|H1(Ω) ||vh − Lhvh||2L2(Ω). (3.34)
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Now it is necessary to estimate the norm ||vh − Lhvh||L2(Ω). In virtue of Lemma 2,
for x ∈ Di we can write

|vh(x)− Lhvh|Di
| ≤ C |vh|H1(ω(Di)). (3.35)

Due to (3.2), it holds that |Di| ≤ c h2. The use of (3.4) yields

||vh − Lhvh||2L2(Ω) =
∑
i∈J

∫
Di

|vh(x)− Lhvh|Di
|2 dx

≤ C
∑
i∈J

|Di| |vh|2H1(ω(Di))

≤ C h2
∑
i∈J

|vh|2H1(ω(Di))

≤ R C h2 |vh|2H1(Ω) (3.36)

where we recall that R is a bound of RK , which is the number of sets ω(Di) containing
the element K. It follows from (3.36) that

||vh − Lhvh||L2(Ω) ≤ c h |vh|H1(Ω). (3.37)

Now the substitution into (3.34) implies that

|σ1| ≤ c h |uh|H1(Ω) |vh|H1(Ω). (3.38)

Further, we shall estimate the expression σ2. By Green’s theorem,

|σ2| = |b(uh, Lhvh)− bh(uh, vh)| (3.39)

=

∣∣∣∣∣∣
∑
i∈J

∫
Di

2∑
s=1

∂fs(uh)

∂xs

Lhvh dx−
∑
i∈J

∑
j∈s(i)

Lhvh|Di
H(Lhuh|Di

, Lhuh|Dj
, nij) |Γij|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈J

∫
∂Di

2∑
s=1

fs(uh)LhvhnsdS −
∑
i∈J

∑
j∈s(i)

Lhvh|Di
H(Lhuh|Di

, Lhuh|Dj
, nij)

∣∣∣∣∣∣ .
Since the numerical flux H is consistent, we can write

|σ2| =

∣∣∣∣∣∣∣
∑
i∈J

Lhvh|Di

∑
j∈s(i)

∫
Γij

H(uh, uh, nij) dS −H(Lhuh|Di
, Lhuh|Dj

, nij) |Γij|


∣∣∣∣∣∣∣ .

Now we shall use the Lipschitz continuity and conservativity of H. For given i ∈ J and
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j ∈ s(i), when we exchange i and j, it is possible to write

Lhuh|Di

∫
Γij

H(uh, uh, nij) dS −H(Lhuh|Di
, Lhuh|Dj

, nij)|Γij|


+ Lhuh|Dj

∫
Γij

H(uh, uh, nji) dS −H(Lhuh|Dj
, Lhuh|Di

, nji)|Γij|


= (Lhuh|Di

− Lhuh|Dj
)

∫
Γij

H(uh, uh, nij) dS −H(Lhuh|Di
, Lhuh|Dj

, nij)|Γij|

 .

Summing over i ∈ J and j ∈ s(i) and dividing by 2 yields

|σ2| (3.40)

=
1

2

∣∣∣∣∣∣∣
∑
i∈J

∑
j∈s(i)

(Lhvh|Di
− Lhvh|Dj

)

∫
Γij

(
H(uh, uh, nij)−H(Lhuh|Di

, Lhuh|Dj
, nij)

)
dS

∣∣∣∣∣∣∣
≤ 1

2

∑
i∈J

∑
j∈s(i)

∣∣Lhvh|Di
− Lhvh|Dj

∣∣ CL

∫
Γij

(
|uh(x)− Lhuh|Di

|+ |uh(x)− Lhuh|Dj
)|
)
dS.

In virtue of Lemma (2), the estimates |Γij| ≤ c h and (3.4) and the Cauchy inequality,
we obtain

|σ2| ≤ C
∑
i∈J

∑
j∈s(i)

(
|vh|H1(ω(Di)) + |vh|H1(ω(Dj))

)
·
∫
Γij

(
|uh|H1(ω(Di)) + |uh|H1(ω(Dj))

)
dS

≤ C h
∑
i∈J

∑
j∈s(i)

(
|vh|H1(ω(Di)) + |vh|H1(ω(Dj))

)(
|uh|H1(ω(Di)) + |uh|H1(ω(Dj))

)
≤ 4 C h

∑
i∈J

|vh|H1(ω(Di)) |uh|H1(ω(Di))

≤ 4 R C h |vh|H1(Ω) |uh|H1(Ω). (3.41)

Now, (3.38) and (3.41) already imply (3.32).

Lemma 4 gives a consistency property of the method, and will lead to the error
estimate.

3.3 Error estimate

In what follows, we shall assume that the exact solution u is sufficiently regular, namely,
it satisfies the condition

∂u

∂t
∈ L2(0, T ; H2(Ω)). (3.42)
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This implies that
u ∈ C([0, T ]; H2(Ω)). (3.43)

Lemma 5. There exists a constant C1 > 0 such that

||Πhv − v||L2(K) ≤ C1 h2 |v|H2(K), (3.44)

|Πhv − v|H1(K) ≤ C1 h |v|H2(K) (3.45)

for all v ∈ H2(K), K ∈ Th and h ∈ (0, h0).

Proof See, e. g. [4].
From this lemma, the following estimates can be derived:

Lemma 6. For all h ∈ (0, h0) we have

||η||L2(Ω) ≤ C1 h2 |u|H2(Ω), (3.46)

|η|H1(Ω) ≤ C1 h |u|H2(Ω), (3.47)∣∣∣∣∣∣∣∣∂η

∂t

∣∣∣∣∣∣∣∣
L2(Ω)

≤ C1 h2

∣∣∣∣∂u

∂t

∣∣∣∣
H2(Ω)

, (3.48)

where η = Πhu− u, and C1 > 0 is the constant from the previous lemma.

Proof Let us establish (3.46). Using (3.44), we have

||η||2L2(Ω) =
∑

K∈Th

||η||2L2(K) ≤ C2
1 h4

∑
K∈Th

|u|2H2(K) = C2
1 h4 |u|2H2(Ω). (3.49)

Other estimates are proven in a similar way.
Now, starting from identity (3.16) and using the definitions of the forms (·, ·) and

a(·, ·), we prove some additional estimates.

Lemma 7. For a.e. t ∈ (0, T ), it holds:(
∂ξ

∂t
, ξ

)
=

1

2

d

dt
||ξ(t)||2L2(Ω) (3.50)

a(ξ, ξ) = ε |ξ|2H1(Ω), (3.51)∣∣∣∣(∂η

∂t
, ξ

)∣∣∣∣ ≤ c h2

∣∣∣∣∂u

∂t

∣∣∣∣
H2(Ω)

||ξ||L2(Ω), (3.52)

|a(η, ξ)| ≤ ε c h |u|H2(Ω) |ξ|H1(Ω), (3.53)

where ξ = uh − Πhu, η = Πhu− u.

Proof Relation (3.50) is obtained by the differentiation of the integral
∫

Ω
|ξ(t)|2 dx with

respect to the parameter t. Relation (3.51) follows from (1.6). In the proof of (3.52) we
use the Cauchy inequality and apply estimate (3.48). Similarly, from (1.6) we obtain
(3.53).
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On the basis of estimates (3.17) and (3.32) we estimate the left-hand side of identity
(3.16), for a.e. t ∈ (0, T ):(

∂ξ

∂t
, ξ

)
+ a(ξ, ξ) =

1

2

d

dt
||ξ(t)||2L2(Ω) + ε |ξ|2H1(Ω) (3.54)

≤ |b(uh, ξ)− bh(uh, ξ)|+ |b(u, ξ)− b(uh, ξ)|+
∣∣∣∣(∂η

∂t
, ξ

)∣∣∣∣+ |a(η, ξ)|

≤ Cc h |uh|H1(Ω) |ξ|H1(Ω) + Cf ||u− uh||L2(Ω) |ξ|H1(Ω)

+ C h2

∣∣∣∣∂u

∂t

∣∣∣∣
H2(Ω)

||ξ||L2(Ω) + ε c h |u|H2(Ω) |ξ|H1(Ω)

≤ Cc h |uh|H1(Ω) |ξ|H1(Ω) + Cf

(
||ξ||L2(Ω) + ||η||L2(Ω)

)
|ξ|H1(Ω)

+ C h2

∣∣∣∣∂u

∂t

∣∣∣∣
H2(Ω)

||ξ||L2(Ω) + ε c h |u|H2(Ω) |ξ|H1(Ω) (3.55)

It is then necessary to prove the family uh, h ∈ (0, h0), is bounded in the space
L2 (0, T ; H1(Ω)). The approximate solution uh ∈ C1([0, T ]; Vh) satisfies the identity(

∂uh

∂t
, vh

)
+ a(uh, vh) + bh(uh, vh) = (g, vh), ∀vh ∈ Vh. (3.56)

Substituting uh for vh in (3.56), we find that(
∂uh

∂t
, uh

)
+ a(uh, uh) + bh(uh, uh) = (g, uh). (3.57)

Since (
∂uh

∂t
, uh

)
=

1

2

d

dt
||uh(t)||2L2(Ω), (3.58)

a(uh, uh) = ε |uh|2H1(Ω), (3.59)

|(g, uh)| ≤ ||g||L2(Ω) ||uh(t)||L2(Ω), (3.60)

we are able to prove the boundedness of the form bh.

Lemma 8. For the approximate solution uh we have

|bh(uh, uh)| ≤ C ||uh||L2(Ω) |uh|H1(Ω). (3.61)
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Proof First we estimate |Lhuh|Di
|. From the definition (3.9) of the lumping operator,

using the Cauchy inequality and the inequality |Di| ≥ c h2, we get

|Lhuh|Di
| =

∣∣∣∣ 1

|Di|

∫
Di

uh dx

∣∣∣∣ ≤ |Di|1/2

|Di|
||uh||L2(Di) ≤

c

h
||uh||L2(Di). (3.62)

Now we can already estimate the form bh. We use (2.21), (3.30), (3.62), the inequality
|Γij| ≤ c h and the conservativity of the numerical flux. For a given i ∈ J and j ∈ s(i)
and the situation obtained by interchanging i and j we can write

Lhuh|Di
H(Lhuh|Di

, Lhuh|Dj
, nij)|Γij|+ Lhuh|Dj

H(Lhuh|Dj
, Lhuh|Di

, nji)|Γij|
= Lhuh|Di

H(Lhuh|Di
, Lhuh|Dj

, nij)|Γij| − Lhuh|Dj
H(Lhuh|Di

, Lhuh|Dj
, nij)|Γij|

=
(
Lhuh|Di

− Lhuh|Dj

)
H(Lhuh|Di

, Lhuh|Dj
, nij)|Γij|. (3.63)

Summation over all i ∈ J and j ∈ s(i) and dividing by two yield

|bh(uh, uh)| =

∣∣∣∣∣∣
∑
i∈J

Lhuh|Di

∑
j∈s(i)

H(Lhuh|Di
, Lhuh|Dj

, nij) |Γij|

∣∣∣∣∣∣ (3.64)

=

∣∣∣∣∣∣ 12
∑
i∈J

∑
j∈s(i)

(
Lhuh|Di

− Lhuh|Dj

)
H(Lhuh|Di

, Lhuh|Dj
, nij)|Γij|

∣∣∣∣∣∣
≤ 1

2
CL h

∑
i∈J

∑
j∈s(i)

∣∣Lhuh|Di
− Lhuh|Dj

∣∣ (|Lhuh|Di
|+ |Lhuh|Dj

|
)

≤ C
∑
i∈J

∑
j∈s(i)

(
|uh|H1(ω(Di)) + |uh|H1(ω(Dj))

) (
||uh||L2(Di) + ||uh||L2(Dj)

)
≤ C ||uh||L2(Ω)|uh|H1(Ω),

which we wanted to prove.

In the sequel, we shall apply the following version of Gronwall’s lemma:

Lemma 9. Let y, q, z, r ∈ C([0, T ]) be nonnegative functions and

y(t) + q(t) ≤ z(t) +

t∫
0

r(s) y(s) ds, t ∈ [0, T ]. (3.65)

Then

y(t) + q(t) ≤ z(t) +

t∫
0

r(ϑ) z(ϑ) exp

 t∫
ϑ

r(s)ds

 dϑ, t ∈ [0, T ]. (3.66)
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Proof can be carried out similarly as in [11], Section 8.2.29

For the proof of the error estimate we shall still need the following result:

Lemma 10. For all t ∈ [0, T ] it holds

||uh(t)||2L2(Ω) ≤ K(ε), (3.67)

ε

T∫
0

|uh(ϑ)|2H1(Ω)dϑ ≤ K(ε), (3.68)

where
K(ε) = C4 exp(CT/ε), (3.69)

with constants C4 and C independent of h and ε.

Proof We start from identity (3.57), use (3.58), (3.60) and (3.61):

d

dt
||uh(t)||2L2(Ω) + 2 ε|uh(t)|2H1(Ω)

≤ 2 ||g||L2(Ω) ||uh(t)||L2(Ω) + 2 C ||uh(t)||L2(Ω) |uh(t)|H1(Ω) (3.70)

Using Young’s inequality

a b ≤ 1

2

(
a2 δ +

b2

δ

)
(3.71)

(valid for a, b ≥ 0, δ > 0) with δ = C/ε, we get

d

dt
||uh(t)||2L2(Ω) + ε |uh(t)|2H1(Ω) ≤ ||g||2L2(Ω) +

(
1 +

C2

ε

)
||uh(t)||2L2(Ω). (3.72)

The integration
∫ t

0
of this inequality yields

||uh(t)||2L2(Ω) + ε

t∫
0

|uh(ϑ)|2H1(Ω)dϑ

≤ ||uh(0)||2L2(Ω) +

t∫
0

||g||2L2(Ω)dϑ +

t∫
0

(
1 +

C

ε

)
||uh(ϑ)||2L2(Ω)dϑ

≤ C +

(
1 +

C

ε

) t∫
0

||uh(ϑ)||2L2(Ω)dϑ. (3.73)
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Now we shall aplly Gronwall’s lemma 9, where we set

y(t) = ||uh(t)||2L2(Ω)

q(t) = ε

t∫
0

|uh(ϑ)|2H1(Ω)dϑ

z(t) = C

r(s) = 1 +
C

ε
.

We obtain

||uh(t)||2L2(Ω) + ε

t∫
0

|uh(ϑ)|2H1(Ω)dϑ

≤ C +

t∫
0

(
1 +

C

ε

)
C exp

 t∫
ϑ

(
1 +

C

ε

)
ds

 dϑ

= C +

(
1 +

C

ε

)
C

t∫
0

exp

((
1 +

C

ε

)
(t− ϑ)

)
dϑ.

Since

t∫
0

exp

((
1 +

C

ε

)
(t− ϑ)

)
dϑ = − 1

1 + C
ε

[
exp

((
1 +

C

ε

)
(t− ϑ)

)]t

0

= − 1

1 + C
ε

(
1− exp

(
t

(
1 +

C

ε

)))
= C3

(
exp

(
t

(
1 +

C

ε

))
− 1

)
≤ C3 exp

((
1 +

C

ε

)
T

)
= C4 exp

(
CT

ε

)
, (3.74)

we get

||uh(t)||2L2(Ω) + ε

T∫
0

|uh(ϑ)|2H1(Ω) dθ ≤ C + (1 +
C

ε
) C C4 exp

(
CT

ε

)
:= K(ε). (3.75)

This inequality already implies estimates (3.67) and (3.68).
Now we can already formulate the main result of our paper.

Theorem 1. Let assumptions a) - d) on data be satisfied, let the numerical flux be Lip-
schitz continuous, consistent and conservative and let the triangulations have properties
from 2.1. Then the error of the method eh = u − uh, where u is the exact solution of
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problem (3.10) – (1.3) satisfying (3.43) and uh is the approximate solution defined by
(2.22), satisfies the estimates

max
t∈[0,T ]

||eh||L2(Ω) ≤ C h (3.76)

and

√
ε

√√√√√ T∫
0

|eh(ϑ)|2H1(Ω)dϑ ≤ C h. (3.77)

Proof The error eh is expressed in the form eh = ξ + η, where

ξ = uh − Πh ∈ Vh, η = Πhu− u. (3.78)

As we have already mentioned, from (3.16), (3.50) and (3.51) we have

1

2

d

dt
||ξ(t)||2L2(Ω) + ε |ξ|2H1(Ω)

≤ c h |uh|H1(Ω) |ξ|H1(Ω) + Cf

(
||ξ||L2(Ω) + ||η||L2(Ω)

)
|ξ|H1(Ω)

+ C h2

∣∣∣∣∂u

∂t

∣∣∣∣
H2(Ω)

||ξ||L2(Ω) + ε c h |u|H2(Ω) |ξ|H1(Ω) (3.79)

By Young’s inequality and Lemma 6,

d

dt
||ξ(t)||2L2(Ω) + 2 ε |ξ|2H1(Ω) (3.80)

≤ 4
c2 h2

ε
|uh|2H1(Ω) +

ε

4
|ξ|2H1(Ω) + 4

(
C2

f

ε
+ 1

)
||ξ||2L2(Ω) +

ε

4
|ξ|2H1(Ω)

+ 4
C2

f C1
2 h4

ε
|u|2H2(ω) +

ε

4
|ξ|2H1(Ω) + C2 h4

∣∣∣∣∂u

∂t

∣∣∣∣2
H2(Ω)

+ ||ξ||2L2(Ω)

+ 4 ε c2 h2 |u|2H2(ω) +
ε

4
|ξ|2H1(Ω).

The integration
∫ t

0
and the use of Lemmas 5 and 10 yield

||ξ(t)||2L2(Ω) + ε

t∫
0

|ξ(ϑ)|2H1(Ω)dϑ (3.81)

≤ 4
c2 h2

ε2
C4 exp(CT/ε) + C2 h4

∣∣∣∣∣∣∣∣∂u

∂t

∣∣∣∣∣∣∣∣2
L2(0,T ;H2(Ω))

+ C h4 |u(0)|2H(Ω)

+ 4 (C2
f C1

2 h4 + ε2 C2 h2) ||u||2L2(0,T ;H2(Ω)) + 4

(
C2

f

ε
+ 1

) t∫
0

||ξ(ϑ)||2L2(Ω)dϑ.
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Now it is possible to apply Gronwall’s Lemma 9, where we define the individual terms
by

y(t) = ||ξ(t)||2L2(Ω),

q(t) = ε

t∫
0

|ξ(ϑ)|2H1(Ω)dϑ,

z = C7 h2 exp(CT/ε) + C2 h4

∣∣∣∣∣∣∣∣∂u

∂t

∣∣∣∣∣∣∣∣2
L2(0,T ;H2(Ω))

+ 4 (C8 h4 + ε2 C2 h2) ||u||2L2(0,T ;H2(Ω))

+ C h4 |u(0)|2H2(Ω),

r = 4

(
C2

f

ε
+ 1

)
ane denote C7 = C4 C2/ε2, C8 = C2

f C1
2. Further, we have

t∫
ϑ

r(s) ds = 4

(
C2

f

ε
+ 1

)
(t− ϑ), (3.82)

t∫
0

r(ϑ) z exp

 t∫
ϑ

r(s) ds

 dϑ =

t∫
0

4

(
C2

f

ε
+ 1

)
z exp

(
4

(
C2

f

ε
+ 1

)
(t− ϑ)

)
dϑ

= 4

(
C2

f

ε
+ 1

)
z

t∫
0

exp

(
4

(
C2

f

ε
+ 1

)
(t− ϑ)

)
dϑ

= z

[
exp

(
4

(
C2

f

ε
+ 1

)
(t− ϑ)

)]t

ϑ=0

=

= z exp

(
4

(
C2

f

ε
+ 1

)
t

)
− z.

Hence,

||ξ(t)||2L2(Ω) + ε

t∫
0

|ξ(ϑ)|2H1(Ω)dϑ (3.83)

≤
(
C7 h2 exp(CT/ε) + C2 h4 ||∂u/∂t||2L2(0,T ;H2(Ω)) + 4 (C8 h4 + ε2 C2 h2) ||u||2L2(0,T ;H2(Ω))

+ C h4 |u(0)|2H2(Ω)

)
exp

(
4

(
C2

f

ε
+ 1

)
t

)
.

If we use the notation

Z(ε, h) := h2
(
C7 exp(CT/ε) + C2 h2 ||∂u/∂t||2L2(0,T ;H2(Ω)) (3.84)

+ 4(C8 h2 + ε2 C2) ||u||2L2(0,T ;H2(Ω)) + C h2 |u(0)|2H2(Ω)

)
exp

(
4

(
C2

f

ε
+ 1

)
T

)
,
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then, in virtue of the previous inequality, we have

||ξ(t)||2L2(Ω) ≤ Z(ε, h), ∀t ∈ [0, T ] thus

max
t∈[0,T ]

||ξ(t)||2L2(Ω) ≤
√

Z(ε, h). (3.85)

The triangular and Young’s inequalities imply that

||eh||2L2(Ω) ≤ 2 ||ξ||2L2(Ω) + 2 ||η||2L2(Ω), (3.86)

|eh|2H1(Ω) ≤ 2 |ξ|2H1(Ω) + 2 |η|2H1(Ω).

In (3.86) we use the relation eh = u − uh, inequality (3.85), estimates from Lemma 6
and assumption (3.43). We find that

||eh||2L2(Ω) ≤ 2 Z(ε, h) + 2 C2
1 h2|u(t)|2H2(Ω). (3.87)

Taking the square root, we get

||eh||L2(Ω) ≤
√

2 Z(ε, h) + 2 C2
1 h2|u(t)|2H2(Ω). (3.88)

This already implies the final estimate

max
t∈[0,T ]

||eh(t)|| ≤
√

2 Z(ε, h) + 2 C2
1 h2 max

t∈[0,T ]
|u(t)|2H2(Ω) ≤ C h. (3.89)

Finally we shall prove the estimate for ε
t∫

0

|eh(ϑ)|2H1(Ω)dϑ. We know that

ε

T∫
0

|ξ(ϑ)|2H1(Ω)dϑ ≤ Z(ε, h). (3.90)

Thus, we can write

ε

T∫
0

|eh(ϑ)|2H1(Ω)dϑ ≤ Z(ε, h)2 ε

T∫
0

|ξ(ϑ)|2H1(Ω)dϑ + 2 ε

T∫
0

|η(ϑ)|2H1(Ω)dϑ

≤ 2 Z(ε, h) + 2C2
1 h2

T∫
0

|u(ϑ)|2H2(Ω)dϑ (3.91)

= 2 Z(ε, h) + 2C2
1 h2 ||u||2L2(0,T ;H2(Ω)) ≤ C h2,

which implies the estimate

√
ε

√√√√√ T∫
0

|eh(ϑ)|2H1(Ω)dϑ ≤ C h. (3.92)

This concludes the proof.
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4 Numerical experiments

We verified our results by numerical experiments. We applied the combined FV-FE
method to scalar 2D viscous Burgers equation:

∂u

∂t
+ u

∂u

∂x1

+ u
∂u

∂x2

− ε∆u = g (4.93)

in the space-time domain QT = Ω × (0, 1), Ω = (−1, 1)2, equipped with Dirichlet
boundary condition u|∂Ω = 0, and initial condition u|t=0 = 0. The right-hand side g is
chosen so that it conforms to the exact solution

uex = (1− e−2t)(1− x2
1)

2(1− x2
2)

2.

The time discretization is carried by a semiimplicit Euler scheme:(
uk

h − uk−1
h

τ
, vh

)
+ bh(u

k−1
h , vh) + ah(u

k
h, vh) = (gk−1, vh) (4.94)

which should have better stability properties than a purely explicit scheme with no added
computational cost, because the FE mass and stiffness matrices share their sparsity
structure. In the definition (2.21) of the form bh we use the numerical flux

H(u1, u2, n) =

{ ∑2
s=1 fs(u1)ns, if A > 0∑2
s=1 fs(u2)ns, if A ≤ 0 , (4.95)

where

A =
2∑

s=1

f ′s(ū)ns, ū =
1

2
(u1 + u2) and n = (n1, n2). (4.96)

As we want to examine the error of the space discretization, we overkill the time
step so that the time discretization error is negligible.

In each computation we consider the FE mesh primary and derive the FV mesh from
it. We successively refine the FE mesh and for each refinement we evaluate the so-called
experimental order of convergence (EOC) defined by

EOC =
log eh′ − log eh

log h′ − log h

where h′ refers to the refined FE mesh and h to the original one. The symbol eh denotes
either the L∞(L2)-norm or the L2(H1)-norm of the error.

We consider two different methods of deriving the secondary FV mesh Dh. The first
method (yielding the FV mesh D1

h) consists simply in copying the FE mesh. In the
second case (yielding the FV mesh D2

h) we create an interior FV node as the barycenter
of each FE triangle, add the FE boundary nodes and triangulate these nodes by means
of the Delaunay triangulation.
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#I h eh,L∞(L2) EOCL∞(L2) eh,L2(H1) EOCL2(H1)

128 3.54E-01 6.57E-02 - 1.09E-01 -
512 1.77E-01 2.95E-02 1.16 5.58E-02 0.97

2048 8.84E-02 1.40E-02 1.08 2.81E-02 0.99
8192 4.42E-02 6.87E-03 1.03 1.41E-02 0.99

32768 2.21E-02 3.40E-03 1.02 7.05E-03 1.00
131072 1.11E-02 1.69E-03 1.01 3.53E-03 1.00
Average 1.06 0.99

Table 1: Method with the FV mesh D1
h

#I h eh,L∞(L2) EOCL∞(L2) eh,L2(H1) EOCL2(H1)

128 3.54E-01 7.50E-02 - 1.13E-01 -
512 1.77E-01 4.57E-02 0.71 6.18E-02 0.87

2048 8.84E-02 1.78E-02 1.36 3.01E-02 1.04
8192 4.42E-02 1.18E-02 0.59 1.62E-02 0.89

32768 2.21E-02 4.37E-03 1.43 7.56E-03 1.10
131072 1.11E-02 2.99E-03 0.55 4.12E-03 0.88
Average 0.93 0.96

Table 2: Method with the FV mesh D2
h

The construction of the lumping operator gets tricky in the second case, as the FE
and FV triangles can overlap in many different ways. Therefore, instead of covering all
these possibilities, we evaluate the lumping operator approximately by a Quasi Monte
Carlo approach and then scale the resulting matrix to enforce conservativity of constants
- a constant function should be lumped to the same constant. Our numerical experiments
show that this approach is acceptable.

In Tables 4 and 4 we show the computational results obtained with the aid of the FV
meshes D1

h and D2
h, respectively. By eh,L∞(L2) and eh,L∞(H1), computational errors eval-

uated in the L∞(L2)- and L∞(H1)-norms are denoted. In a similar way, by EOCL∞(L2)

and EOCL∞(L2), the corresponding experimental orders of convergence are denoted.

5 Conclusion and perspectives

In this paper we proved the convergence of a combined finite element - finite volume
scheme for a convection diffusion equation; the error estimates that we obtain are op-
timal . The scheme is particularly interesting when using the same triangular meshes
for both finite element and finite volume discretizations, as shown by the numerical
results, but may indeed be used in several other cases.The constants in the resulting
error estimates depend on the diffusion parameter ε, and increase as ε tends to 0. It is
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still an open problem, to our knowledge, to find some error estimates which would be
independent of ε, and which would cover the degenerate parabolic case. Another issue
is the study of the fully discrete scheme. In particular, the influence of a mass lumping
technique for this scheme should be evaluated.
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