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. 1. INTRODUCTION
LET a >0 AND f€ LL.(R®), n= 1. We consider the following problem:

—Aut et u=F in®(®),u € LL(RY,
l* ! u € Lig (R

In [1], Brezis showed the following result.

Y

THEOREM [1]. Let 1< @<, For every f€ LL (R, there exists a unique u € Lit.(R")
satisfying (1). Moreover; if f= 0 a.e., then u=0 a.e.

In this theorem, no limitation on the growth at infinity of the data f is required for the
existence of a solution u, and-u is unique without prescribing its behaviour at infinity. The
proof uses a device introduced by Baras and Pierre [2] which provides a local estimate of the
solutions of (1).

The preceding result fails if 0 < o= 1. Indeed, it is enough to consider, for n = 1, the
Cauchy problem:

"

W=u* inR

: (2)
w(0)=0, u(0)=u,.
One sees that for any g > 0 (2) has a global positive solution in [R, so that no uniqueness is
expected even for positive solutions of (1).

Let 0 < & < 1. We now briefly explain our plan and results: In Section 2 (theorem 1), we
prove that if £ 0 and (1) has a positive solution, then (1) has a “minimal” positive solution
u (i.c. 0<u=p for any other positive solution v). o

In Section 3, we focus on the problem of existence for 0 < & < 1 of positive solutions of (1)
for f& LL(R"), f=0. This problem is closely related to the following (porous medium
equation): '

for m > 1, find u(x, 7) = O such that (du/as) = A(u™), u(x, 0) = ug(x). (3)
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Indeed, the “implicit Euler scheme” associated with (3) is:
u(t + h) — u(t) — hAu™(1 + h) = 0, u(t+h)=0,u(t) =0,h >0, (4)
Setting w(t + h) = h* 1 4*, where o = m™!, we get:
—AfL+ §% = k1 ey,

We obtain precisely equation (1) with f = AL ey(y).
Qur main result is the following (theorem 2, Section 3): We set By = {x € R",

any 0 < @ <1, there exists ¢, > 0 and ¢; > 0 depending only on » and « such that for fe
Li.(R%, f=0, one has: '3

(lir}al sup R~ Qe/1-a) j fdx < C1) = ((1) has a positive solution); (6) .
- Bp S .
((1) has a positive solution) = (]j? sup R "~ (@a/1-0) f fdx < cz) S (T
11 Su] e Uk
BR O

Let us compare this result with the results obtained for the porous medium equati.'qn:." )
It is known (cf. Bénilan, Crandall and Pierre [3]) that if uge Li, (R"), u,= 0, one has.

(lién P R Gim=b f U dx < °°) = ((3) has a solution on some interval [0, T}); | “(8Y -

Bg

The converse of (8) is proved in [4], (cf. also Dahlberg and Kenig [5]).

It is straightforward to see that our result proves that for uy € L} (R"), u,= 0, the porous
medium equation (3) has a local solution if and only if the “implicit Euler scheme” (5) (with
t=0, « =m™") has a positive solution u(h) for h > 0 small enough.

It may be asked if it is possible to have ¢1 = ¢, in (6) and (7). In fact, we can prove, for n =
1, that no inequality of the kind lirél sup g(R) ™" [ 5, A(x) u(x) < C may be expected to be a
necessary and sufficient condition in order to have positive solutions of (1) for f& L], f=0.

Many of the results stated above can be generalized: we give in Section 4 a proof that Brezis’
result ([1]) holds with any odd function g(u), instead of fu|*~* u, which verifies: g is convex on -

R*, increasing, and
o x —1/2
f (f g(t)dt) dr < + <,
0

(This kind of condition already arises in Osserman [6], who studies the inequation Au = f(u)).
For the case o <1, our result can probably be extended to functions @(u), instead of |ul* 'y,
with more general conditions.

It may be asked whether equation (1) with 0 < o < 1 has a solution for any f€ LL(R"). In
fact we can prove that it has always infinitely many solutions (of course without condition of
positivity). The proof involves different tools and will be done elsewhere [13].

In Section 5 we return to the case f=0, u=0, and deal with a characterization in some
weighted Banach space of the minimal positive solution of (1). We obtain that if this solution
verifies u(x) x| 21 ~%— 0 as lx]— + (that is the case if f{x) [x|2¢/1-« — (), then every other

u(t) = 0, =0 (r\')

x| < R}. For.

s o

o
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positive solution of (1) verifies

lim sup r‘”‘(z"/l*"’)J’ w0,

F—+x Br 7
. 1 - . . -2 /‘1 —
We prove also by an example that this characterization is not available if f(x) x| 2% 0.

ber such that 0 <a<1. If Q is an
ion. In what follows, « denotes always a real num '

Noéflns?;’:aset of B", we often write: {gu dx for [ou{x) dx, where dx is the Lebef;gue El?}aS:;z
?I?R" By{x| = R}’we mean: {x € R*, [x| = R}. We usually set Bg={lx| <R}, §, = {x| = 1},

s udo =[5, u(0) do, where do is the usual superficial measure on S;. If Q is an open set,
B S t *

i ions in Q whose derivatives
k(@) (ke N ,p = 1) is the Sobolev space of all measurable functions in “
gthta d)isftributmﬁ sense DY u verify D'u € kLP(Q)) for |ﬂ = I; @B(Q) ;ﬂglz)ée; Eﬁe ‘[;/‘?ctp?é a)\ll gd
: - ) - ; ’ ’
tions with compact support in Q. W§? (L) is the closure .
fv;rf:c‘:’ Egl)s is the set Ic))f all functions i such that gu € W5?(Q) for any ¢ in %(S2). For the

Soboley inclusions, we refer to Adams [8], and for the regularity properties of the Laplacian,

to Agmon, Douglis and Nirenberg [9]. Finally for f and u € Li,, “—Au+ u* = fin B'(Q)

i ‘o u¥p dx = [ fe dx. This makes
t for an € B(Q) one has: — [quAg dx + fou'e . _
]:;228 ;&ie rjre Lic(p:} u® (E L}, for & < 1. The support of a function f will be denoted by

supp f.

2. PRELIMINARY RESULTS
Let 0 < @ <1, f€ LL(R") with f= 0. Consider the problem:
(P) Find u € LL.(R"), u = 0, such that —Au + u* = f in D'(R").
We shall say that v is a supersolution of (P) if v € LL.(R*),v =0, and for some g€
Lin(R") :
—Av+ov¥=g=f in D'(R").
We now prove the following result:

ith f= 0. If (P) has a supersolution v, it has also a
1. Let0<a<1,f€ L (R") with f=0. I ;
EE?IEEEII” solution u = p. (That is, a solution u such that 0 = u < w for any other solution w
of (P).)
In fact, theorem 1 is a consequence of the maxir_num principle.. But the lack of zzglilrllaiﬁz
generates: some difficulties, which we solve by using the following lemma (prov

Appendix):

Lemva 1. Let u € Wh(Bg), —Au € LY(By), and u=0 on dBg. If P € C'NL7(R), with
P=0on R and P =0, then

- j AuP(u) dx = 0.

* C 2 g
P 0 lo <
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define the sequence (i), of solutions of:

—Auk + IukFa_1 Uy =f in @’(Bk),
() {
u, € WE1(B,).

The existence, uniqueness of u, and the fact that i = () (since f= () are proved in Brezis and.
Strauss [10]. (Another proof can be found in [11]). Note that u; — v verifies the assumptions -
of lemma 1 (with B= By =B,). Let P be as in lemma 1. Multiplying by P(u; — v) the

inequality

A —0) g g = oo o =0

and then, integrating yields:

f = Aluy, — v) P(uy — v) dx -i-f (feee]® — [0|®) P(uy — v) dx < 0.
B B .

Thus by lemma 1:

| G = bl Pl = vy ax <,
B

and, choosing P > 0 on R* , this gives P(u, — v) <0 a.e., and then u, < p a.e. on B. By' the |

Same argument, one obtains u; < u;,, on B,. PR
We conclude that (1), (and, therefore, (u)e) converges in L} (R"). Passing to the limit

loc

in the distribution sense in (P:) yields that u is solution of (P). Moreover 0 < 5 < 1, and we
obtain u < w for any solution w of (P), since w is also a supersolution.

3. THE MAIN THEOREM

THEOREM 2. Let 0 < o << 1. There exists ¢;>0and ¢,

>0 (depending only on » and &) such
that for f& LL (R™), =0, one has:

(1) if iil;l sup R~ Ce/l-a) ¢ rdy < ¢ then (P) has a solution (and therefore a minimal °

solution in the sense of theorem 1);
(2) if (P) has a solution then lim sup R - @/~ SB, fdx <c,.

R—= 4+

3.1. Proof of part (1) of theorem 2

We first state the following lemma (“compact support lemma”) which is an essential tool in
our proof. Roughly speaking this lemma is contained in [12]. For a sake of completeness we
give a proof of this lemma in the appendix (cf. lemma A.3).

We set for a, b €R, Qfa, b) = {a < |x| < b}.

COMPACT SUPPORT LEMMA (Appendix—lemma A3). Let0<a<1. Forall0<q<b and for
all £ > 0 there exists ¢(g, a, b) > 0 such that if

fE Liw(R™), =0, Supp fC Q(a, b), ffdx < c(g, a, b}, 9
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then the problem
' ~Au+ut=f in D(RY
(P’) {uELl(R"),uaoa SuppuC Qe —¢,b + &)

has a (unigue) solution.

3 i 1 ifral-)= zfl_au(./R)
i i f (P’) if and only if #(-) = R
k1. Let R > 0. The function u 1S a soiut1t3n o )i ol / N
f:e;n glution of (P') with f(-) = R®1=%f(-/R), = aR, b= bR, &= £R, instead of f, a

L (The proof of this remark is straightforward.)

i for
: d remark 1, one can easily deduce that
. From the compact suppoit lemmat an : 1 €as t
grfrr?;kf 1([R’l:;)with compzﬁ:t support, there exists a (umique) u € L'(R*) with compact suppor
anfil_- such that —Au + u® = £ in 9'(R") {cf. theorem 6.1 of [12]).

Using this compact support lemma we are going to prove the existence _of af su;zgsolutlon
fér (Sfl’r)igwhich by theorem 1, is enough to ensure the existence of a solution for (F).
- To tflis end, we set, for k€N,
Q, = Q(2F,2¢1), Qi =Q(0, 25).
" i -n=(af1-9) [, o dx< K. Then
Letg € L1 .(R"),g=0, .agd such that for some K > 0, 11}1213) sup R I, 8

one has for some K' =0, .

f gdx = KR (efl=®) + K. (10)
Br
Thus, for ky > 1 large enough, we get
J g dx =< 2K (2koyr+@efi-a) (1)
Qr, ‘
f g dx < 20" Cofi=) K. (2909 for k= ko, (12)
Qi

If we assume that K < ¢} = 27"~ @/1-2) Inf(c(1/2,1,2), ¢(1/2, 0, 1)), we deduce from (11)
W

; k-1
and (12) (by using the compact support lemma and remark 1) the existence of {v, k = ko — 1}
such that
v, =0, v, €LYRY, A
glg, if k=k 13)

—Av, +vi=

v

glg,, if k=ko—1

SuppkaQk_IUQkUQkH, k?ko

Supp vgy-1 C Qi U Q. 7
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Thus one sees that the series

o

2 v; and

i=kg—1

converge a.e. and in 7.1
- n Li,.(R"). Furthermor

- e, a

¢ =0, one has ¢ > 88

Setting

we then deduce (with (13) and (14)):

—Aw+3wr =g in 9(RY
W20 we LL(R).

With z =3V 1y this gives
—Az+ 7%= 31
z € LL (R,

T. GALLOUET znd J.-M. MoREL

[+s]
Evf‘

i=kp—1

(@ +5"+c*)=3(a+b+c) for all ¢,p.

3

i=dg~1

(E=§—l v?) =3 (l > U:’) d_ | (14) .

/a'—l,g
z=0, - (16)

Setting now g = 31~¢ £ we deduce from (16) that if

R4

then z is a supersolution of (P). This proves part (

3.2, Proof of part (2) of theorem 2

Let u be a solution of (P). We first give a formal

en;)ugh. We then shall justify the calculations.
ntcegratmg on B, = B(0, 1) the relation ~Ay + 4

SES
5, dn L u
We set i
1
W(t) = el f
and obtain: ¥

_tn—I W’(f) +f u®

lim sup R“”*@“/l‘cﬂf fdx<e¢, =31 4
1s
Bg

1) of theorem 2.

proof, that is assuming that y is regular

= f, and then integrating by parts, we get:

=Lﬁ (17

udo,

=ff?“ (18)

Cas

|
|
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Integrating between 1 and r = 1 and then integrating the first term by parts yields

j dtj f=< f dtj W ¥ (n - 1) J 72 () + w(l) — F= 1 wlr). (19)
1 B, 1 B, N
Thus, we have to estimate w(r). Using again (18) and integrating between 1 andr =1 yields:
rodf
wi < [ 2 [ w e wi. (20)
i B, :

Thus, by the Holder inequality:
r dt 4
w(r) = iS1|1‘“f o J " w(r)® dr + w(l),
1 0

where |S;| = [5, do. Then, for r 2 1:

w(r) = |81~ [r f w(r)® dr + rr ! w¥(t) dr] + w(l),
1 0

that is, again by the Holder inequality:
w(ry = C,r¥ (j w(T) dr) + Cyr, (21)

i

where C, only depends on # and «, and C, is independent of r.
Set z(r) = a(b + r)#1=2*1, where '

. 2 _ p —a
a(l*i-l—_a)—cla (2+1_a) .

One sees easily that for b large enough one has: '
7= Cr e (z2(r)* + Cor,  r21

2'(1) = w(l).

We conclude that z(r) = w(r), Vr = 1. Returning to (19) we make the same calculations as
for obtaining (21) and get:

Jr dtL f=Cirt ™ (Jr w(T) d*.L")ﬁIf +(n—1) Jr "7 2w(d) + G,

1 1
and using w(r) = z(r) we deduce that

f dtj f= Cyb+ r)"“*a"/l"") +Cs, (22)
' B,

where C, only depends on & and » and C; is independent of r. But the function t— [, fbeing

nondecreasing, one has:
r r
dt f f= —J f,
1=

B

forr=2. (23)
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We conclude from (22} and (23) that:

lim sup r‘”*(z"/l‘“)f f=ec,,

F—>oo B
i depending only on o and 5.
To justify the caicula

tions above, it is enough to have y € ¢!
case, but let g, be a se

Quence of mollifiers. One hag

_A(u*¢k)+u“*¢k =f* @,
and u*(pkEC”(R”),

UK Q> u®  n L.

f*(p»’c%f inLlloc
uk*@,—>u i Wkl and

then: u * @y

in L1(8,) for any sphere §,.
The relations (17), (18) have

OW a sense with u # @ instead of u; u® % @ iﬁétéé_d of yv, - .
f* @ instead of /. Then (19) and

(20) are justified by letting £ — + o apq using (24). -
4. A GENERALIZATION OF BREZIS’ RESULT [1]

‘R—=Rbe continuous odd function, convex on R* and verifyin
g

g(s)s =0, Vs ER. (23)
o dt 5§
f G2 <% where G(s) = f &(r) dr. (26)
G(t) 1/2 A
Then for any fe Ll

(R") (n=1), there exists 2 unique function 5 solution of

“Autgyy=f in D' (R)
- 27
u€ L (R, glu) e L (R"). @
Moreover, if f=0 a.e.,then u=0 g0,

As in Brezis [1], the preceding result capn be generalized in the following way.

THEOREM 4. Let 4 - R*"XR—R be a Carathéodory function such that

h(x, 5) sgns = lg(®)|, vse R,

a.e.inx € R,
where g verifies the assumptions of theorem 3, and:

28

sup lh(x, ) € LL.(R")  for any tin R,

(29)

N W2(R"). This is not the

901
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Then for every f € LL.(R") there exists at least a solution of
en c solution

' —Au+h(-,uy=f in@ (R, 30)

1 € Ligo(R"), 2(-, u) € Li(R).

i i in [1].
We omit here the proof of theorem 4, which essentially is the same as in [1].)
{We omi

b g ? g( ) ? g n nfy (26) 3 -

jm U g() dt) - ds = o, G
0

Then one sees easily that for any u, > 0, the O.D.E.
o —~u'+gu)=10
u(0) = ug, ' (0)=0

v n l l »

. ing theorem 3 ' LYBy) and
4.1. A I(;cai ei{g?iggi jf“;r tﬁre Ozézgmptions of theorem 3 and 0 <R < R'. Let f€ L'(Bg)
LeMma 2. Le ‘

€ L},.(Bg) such that o
“ € Ll B —Au+g)=f in%'(Bg) (32)
g(u) € L1 .(Bg).

Then:

[ wi=c(i+] 1) ()

Br Bp
where C only depends on g, R and R’.

i i tool of Baras and Pierre [2]
= |u|*! > 1, the proof in [1] is baged on a of B ] te 2]
. tl}lf"(l:gse’f(iﬁzzczulabllilty r}tﬁewfoﬂowingliemma will provide a generalization of this tool to
using Holder ality.
class of convex functions.

i on R* and verifying g(0) =
. + continuous odd function, convex ) 20,11,
Lemua 3(';‘6'[(% ;E;;Z iiRt <b oeo alThf:n for any C > O there exists a convex function ¢ € C%([0, 1}
Gand [ (J§ g(s , :
R*) verifying ¢(0) = ¢'(0) = 0 and

34)
(o) + 9'(9) =580 93) +2 (

for any x €[0, 1] and ¢ € R*. (¢ depends only on g and C.)
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Proof of lemma 3. Set:

k(y) = [ - (2977
§ ) =|g (y )J fory >0 andk(0) = 0.
¢ seek for a solution of the Cauchy problem:
') =ke(), @) =g (0)=0,
¢(x)>0 forxe€]0,a], a>0.

Such a nontrivial solution exists since (26) implies

[([ka) “a<e

Indeed, (37) allows to define a solution (@, @) of (36) by:

J'ﬁﬂ(x) (J’! ~1/2
k —
: : (5) ds) di=V2x forx€[0,a], with

® = min (-% fﬂl (J: k(s) ds) o dt, 1).

(For a proof of (26) = (3
7
By (35) one has (37), see lemma 4 below.)

ko) _ 1 8(U/k()
| y AC 1/k(y) °
and, since t— g(r)/t is nondecreasing we get:

“(y) ]' g(t) +
—_—
y = C t for anyi, y € R such that l’k(y) = 1.

Thus,
th(y) = 1 "
| ¥ \4Cg(t)y+1 foranyt,y = 0.
Setting, y = @(x) and using (36) yields
9"() < 1o
< 4cg(t)(p(x) +1 forx €0, a).

Extending ¢ to [0, 1] by:

P =9(e) + (- Wg'(@) + E2L gy

we get:

i’ 1
tp'(x) 4—6g(t)q3(x).+ 1 forxe]0,1].

(38)

(39)

" For any v € @(Bg) with ¢ = 0, we then

The eguation —Au + ety =f for0=sa=<l 903

Note that " is nondecreasing on [0, 1]. Thus

P =[ POasgE frzell
0

and, therefore, (34) is a consequence of (39).

Proof of lemma 2. Multiplying (32) by sgn u and using Kato’s inequality we get:

~ Al + gl < U (B

have:

[ waw | lwivs] v (40)
Br Br Br

ains true as ¥ € C(Br) and 3 = 0.

@ is given by lemma 2 and 9 =1 on Bg,

By a density argument, {40) rem
_Applying now (40) with @ © v instead of ¢, where

0= =1in Bg. We obtain:
[ m@wive + e msn + |

"Bp B

swip(w) = | o)

Thus, B :

[ e =c| W@m e lew
Br . By Br

where C only depends on . Using (34):

[ swiemwn =t gl + G +C: [ I

Br By B
where C, and C, only depend on ¥, R, R, g.
The use of (28) gives finally (33). (Note that i may be chosen in order to depend only on

Rand R".)
It remains to prove the relation (26) > (37):

LEMMA 4. Let g : R — R* be a continuous convex function and k : R* — R* defined by k(s) =
[gY(c/s)] ", where ¢ is some positive constant. Then

J,m (J.[: g(s) ds) -1/2 dt <« implies J;’ (J: k(s) ds) "2 < e,

Proof of lemma 4. g and k being nondecreasing, one has

%g (%) < J[: gls) ds < 1g(0)



904
T. GALLOUET and J.-M. MoOREL

and the same inequalities for k. Thus

fw(L!g(S)dS)_mdt<oo©Ft—f/zg%fﬁ<oo, (41)

and

t -1/
f (f k(s)dS) dt<oo©J_l__ dt )
0 Vo PR ST ) ey <

[s /0]~ c iy

S| Frr—<w» g (u) 1

L 1Y/ < J‘ g(u)m < (Where t= @)
du

S [ - 2ulg(u) 1]~ + f"
A ! gl =
(integrating by parts).

Since g is convex is i . w
. +gw‘ » (8(9))/tis increasing, and then f* ¢~1/2g(z) 12

Thus,

< oo implies (g(£))/1—> + 00"

[~ 2ul?g(u)- 1] + f_du_ - f du

u1/2g(u)1/2 <™ ullzg(u)lf_z < 0o,
This gives lemma 4.

4.2. Existence of solutions for theorem 3

The proof is now the sam i i
: € as in Brezis [1]. Instead of th —Pi i
lemma 1. So we just recall the main steps of]the proof. © Baras-Pierre estimate, we use

(1) For any n € N* there exists u, € Wh1(B,) solution of

—Auy, + g(un) =f in@’(Bn)
§(un) € LY(B,,). }

(This is proved in [11].) E [
(2) By lemma 2, (g(u,)), is b i

1 (BN s 1))y 18 bounded in LL (R™) and then A i :
Lioc(RY) (indeed, |g(#)| = &t| for some £ > 0 and tlalge enouegrlll) %siilédt;g szrriebggggg s
. as

in [1], we conclude that u, —> 1
ong - and g{u,)— i i
of (30). This gives the part “existencig’ o)f thc;g(gfe):rflog some it 1 Lios(R?). Thus, w i solation

=2Rp

(i) uRGCZ(BR) uR>0 UplX)—
R > =, + >
(i) uz—0inLE(R") as A PO
(iii) — Aug + g(ug) = 0. ’
P — /3
roof. Set H,,(u) = [i, (G(&) — G(ug)) ™ dr, where G(r) = [4 g(s) ds, and
Uiy (2) = HH(V2|x]),

The equation —Au + [ lu =f, for 0= =1 005

with
R{ug) = Jw (G — G(ug))'l‘(2 and ug > 0. (42)

One sees casily that — Auggq + §(tiry) = 0. Since g is convex, {2 G() V2 dt = + =, and
therefore R(ug) — = as uy— 0. Thus, we may define uy for any R = Ry with R, large enough.
The property (i) is clear, and to prove (i), note that

V) = f (Gt} - Glug)) e for R = R(u). (43)

ug

" As R— + », onc has by (42) uy— 0. As 1y— 0, (43) shows that ug(x)—0 uniformly in x

as x remains in a bounded set.
(2) If u is a solution of (27), then f= 0 implies u=<0.

Proof. Here again we follow the method of [1], using the comparison functions constructed
in lemma 5.
One has by (iii):
—A{u —ug) +g(u) — glug) <0 inBg.
Thus by Kato’s inequality
— Al —ug)t =0. (44)

Again by Kato’s inequality, we get _Au* =0 from —Au* + g(u)*t <0. That implies
u* € L2, (R?). Then (i) yields (u — ug)™ = 0 near dBg, and this jointed to (44) gives u = ug
a.c. By (ii) we obtain u =0.a.c.

(3) The solution u of (27) is unique. Let u and v be two solutions of (27). Then
~A(u— v) + g{u) — g(v) = 0. Thus by Kato’s inequality:

— Alu— o] +[8) - g(0)| = 0.

Note that if & and v have the same sign,

v lo—u)
2w~ g0l =| [ le@le= ] B O1e=glo —ub.
[ ¢

[ (5]

and if uv = 0 and, for instance, |} = [ul:

g(v)| =g (&;M)

lg(u) — g(0)| = lg(w)| + [g(v)| =
We then get: |g(w) — g(0)] = |g{(u ~ v)/2)|, Yu, v € R. Thus,
—Alu—vl+g ('u_;_v’) =0.

By the preceding result (2) applied with the function 1— g(1/2), we get |u — v|=0, thatis
U=y a.e.
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5.RE
M{\RKS ON THE BEHAVIOUR OF POSITIVE SOLUTIONS OF (1) AT INFINITY
We.: saw in t‘heorem 1 that if (1) has a positiv
solution. An interesting question is as to wh
from the others by its behaviour at infinity. (That is the case if o

e solution for f = 0, it has also a minimal positive

= 1.) We first give a positive

answer to thi i i infinity i
his quest}on as the behaviour of f at infinity is suberitical (i.c. f (x)]x[2efl=e) — gy - .

THEOREM 5. Let u be the minimal positive solution of (1) for some f= 0, and assume théf

el 0= u(x)| >0 as [x]— + oo, cR

Then for every other positive solution v of (1) one has:

: —n—{(2/1—a
hrlgﬁlipr @/1-a)) fB o> 0.
Remarks. (1) If x|~ C/1~9Dfx) > 0 at infinity
structed in the existence proof of theorem 2, an
|70~ 9y(x) — 0 as [x| — + . Thus, as ’
of the minimal positive solution of (1’).
(2) If instead of [x|@1=®y(x) = 0 one only has
4 seems to fail. s

one sees easily that the supersolution .c.(')n:-"

Qi) ¢ 5, u— 0, the result of theorem

LEMMA 6. et we L

(1 ifvi a . I
only on « such that: o (R™) verifying |Aw| =< w?. Then there exists a constant C depending

Yaz=0, (lim sup 5~ /1=e)=n f

r—s 400

wsg=> ]frln sup [x| "= ywi(x) < Ca).

B, x|—> +

Proof. Assume that linr1_> sup rr@M=an [y < g Then for r = ro large enough one has

- @f-a)-n
L, iw=a. (45)

Set now u,(x) = r~1=2) y(rx). Then one sees immediately that u, verifies:
|Au,| <u? and f U, <qg
o (46)

Using classical interior estimates and a strai

that: ght bootstrap argument, the relations (46) imply

Jae, | L8y = Ca, with C depending only on «.

Thus, for |x| < 7/2, u(x) = 72/(1‘“)u,(x/r) < (g p2a-a)
We conclude that u(x) < C2H-®)g| x| 21 '

p -
u(x)rjicl){ (Z/c(;lf_affzfrgm 5. Let u be a minimal positive solution of (1) such that
as |x|— + 0, and u + w another positive solution. Thus

Aw = (u+w)“-—u“20. (47)

ether this minimal solution can be distinguished |

d, therefore, the mini 5 g
el () g mmal solution i, verity.
» We get a simple characterization

e
ol

The equation —Au + jul* u=f for0= o<1 907

Assume by contradiction that pr@U-ad-e [ w—s 0 as r—> + .

Since (47) implies | Aw!| = w?, we obtain by lemma 7 that x| " -2Dyw(x) — O as |x|— + .
If a, b = 0, one verifies easily that therc exists a constant C depending only on « such that:
(a + b)* = Cinf(a® b, b). |
Applying this relation to # and w and taking into account that u(x)x|"@1=*» and
wix) x|~ @02 — 0 as |x| — + =, we obtain:
Ve>0,r, |x|=ro>@+w)—u*=Ce! x| 2w, (48)

In what follows, we make formal calculations, assuming w as smooth as necessary. We shall

o justify them later. Integrating (47) on B, and using (48) yields:

j 9‘1;] (u+w)w—uW+c£*1f x| 7 w. “49)
aB, dn By

BpBr,

Setting Co =[5, (u + w)* —u*> 0 if rp is large enough, we get

rn—l E ( nl—l J' W) = C{) + CS_l j lx!—zw' (50)
dr \r s, BAB,

‘Set Ww(r) = J w. We obtain:

n—1.
¥ s,

I () = Cole) + Ce™! J' 3w dt forr = ry(e).
. o

By Gronwall’s lemma, this implies that for any &> 0, F5w(r) — + w0 as r—> -+ %, which
contradicts the assumption jx|~ &1~ Mw(x) = 0 as x| — + .

We now justify the above formal calculations: as in 3.2, we can use a sequence of mollifiers
@ : we can write relations (47)~(48) with w * @, instead of w and ((u + w)* — u®) % g, instead
of (u + w)* — u®. With these modifications, {49) and (50) remain true. Call (50), the modified
relation. Let now k— + =. Since w € Wi (R"), wE€ A.C. (R*, R), and passing to the limit
in (50); vields (50) in the classical sensc. :

The following proposition proves that if f has the limit behaviour at infinity which ensures
existence of positive solutions, the result of theorem 4 is not available.

PROPOSITION 1. There exists two positive constants a and b such that every positive solution
of

__uﬂ + ua’ — cr?-a(l_“) (51)
verifies
a < lim sup || ~®0-D u(r) <b. (52)

Proof. (1) By theorem 2, (51) admits positive solutions for ¢ small enough. Thus the

preceding proposition is nonempty. Assume now by contradiction that the left inequality in
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(52) is false. We get

tim sup |r| ~@ - u(r) = 0,

and by (1) : &'(r) = — 1" a5 r— oo, This implies u < 0 for  large enough and yields a )

contradiction. . .
(2) From (51) we get u” < u®, and this implies easily the second inequality of (52).

Acknowledgements—H. Brezis introduced us to this problem and suggested most of the results contained here. We

thank also F. Mignot for helpful conversations.
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APPENDIX
In this appendix we prove several lemmas used in the preceding sections. Let n 2 1.

LEMMA A.1. Let © be a bounded regular open set of k" and let u € W-Y(Q) be such that u =0 a.e. on 3Q (in the
sense of traces} and Au € L'(2). Then there exists , € @{(Q) such that u, < 0on dQ, uy— uin LY(Q) and A, — Au
in LY(Q). _
Proof of lemma A.1. Let f, € C*(Q) and g, € C*(9Q) such that
fi=2f=—Au inLY(Q), ask— +o,

B> E= Uy INLY3Q), ask— + o,
There exists 1, € C7(RQ) such that
—Au, =f, ongQ,
Wy =g, on .

Step 1. Estimates on ;.
Let 9 € W*¥(Q), ¢ =000 dQ (1 < g = + =), One has

]
J'f;(tpd.xz*f AukrpdefJ ukAcpd.x+J’ gkﬁdo.
2 Q ' o m On

S ¢
e (where C denote some “cO

- BARAs P. & PIERRE M., Singularités éliminables d*équations elliptiques semi-linéaires, Ann. Inst. Fourieff:_({o :

. D1az-D1sz J. L, Solutions with compact support for some degenerate parabolic problems, Nonlinear An&ly@is_ 3, i

- AGMON §,, DOUGLIS A. & NIRENBERG L., Estimates near the boundary for solutions of elliptic partial diff-erc.in_'_t'ial S

1 90%
iy = wa=l
The equation — A+ e =, for 0= &

Then +j . aida_ (AL}
J ukAwdx=‘Jgfk¢dx o kan
Q
h that
Let g E1(€2), there exists ¢ € W) (LS g <t @) e
_A(pz'l,‘) on £ (A?')

q):O onBQ,

andfrhermore e s (6 B s = Clol =

i Q and g)- :
nstants” only depending on 2 an
Taking some g = i W& conclude (using the Sobolev injection theorem)
aking

Joll. = Clle

o] <

Then (Alj.' gives, for all € L7(R) |
[ e s = s + el

Q

i g s = CUlfll + lgelio)-

in LY{Q). Then
y we conclude that {u;, kEN}isa Cauchy sequence LYS)

From this inequality (with w — Hg i{l(sst_ze;ld of u,
there exists v such that i, v 11; 2): |
Step 2. We show that v =u a.¢. W) and Acy— Av in ;

. T e Q2 = 69, one
t — D 1 1(9) Fo @ 2( )Sllch that (p 0 on
le U EQ s! SllC]l tha U 1D

k ( )

has y J 3
== - dx — Avk(p .
f'[ Agu,dx= Lg anuk .
Q2
i de by letting k— + = that
in L d vo—> g in LY(9Q) (since v,—~>u 10 whi(Q)) we conclude by
Since —Av,—>fin L () and v - .

_JAq)udx=[ﬂpdx—J‘ angd'x'
o a aa

_» p in LYE) we also have

3@ dx.
[vAmdxz—Jf¢dx+J‘ = & 0¥
Q :1e]

Q

In (A1), let k— + Since -

d (Ad) give: {A5)
(A3)aﬂ ( J (ufu)Aide:O

Q

O i =0on a8, _
for all @ & CHQ) with ¢ = @) such that
s @ £ C(Q) s
Letwe@(g).Thereemssq? A=y on Q

p=0 on a2
and, therefore, u=1v 3.,

2),
Thus (AS5) gives [o (1 — p)yde=0forall y & @)
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Lemma A2, Let © be a bounded regular open set of B*. Let u € WHY(Q) be such that u<0 a.e. on a2 and

—AuELYQ). Let PEC' N L%R), P=0on R, P = 0. Then one has

f ~Au P(u) de = 0),
[+

Proof of lemma A.2. By lemma A.1 there exists {uy, k € N} C B(Q) such that

Uy —> i in LY(Q) a5 k— 4w,
—Aup——Auin LY Q)  as k— + =,
<0 on a€2,

We cleariy have

J — Auy P(n,) = f 92 l? P(1y) de 2 0,
o3 Q

We can assume (after extracting a subsequence) that
u; >y a.e.
—Au, — —An ae.
lAug =g ae., withsome ge ().
By the dominated convergence theorem we conclude that

f — Au P(u) dx = 0.
Q2

For e, b €ER, we set Qfa, b) ={a < x| < b}.

Lemma A3, (Compact support lemma—cf. {12, theorem 6.1] and [7).) Let 0< o< 1. Forall 0 < a < b and for all
& >0, there exists C(z, &, b) > 0 such that if .
fE LI, £0, Suppf € ©a, b), [ far = Cle, 0,b), ®
then the problem '
—Au+ut=f in D;RY P
uEL‘(R"),uaO,SuppuCQ(afe,b-!-e) ®)

has a (unique) solution.

Proof of lemma A3. Let 0<a<1. We prove lemma A.3 with, for instance, g = 2, b=3, and some 0 < e < 1.
(This case contains all the difficuities.)

We set Q =Q(2,3), B={1<|q) <4} and @, = Q@2 — 5,3 + £),
Let f& LR, =0, SuppfC Q and u be the unique solution (cf. [10]) of

—Autut=f @’(B)}

. (PU)
wEWy(B), u=0.

Our( aign is to prove that for [ fdx small enough one has Supp 1 C Q.. We then obtain of course a (unique) solution
for (P').

Step 1. Estimates on u. One has (cf. [10P) f, u® dx < Jpfdx and then [z|Au/dx < 2 [z fdx, this gives for some C,
(only depending on )

f.udxsclffdx. (A)

B

G ical ? tgivesu € W
Since Au = u® on BvQ, a classical “bootstrap™ argument g

f 911
The equation —Au + jul* 'u=F for 0 sa=1

42(B\2) (and then, taking p > 1, u € CHBQ)).

e 4 i h that
Let 1 < R, < R, <2 <3< Ry < R,< 4, Then there exists C, {only depending on n, Ry, Ry, Rs, Ry) suc
1 2 ¥

Sup{u(x), Ry <[ <R; or Ry<i|<RJ=Ce Lfdx.

i =4 — gfd.
In what follows we take R, =1+ &/4, Ry =2 = ¢/4, Ry =3+ o4 R /

2. mates onR JUPpp u. In this Step we construct o Rz} al 3 < adlﬂ! comparlson
S FEsti S h § ct on {1 <Xl = n{l {12 = jx < 4} some 1
ep

functions.
’ Let M, = Max{u(X), kxi = Rah
One has, by step 1,

My=C, | fx
B

| We set, for some A >0 and Rs = R, — ef4=2—gf2,

p() = Ax] - Ry~ it Rs=hl=R,

v(x) =0 if 1=|x|=Rs;,
an eaéf calculation yields )
21+« ra-)
—Av(x) + vo(x} = (A“‘ —A 1= a)z) (%] = Rs) &
- é-(n - 1) 2 (Jxj — R)Erei-« if Rs=< =R,

ix‘ 1-a

~o if 1< lxj=Rs.

Since R~ Rs<land0<a < 1 one has

I+

L~ R0 == (] < R0 i Ry < B = R,
5

that is

1+a) 24(n-1) _Rol-® )| i Rs <l <R
—Anfx) + vo(x) = .(A"‘ —A ((1 —ar (- a')Rj) (I - Rs) ) !

Taking A = A4, > 0 smail enough (A, only depends on n, @ and £) one has

A7
—Ap+wp*=0 on 1= =R, a7)
Taking also
jfdxsiA (R, — Ry = CF >0, (A%)
B G
one has (A9)

u(x)s_Mlsczj‘fdxév(x) if |x =R,

(A7) and (A9) then give:

u—p€ WH(1 << Ry)
a—p=0 on {x=1U{kl=Rs}
Thus, by lemma A.2, ong has for PE LRy, P=0onR,P>00n R*
J (u*—v*) Plu—v) =0

1<d <Rz

—Alu-vy+u*—p" <0 on l<|x|$Rz}
P =0

This proves u(x) < v(x) if 1 < |x| <R,.
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¥ a similar method (a little bit g =R;=2 - ¢/ .
\ ¢ bit simp] X
that if pler) we prove that there exists CX% :
£ 7 >0 {only dependin,
g on s, &

fdx=Ch*
L ¢ ANALYSIS OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS

ARISING IN AGE-DEPENDENT EPIDEMIC MODELS

then

ux)=0 if 3+¢2=R, =<
Hence, if f satisfi is i e
f ss (A8B) and (A10) (that is if [5 fdx < C, = Inf(Ck , Ck* )) one has

. - SuppuC Q, =Q(2 —¢,3
This proves lemma A3 fora=2and b =3 (2—-e,3+5¢).
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1. INTRODUCTION

BASICALLY, there are two modes for directly transmitting an infectious disease within a single
population: vertical transmission and horizontal transmission. Vertical transmission is defined
as the direct transfer of infection from a parent organism to its offsprings. Horizontal trans-
mission is any transfer of infection except that which is vertically transmitted. For example
AIDs is both vertically and horizontally transmitted while malaria is horizontally transmitted.

Vertically transmitted diseases have seldom been considered in mathematical models of .
epidemics. Examples of previous such models are found in Anderson and May [1], Cooke and
Busenberg [7], Busenberg and Cooke [3], Busenberg, Cooke and Pozio [4], Fine [10] and
Re’gniere [17]. E '

Likewise age-dependent diseases has been presented by Cooke and Busenberg [7] and Dietz
[8]. Age-dependence introduces a coupling of age-structure and vertical transmission which
can produce novel dynamic behavior. :

In this paper, a system of nonlinear integro-differential equations which model an age-
dependent epidemic of a disease with vertical transmission is investigated. This model treats
the simple S — I type of epidemic in this new seiting. Existence and uniqueness are proved
ander suitable hypotheses and the asymptotic behavior of the system is determined. A renewal
theorem is used to study the behavior of the model equations in various pertinent parameter
ranges. A numerical method for integrating this system of equations is developed and is used
to obtain approximations of its solutions for some special cases which illustrate the results
obtained via analytical means. Moreover, numerical integrations of the equations are used to
study some phenomena that were not treated analytically.

2 A MODEL OF A VERTICALLY TRANSMITTED DISEASE

Consider an age-structured population of variable size exposed to a disease which is both
horizontally and vertically transmitted with the following assumptions on the model.

(a) Let s(a, #) and i(a, 1), respectively, denote the age-density for susceptibles and infectives
of age a at time . Then

o)
J s(a, t) da = total pumber of susceptibles at time 7 of ages between a, and 4;.

a1

i
J‘ i{a, £) da = total namber of infectives at time ¢ of ages between 4, and a,.
ai
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