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1 Introduction

In this paper, we prove that the W' P-estimate, p > 2, of any solution to the Dirichlet problem for a
linear elliptic equation with discontinuous coefficients, due to N.G. Meyers [12] can be generalized to other
boundary conditions, and for an open set with a Lipschitz continuous boundary. For regular operator in
Lipschitz domains, G. Savaré obtain optimal regularity results in [14]. In [9], Konrad Gréger shows the
result for a mixed boundary value problem, by using a fixed-point technique (he cannot mimic Meyers’
proof for he’s interested in monotonous non-linear operators).

Our proof works differently and very simply. The technique is to reduce the problem, by using local
coordinates and reflection arguments, to a Dirichlet problem in a ball and to apply known results.

This paper is organized as follows. In section 2, we introduce our notations and recall Meyers’ Theorem.
Section 3 is devoted to the study of Neumann problem. Section 4 is devoted to other boundary condition,
mainly Fourier condition and the mixed boundary value problem. The last section is about an application
of our main result, namely, the uniqueness (up to a constant) of the weak solution of Neumann problem
for a linear elliptic equation, in a bounded connected open set of IR?, whose right-hand side is a measure.

2 Definitions and Preliminary Results

Let Q be a bounded connected open set of IR, N > 2. IR" is considered with its euclidean norm,
denoted |.| and . denotes the inner product. We consider the following linear elliptic equation

—div(A(z)Vu(z)) = f(z), » €Q, (1)
where A is an element of (L°°())V*¥ which satisfies the following condition (ellipticity and bounded-

ness):

Ja,8>0 such that V& € RY, al¢]? < A(x)é.€ forae z€Q, and ||A|e <3, (2)

and f is a given function. We start from the following result, due to N.G. Meyers [12], for Dirichlet
problem; if the boundary of € is smooth enough.

Theorem 1 (Meyers) Let Q be a bounded connected open set of C?-class and A in (L°°(Q))N*N satisfy
(2). There is a real number py, po > 2, such that if u is the weak solution of (1), v.e.

ue Hj(Q),

/n A()Vule) Vip(e) de = (f, @) uor ¥ € HL(Q),

and f belongs to W=17(Q2), p € [2, po[, then u € Wol’p(Q) and there is a C(p) such that
lullyyre < C@)IFllw-1r-

Moreover, py only depends on A and Q and C(p) on A, Q and p, not on f.



The proof of this theorem uses a regularity theorem of Agmon-Douglis-Nirenberg (see [2] and [3]), and in
particular the open set needs to be regular enough (of C*-class is sufficient). Here, a simplified version of
this theorem is only needed thereafter, the open set considered being a ball centered on zero with radius
R > 0. Indeed, for an open set with Lipschitz continuous boundary, we use local maps and reflection to
get back to a Dirichlet problem on the unit ball. Furthermore, our method works also for a large choice
of boundary conditions. So let us recall a definition of an open set with Lipschitz continuous boundary.

Definition 1 Let Q@ C IR be a bounded open set. Its boundary 82 is Lipschitz continuous if, for all
a € 0L, there exists an orthonormal coordinates system R4, a neighbourhood of a, V = Hf\il]ai,ﬁi[:
V'x]a, B[ in these coordinates, and a Lipschitz continuous function n: V' —]a, B[ such that

VnQ=A{W,yn) €V |yn > )},
VNno={ny)), vy eV'}

With this definition, we can prove the following proposition, where B = {z € R, |z| < 1}.

Proposition 1 Let @ C RY be a bounded open set with a Lipschitz continuous boundary. Then there

exists a family (U, Uy, ..., Uy) of open sets of RY, satisfying
k
QclJu, Thcq, (3)
=0
and (J1, ..., Jg) functions such that fori=1, ..., k, J; : Uy = B is an homeomorphism, J; and Jz-_l are

Lipschitz continuous and

Ji(U;nQ)=Bn {2, zn) |m’E]RN_1, zy >0} = By, 4)
Ji(U;ndQ) = BN {(z',0) | ¢’ e RN "'} = BN-1,

Remarks:

1. This definition of Lipschitz continuous boundary allows us to define properly the outward normal
of €2 and to integrate on the boundary. That is actually necessary in section 4 for the Fourier
condition.

2. Because the Rademacher Theorem, it is possible to make a change of variable with Lipschitz con-
tinuous functions. Indeed, if J is a Lipschitz continuous homeomorphism, mapping an open set U
onto an open set V', the Jacobian matrix of J, denoted DJ, is defined almost everywhere and we
have the classical formulae of change of variable (see [4] or [7]).

Moreover, if J~! is Lipschitz continuous too, the operator T : Wh* (V) — WP (U), defined by
Ty(u) = wo J, is linear continuous. The norm of T only depends on the “Lipschitz contents” of J
and J~! and N.

N
Let us finally set p* = % P

if N >pandp" =c0if N <p.

3 Meyers’ Theorem for Neumann Problem

Let © be bounded connected open set of IR™, with a Lipschitz continuous boundary. Let us consider the
Neumann problem for the equation (1) where A satisfies conditions (2).
Define

HYQ) = {ue Hl(Q);/ﬂu(x)dx — 0}



A weak formulation of this problem is expressed by

u € Ho(Q),

LLfM@Vu@)V@@ﬁdx:<ﬁ¢NmyﬂgV¢efﬂGD, (5)

where f is in (H'(€2))" with (f, 1)(g1) g2 = 0 (note that this condition is necessary to obtain a solution
of (5)). By the Lax-Milgram theorem and the Poincaré inequality with a null mean, there exists a unique
solution w in H!(Q) to (5).

If f belongs to (Wh%(Q))’, with p > 2 and ¢ = p/(p — 1), there is u in H}() solution to (5) (indeed
(WHe(Q)) C (H())"). The following theorem improves the regularity of u.

Theorem 2 (Meyers Neumann) Let Q be a bounded connected open set of IRY, with a Lipschitz
continuous boundary. Let A in (L°°(Q))N*N satisfy (2). For p > 2 and ¢ = p/p— 1, let T, be the
operator defined by T,(f) = u, for all f € (W"9(Q)), with {f, Dy g = 0, where u is the unique
solution to (5). Then, there is a real number pyr, 2° > payr > 2, such that, for all p, 2 < p < pm, the
operator T, is linear continuous from (W(Q))" to WLP(Q). Moreover, the norm of T, only depends on
p, o, B and Q and ppr on «, B and 2, not on f.

Proof. Let p be fixed as greater than or equal to 2 and less than 2*. Let f € (W14(Q))’. As previously
seen, we can consider u = 7p,(f). So, u belongs to H! ().

Step 1 (Localization) Let us now consider a set of local maps, given by the proposition 1. We associate
a partition of unity (#;); to the open sets (U;)i=o, .., &; that is, functions bq, 61, ..., 8x of C*° (IRN) such
that

k
0<6;<1,Vi=0,1, .., kand Y 6;i=1on0,
i=0
and
supp#; is compact and included in U, Vi =0, ..., k.

Let then
U; = Qiu.

For all ¢ € H(Q), u; satisfies

/AVui.Vgo de = /@AVU.V@ dac—l—/ uAvVE; Vo de
Q Q Q

/ AVu.(V(0;p) — oV0;)da —I—/ uAVE; Ny dx
Q Q
= <92f — le(uAvgl) - AVuVGZ, 30>(H1(ﬂ))’,H1(Q)

where (0; f, ) = (f, 0;) and, if a function F belongs to (L%)", let

<_diV(F),¢>(H1(ﬂ))l7Hl(Q) :/QF(Z‘)VQD(l‘)d:L‘

To define properly a linear form f; on H(U; N ), let us consider a function v of C° (]RN) such that
suppf; C suppy C U; and y(z) = 1 on suppb;. For all function ¢ in H'(U; N Q), we define f;

(fis @) .nay)y mr (Uin) = (0 f — div(uAV0:) — AVu.V 0, v0) 1))y 11 (9),

where vy is the function extended by zero on Q. So, we have got for all ¢ € H'(U; N Q)

/ AVu; N de = (fi, ) (a1 (v.na)y B (U:00Q) -
UinQ



Of course 6; f is in (WH4(U; N Q))" and we have 10: fllwray < Collfllway-
If u belongs to H' (), then AVu.V#; belongs to L?. According to Sobolev’s injection theorem, a function
L? is also in (W149)" if ¢* > 2, i.e. p < 2*. By the continuity of the Sobolev imbedding,

||AVU.V€,’||(W1,4)/ S Co||u||H1 S Cl“f”(ﬂl) S CZHfH(Wl)q)"
In the same way, div(uAV6;) belongs to (WH4(U; N Q)) if uAVE; is in (LP)N (i.e. p < 2*), and
Idiv(uAV )] < Chllull ey < Collulli < Col iy
Finally f; is in (WH4(U; N Q))’ and there exists a real M; positive such that
il wray < Mill fllowray

Interior estimates. Consider first ug.

Let Bg a ball with radius R large enough to allow Uy C Bg (€ is bounded...). With the function v used
before we can also extend f; on Hé(BR). We extend ug by zero outside Uy. Then, ug is a solution of the
following problem

/ AV ug. Ve dl‘I<f0,§0>H—1(BR)7Hé(BR),VQDEHé(BR),
Br
up = 0, on OBR.
Note that fo is in W~1?(Bg). Hence, according to Meyers’ Theorem, there is a 2* > py > 2, such that,
if p € [2,po[, then uy € Wol’p(BR), and even in Wol’p(Uo), by definition of §y. Moreover, there is a real
positive Cy(p) such that
llwolly e < Co(P)| followray < MoCo(p)[| fllw .y,

Co(p) and pg only depends on a, 3 and €2, not on f.

Estimates near the boundary. Let us now consider v = u; and g = f;, for a fixed i. We will avoid
recalling indices ¢ throughout this proof. As seen previously, v satisfies

/ AVo. Ny de = (g,0)(m wna)y,mUng), Ve € H' (UNQ),
UngQ
where the mapping g is an element of (W14(U N Q))’ (where ¢ = p/p— 1), as soon as p < 2*.

Step 2 (Transport) Now, we make the change of variable y = J(x), where J is the Lipschitz continuous
function given by Proposition 1. Let H = J~!. DJ (resp. DH) denotes the Jacobian matrix of .J (resp.

H), i.e. the matrix with general term 0J;/0x;. UAL denotes the transpose matrix of the matrix M. Let
w(y) =vo H(y), forallye By ={z € RY, l¢| < 1, zx > 0}. Let ¢» € HY(By), and ¢ = ¢y o J. Then,

Vo(z) = 'DJ(2)Vw(J (2)), and V() = DJ(2)V(I (2).

Hence,

Il

A()DJ (2)Vw(J (2)). 1D (2) Vi (J (2))
DJ(x)A(x)tDJ(x)Vw(J(:E)).V¢(](m)).

A(2)Vo(z).Vo(z)

Let

A(y) = |det DH (y)] DJ(H (y))A(H ())'DJ (H (y)). (6)



According to the formulae of change of variable, we have

| @V Te@ de = [ AT Vi) d

B+

The mappings J and H both are Lipschitz continuous, hence the Jacobian matrices and |det DH| are
bounded with respect to the supremum norm. Hence, the matrix A is in (L (B4 ))V*N.

A also satisfies the uniform ellipticity condition. Indeed, there exist reals m, M such that
m < |det DH(y)| < M, a.e. on By
and
mle]? < |'DJ (H (y)E]* < MIE[* ¥ € RN, ae. on By. (7)
Then, for all ¢ € IRY and almost everywhere on By, because

Aw)e€ = |det DH(y)| DJ(H (y)) A(H (1)) "D (H ())& £
[det DH ()] A(H(4))'DJ (H (1))¢.'DJ (H (1)),

there exist o’ and §', only depended on «, 8, m and M, such that A satisfies

Ve eRY, o/ [€] < A(y)é.€ and [|A]|., < 5.

The operator g is carried out as an operator h of (W"9(B))’. One can describe that operator thanks to
g and the function H. Indeed, if g is an element of (W!4(Q2 N U))’, there exist function go in LF(Q N T)
and G in (LP(QNU))Y such that, for all ¢ in WH4(Q N U),

(9, 9)wrana)y wrrwna) = / go(x)p(x) dv + G(2) Vo(z) de.
QnU QnU
Hence, for all v € H'(B}), p =0 J,

Gp) = [ e ot [ G DI@TIE) do
anU anUu

/B et D] go(H () )y + /B et DI| DI ()G () V() dy
= (h4).

The function |det DH| go(H (y)) belongs to LP(B) and |det DH| DJ(H (y))G(H (y)) to (LP(B4))N.
Thus h € (WH4(B,)) and it is easy to see that 12|l wray < Cllgllwray, with ¢ > 0. Finally, the
function w is the solution to the new problem

w € HY(By),
AW Tuln)-Fl) dy = (b )y m Vo € H(@), )

where A is defined by (6), and h belongs to (W19(B))".

Step 3 (reflection) Let us now extend the solution by reflection, to get the following general result (the
notation in this lemma is independent of that used in the rest of the paper):



Lemma 1 For a given u € WH?(B,), define on B the function u* evtended by reflection, that is to say

vl [ u(2’ zyN) if xny >0
W en) = { u(a’, —zN) if zy < 0.

Then, u* € W'P(B) and
[ llwrr(my < 2[[ullwrr s+

This is a classical lemma (cf H. Brézis’ book, [5], p. 158, for instance). Note that, for 2y < 0, one has
the formulae

%(w’,m) = %(x’,—xm for 1<i<N -1,
Ou (xl,J?N) = —,a—u(ﬂﬁ/,—l‘N)-

(9$N
Let us apply this result to our problem. w can be extended to a function w* which is defined on the
whole of B and is an element of H'(B). But 0 is a function with compact support of U, hence the same
holds for § o H on B; in particular, there is an r, » < 1, such that B, contents the support of 8. It is

then obvious that the support of our function w*, extended by reflection, is also contained in that ball.
Thus w* is in H}(B).

dl‘N

We extend the operator i the following way:
(h™, @) wra(myy,wra() = (b, @) wra(By)y whe(By)+
(hy ¢ (', —an))wra(By)y,wiasy)-

for all ¢ in WH9(B). In particular, h* € W=1P(B) and [|h*||lyy-1.» < 2|2 ||y
To extend A is not that easy. We proceed as follows (we note A = (agi)i, 1)

e for all k and [ less or equal than N — 1, let af, (2, 2n) = an(2’, —2n) if ax <0,

e if k=Norl=N (but (k) # (N,N)), let of, (2, an) = —ap (2, —2y) if 25 <0,

o afn(z',zn) = ann(2, —eN) if 2y <O0.

Of course, we leave the ag; as they are if zxy > 0. We get

/ N Vw* Vé(z) de = /B AVw(y).Veé(y, —yn) dy,

where B_ = {& € B | zy < 0}. There also remains to check that this matrix is elliptic. The case of
zn > 0 was seen before; if 2 < 0, then

N-1
Aee= D (e, —an)a& + Y —an (2, —an)Eng+
i j<N-1 i=1
N-1
Z —a; N (2, —zN)&éN + annER.
i=1

If £* = (&', —&n), the preceding expression can then be written as
ANEE=A €.

Now, |¢] = |€*|; A* satisfies the ellipticity condition indeed.



We can check that w* is the solution of the following problem:
w* € Hg(B)

/ A'Vw* V= (b, ¢) s s, for all € HL. (9)
B

Note that h* is an element of W~1?(B) and w* is the solution of problem (9). Then Theorem 1 is
applied. There is a real p;, 2* > p; > 2, such that, if p € [2,p;[, w* is in Wol’p(B) and a real number
Ci(p) positive such that

lw* [y re < Cil) D7 [lw-2.r.

Moreover p; depends on o', 8/ and N, and C;(p) on o', 3/, p and N, not on h*. In fact, they hence
depend on A and functions H and J, that is, on the change of map. We then get the desired estimate
for v = u; by restriction and with the help of the Remark 2 of Section 2.

Let py = min;=o,  x(pi). As soon as 2 < p < pur, u; belongs to WH?(Q) and so, u = >_,_, , u; too.
Moreover, there exists a real positive C'(p) such that

lully e < CONAlw-12,

where C'(p) depends on all the C;(p), M; and the norm of the transport operator Ty and Ty (see remark
2, section 2).

So we are done with the proof of Theorem 2.

Remarks :

1. The condition (f,1)(g1y g1 = 0 is necessary to have all the functions of H'(€2) as test functions.
That 1s an important fact for the rest of the proof.

2. The inequality (7) is true only because H is an homeomorphism. Indeed, if J is differentiable almost
everywhere (due to Rademacher Theorem), it is not sure for J o H...

4 Some Other Boundary Conditions

4.1 Fourier’s Condition

The purpuse of this section is to give some other generalization of Meyers’ Theorem for different boundary
conditions. First, we consider Fourier’s Condition, i.e.

AVu.n + Au =0, on 9Q

where n denotes the outward normal on the boundary of € and A a function L™ (02) satisfying the
following condition:
v > 0 such that, A(z) > v for almost all z € 9Q.

The rest of the notation is exactly the same as in the preceding section. We still consider a uniform
elliptic operator, with coefficient in L® defined on an open set € with a Lipschitz continuous boundary.
The weak formulation of our new problem is then expressed by

ue H (),

/ A(z)Vu(z).Ve(r) de —|—/ Mx)up ds = (f, )1y w1, Yo € H'(Q). (10)
Q 1)

Once again, we want information about the regularity of the solution. The existence of solution can be
proved by using Lax-Milgram theorem again. So let us express the regularity result.



Theorem 3 (Meyers Fourier) Let Q be a bounded connected open set of RY, with a Lipschitz con-
tinuous boundary. Let A of (L°°(Q))N*N satisfy (2). For p>2 and ¢ = p/p— 1, let T, be the operator
defined by T,(f) = u for f € (WH4(Q))", where u is the unique solution to (10). Then, there is a real
number py, 2* > pg > 2, such that, for all p, 2 < p < po, the operator T, is linear continuous from
(Wha(2)) to WHP(Q). Moreover, the norm of T, only depends on p, o, f and Q and py on «, 3 and
Q, not on f.

The proof of this theorem works exactly as the preceding section. So let us consider only the differences.
Fix p greater or equal to 2 and less than 2*. Get ¢ = p/(p — 1). For f in (WH4(Q))’, we have existence
and unicity of solution to (10). So, u belongs to H!(). Let us just consider the following mapping

v — A(z)up ds.
Xe)

The trace of a function in H'(£) is in H'/?(9Q). So using Sobolev injection (see [1]), we find that the
trace of u belongs to L"(9Q) for all r < 2(N —1)/(N —2) (let » < oo if N = 2). So the idea is to consider
that our mapping can be defined on W'4(Q), for ¢ < 2. Computation shows that ¢ must be greater than
2N/(N + 2), hence that p must be less than 2N/(N — 2). So, the term [, A(2)uep ds can be brought in
the operator f. It is possible now to reproduce the proof of preceding section.

4.2 The Dirichlet Problem Revisited

We claim here that the Meyers theorem is true on an open set with a Lipschitz continuous boundary.
The proof doesn’t work as before in the step 3. Indeed, it 1s not possible to extended our solution to B
and find a new problem satisfy by the extension. We use a different way.

Let us consider only the following problem:

u e Hé(B-f-)a

| AT () dr = (b, Vi € HL(BY), (11)

where A belongs to (L°°(22))V>*" which satisfies the condition (2) and f belongs to W~1?(B,), p > 2.
So, there exists a function F, of (LP(B,))" such that, for all ¢ € Wol’q(B+),

<fa ()0>W—1,p7W01;q = / F(l‘)vgo(l‘) dx

By
We define the function G on B by (we get, for all z in RY, z = (z',2n), 2" in I[{N_l)
o ifey >0, Ge' zny) = F(2/,zn),
e ifuy <0, fori=1,...., N—1, Gi(«',2n) = —F;(2',—an) and Gy (2, 2n) = Fn(2', —zN).

Then G belongs to (LP(B))N and we set, for all ¢ € Wol’q(B),
<g;§0>W—1,p)W01,q :/ G(x)Vgp(x) dzx.
B

For 2, < 0 we denote by A the extension of A onto B, defined as:
o for all k and { less or equal than N — 1, let af,(2', zn) = ari(2’, —2nN),
e if k=Norl=N (but (k1) # (N,N)), let af, (2, 2n) = —ani(z', —2n),

o ayy(2' zy) =ann (2!, —zN).



We can now consider the following problem
v € Hy(B),

| Ae)Vola). V(o) do = (o, 00,y o € (D). (12)

Because Theorem 1, there exists py > 2 such that the solution v of (12) belongs to W, ”(B) if g belongs
to W=1F(B), for 2 < p < po. We want to prove that the restriction of v to By, denoted V|gy, 18 equal to
u.

Let us prove first that the trace of v on BY~! is null. We get w(2’,2n) = —v(2’, —2n). Due to the
construction of g and A, w is a solution to (12). Then by unicity, w = v in H}(B). For the trace operator
v on BN~! we have so

then v(v) = 0 on BN—1,

Let ¢ be a function of Hi(By). We can extend ¢ on B by zero, denoted ¢. We can take ¢ for test
function in (12). Then

[ A)Vele)-Vpte) d = 0.8

But we have

/BA(:L‘)VU(QL‘).VQB(JC) dx:/B Ax) Vo), (2). Vo(r)de

+
and

@By = [ Gla). Vo)

/B+ F(2).Vo(e)de

= {/, <P>H—1,H;-

As we have seen that v),, belongs to Hj(By), we find finally that v, satisfies (11). By unicity, v|,, = u
in H}(By), and so there exists areal pg > 2, such that u belongs to Wol’p(B_,_) if f belongs to W17 (B,),

for 2 < p < po.

4.3 The mixed value boundary problem

We are interested in the mixed boundary value problem, i.e. u satisfies Dirichlet’s Condition on a part
T of 90 (with a non-zero (N —1)-dimensional measure) and a natural (Neumann or Fourier) boundary
condition on I' = 9Q\I'. We need first a regularity condition on I'. Here, we use some notations of [9],
but the regularity condition on T are different. We set Q@ = QUT.

Definition 2 Let Q be an open set with a Lipschitz continuous boundary. A measurable part T' of 092 s
called vregular, if there exists a family (Uo, Uy, ..., Uy) of open sets of R™ satisfying (3) and (J1, ..., Ji)
functions such that, fori =1, ..., k, J; : U; — B 1s one-to-one, J; and Jl-_l are Lipschitz continuous
and we have one of the following condition

a. UyNT =U; N0Q, and J; satisfies (4).
b. U;NT =0, and J; satisfies (4).

c. JZ'(U@'QQ) I{.Z‘EB | zny >0 and xn_q >O}IB++,
Ji(Uinl)={z € B|ay =0 and zy_1 > 0},
and JZ(UZ ﬁF) = {ZL‘EB | xy >0 and zny_1 = 0}



Remarks
1. For 1 < p < oo, we denote Wol’p(fl) the closure of {u € C¢° ([RN) | suppu N I = 0} in WhP(Q).

2. When I is regular, the functions of Wol’p(Q) are the functions of Wlf’(Q), null on I'. In particular,
if O = Q, then Wy* (Q) = W, P(Q), of course. Tf Q@ = Q, then W, F(Q) = WH2(Q).

3. We denote W—1» (Q), the dual space of Wol’q(ﬁ)

Theorem 4 Let Q be a bounded connected open set with a Lipschitz continuous boundary of RY. Let T
be a regular part of 9 and T' = OQ\T'. Suppose T has a non-null (N —1)-dimensional measure. There is
a real number pg, 2% > po > 2, such that, if u is the weak solution of
e WHA(Q)
1,2/ 13
A@)Vu(a). Ve (e)de = (f, @) yons iy oy ¢ € Wi (@), 13

Q

where [ belongs to W‘l’p(fl), forp € [2,po), then u belongs to Wol’p(fl) and there exists a real number
C(p) such that

||“||W01’P(ﬁ) < C(P)Hf”w—l,p(fz)'

Moreover, py only depends on A and Q and C(p) on A, Q and p, not on f.

Sketch of proof. We give here only the idea of the proof (due to J.Droniou, [6]). We need to study
three cases

a) First, U; satisfies a of Definition 2. The proof works exactly as the proof of Theorem 3 in Section
3.

b) U; satisfies b of Definition 2. The proof works exactly as the proof in Section 4.2.

c) We are in the third case, ¢ of the definition 2. We extend the solution first to By by using reflection
argument with respect to xny_1, as the proof of Theorem 3 in Section 3. Then, we works exactly
as the proof in Section 4.2 : we consider a new Dirichlet problem on B, and the restriction of the
solution to By, is well the researched function. Then we obtain W' P-estimate on u.

5 Application: A uniqueness theorem

Meyers” Theorem can notably be used to prove uniqueness of the solution of Dirichlet’s problem for a
linear elliptic differential equation with a 2-dimensional measure as right-hand side (see [8]).

One can now generalize this result to other boundary conditions. Regarding Neumann’s Problem, for
instance,

Theorem 5 Let Q be a bounded regular open set of R . Let N = 2 and nEe M(Q),fQ ldp = 0, where
M () is the set of bounded Radon measures. Let A be in (L™ (Q))N*N | satisfying (2). Then, there erists
a unique function u such that:

u € ﬂ Whe(Q), /u:O,

p<2 Q
A(z)Vu(z).Ve(z) de = /ﬂgp(m) dp, Y e | whaQ).

Q 0>

10



Proof. [13], for instance, provides a proof of the existence of u. To prove its uniqueness, we show that
if v satisfies

vEﬂWl’p(Q), /v:O,
p<2 ” (15)
/ A(2)Vo(2) Ve(a) do = 0,¥p € | Wh(Q),
193 >2

then v 1s null.

Indeed, suppose that v satisfies (15), and is not the null function. Let B = {z|v(z) > 0}. B is a
measurable part. A denotes the Lebesgue measure. By hypothesis, A(B) # 0 and A(B) # A(£2). Let
A* = (aj4)i j=1,2. Let ¢ be the solution of the following problem

vp € H'(Q), /ﬂl/)B(:L‘)dx —0,
/QA*(EL‘)Vl/)B(IL‘)-VSO(I)dx: /\(B)—1/

B

(16)
p(x)de — \(Q — B)—1/ p(z) dz, Yo € HY(Q).
Q-B
One can then apply Theorem 2; as A(B)~'xp — AM(Q — B)~!'xq_p is an element of L> () and its mean
is null, there is a ¢ > 2 (which depends on A and Q only, not on B) such that ¥5 € WH4(Q). ¢ = ¢p
can hence be chosen in (15):

/A(x)Vv(x).Vl/)B(x) dz = 0. (17)

As ¢ =¢q/(¢—1) < 2, we have v € Wl’ql(Q). There exists a sequence of functions (¢, ),en de H'(Q)
such that (¢,)new converges to v in WhHe (Q). Next, choose ¢ = ¢, in (16):

/QA*(JB)Vi/)B(x).Vgon(:L‘) dr = /\(B)_1 /B on(z) de— A2 — B)_l/ﬂ on(2) do.

-B

If n becomes infinite, we get:

/QA*(:C)Vt/)B(;L‘).Vv(x) dz = A\(B)™* /B’U(l‘) de — AQ — B)_lfﬂ v(z) dw.

-B

Now A*V¢p.Vv = AVv.Viyp. Hence, using (17) and /

v = 0, we obtain / v(z) de = 0, which is
Q

. . B
impossible.
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