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Abstract. In this work we describe an efficient model for the simulation of

a two-phase flow made of a gas and a granular solid. The starting point
is the two-velocity two-pressure model of Baer-Nunziato [1]. The model is

supplemented by a relaxation source term in order to take into account the

pressure equilibrium between the two phases and the granular stress in the solid
phase. We show that the relaxation process can be made thermodynamically

coherent with an adequate choice of the granular stress. We then propose

a numerical scheme based on a splitting approach. Each step of the time
marching algorithm is made of two stages. In the first stage, the homogeneous

convection equations are solved by a standard finite volume Rusanov scheme.

In the second stage, the volume fraction is updated in order to take into account
the equilibrium source term. The whole procedure is entropy dissipative. For

simplified pressure laws (stiffened gas laws) we are able to prove that the

approximated volume fraction stays within its natural bounds.

Introduction

We are interested in the numerical modeling of a two-phase (granular-gas) flow
with two velocities and two pressures p1 and p2. In one space dimension, the
model is made up of seven non-homogeneous partial differential equations: two
mass balance laws, two momentum balance laws, two energy balance laws and one
volume fraction evolution equation. It is similar to the initial model proposed by
Baer-Nunziato [1]. The main feature of this model is that the left hand side of
the equations is hyperbolic. This property is very important because it ensures the
mathematical stability of the model.

However, in many industrial applications it is not realistic to admit two inde-
pendent pressures. Generally, an algebraic relation between the two pressures is
assumed. An example (among many others) of such a modeling in the framework
of internal ballistics is given by Gough in [8]. For a general presentation of two-
phase flow models, we refer to the book of Gidaspow [5]. The relation between the
two pressures is classically of the form p2 = p1 +R where R is the granular stress.
In the general case, the granular stress depends on all the thermodynamic variables
of the two phases.

Because of the pressure relation, the system is now overdetermined. The volume
fraction equation can be eliminated and a six-equation model is obtained. Unfor-
tunately, the new model has a reduced hyperbolicity domain. The worst situation
corresponds to a vanishing granular stress R = 0. In this case, the model is almost
never hyperbolic.

In the case of a vanishing granular stress, several authors have proposed to relax
the algebraic relation p2 = p1 by adding an adequate source term to the volume
fraction evolution [18], [17], [4], [11], etc. An important parameter of the source
term is the characteristic equilibrium time. When the equilibration time tends to
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zero, the six equation model is recovered. When the equilibrium time does not
vanish the stability of the model is expected.

In this paper, we extend the relaxation approach to non-vanishing granular stress
R > 0. With a positive granular stress, the hyperbolicity domain of the six-equation
model is slightly extended. But it is generally not possible to remove all the elliptic
regions. Therefore, we apply a relaxation source term to the volume fraction evolu-
tion equation of the seven-equation model. This source term takes into account the
granular stress (see (23)). When the relaxation parameter τp tends to 0, we recover
the equilibrium six-equation model. When the relaxation parameter τp > 0, the
stability of the model is recovered.

An important aspect of the model is that the granular stress cannot be chosen
arbitrarily once the pressure law of the solid phase is fixed. Indeed, it has to satisfy
some thermodynamical relations in order that an entropy dissipation equation can
be established. We illustrate this fact when the equation of state of the solid phase
is a stiffened gas law. We propose a very simple but useful expression (see (35)) for
the granular stress, which is mathematically and physically relevant.

Then we propose a numerical method to solve the relaxed system. For that
purpose, we use a splitting algorithm. Each time step of the algorithm consists in:

• evolving the seven equation model without the source term;
• solving the relaxed pressure equilibrium with granular stress;
• solving the other source terms.

In the second stage the relaxed pressure equilibrium implies to solve an update
for the volume fraction, keeping the conserved variables constant. Under some
monotony hypothesis on the granular stress, and when the pressure laws of the two
phases are stiffened gas laws, we are able to prove the existence and uniqueness of
the new volume fraction in the interval ]0, 1[.

The relaxed equilibrium becomes an exact equilibrium when the relaxation pa-
rameter τp = 0. Thus our method can also be used to approximate the equilibrium
six-equation model on coarse meshes, which is important in industrial applications.

Finally, we propose some numerical experiments. For academic test cases, we
highlight some behavior of the relaxed approach in the case of a non-stable (elliptic)
case. We then compare the results of our new approach with the standard Gough
model [8, 15] in the case of a simplified internal ballistics problem.

1. Notations and model

We consider a two-phase flow of a granular solid mixed with a compressible gas.
The solid is denoted by the index (2) and the gas by the index (1). For more
generality, the solid is supposed to be compressible. The unknowns are, for each
phase k = 1, 2, the partial density ρk, the velocity uk, the internal energy ek. The
volume fractions αk satisfy α1 + α2 = 1. The gas volume fraction α1 is also called
the porosity in the context of granular flows. The pressure of each phase is given
by an equation of state of the form

(1) pk = ψk(ρk, ek).

We note αkρk = mk. The principles of mass, momentum and energy conservation
imply that some source terms will cancel. Thus, we introduce the following notation
for the sign function

(2) σk :=
{+1 if k = 1,
−1 if k = 2.
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The balance of mass, momentum and energy read

(3)

mk,t + (mkuk)x = σkM,

(mkuk)t + (mku
2
k + αkpk)x − pIαk,x = σkQ,

(mkEk)t + ((mkEk + αkpk)uk)x + pIαk,t = σkS,

αk,t + vIαk,x = σkP,

where

(4) Ek = ek +
u2
k

2
.

For simplicity, we restrict ourselves to one-dimensional equations, but it is pos-
sible to extend the results of this paper to higher space dimensions. The right hand
side terms M , Q, P , S are internal exchange source terms that will be discussed
later. For the moment, introducing the vector of the seven main unknowns of the
system (3)

(5) W = (m1,m1u1,m1E1,m2,m2u2,m2E2, α1)T ,

we only suppose that M , Q, P , S are general functions of W . Here, we recall that
the sign σk = +1 if k = 1 and σk = −1 if k = 2. We also suppose that there are no
external force and energy source (this explains the σk signs in the source terms).
The quantities pI and vI are respectively the interface pressure and the interface
velocity. In this paper, we take the special choice of Baer-Nunziato

(6)
pI = p1,

vI = u2.

This model for the interface pressure and velocity is physically relevant when the
solid phase is dilute in the gas-solid mixture (see [1]). Of course, due to the perfect
symmetry of the PDE system with respect to the phase index k, a symmetric choice
is also possible

(7)
pI = p2,

vI = u1,

when the solid phase is packed. It is also possible to consider interface pressure and
velocity that are convex linear combinations of the phase pressures and velocities
[17], [3], [4]. Quite surprisingly, the convex linear combination is not generally
considered as the good physical modeling.

In this paper, we focus on the dilute case (6) which enjoys good properties1:

• the left hand side of the system is hyperbolic (the proof is recalled in Section
7);

• this choice ensures that the non-conservative products are well defined (at
least in the non-resonant case). This is due to the fact that the volume frac-
tion only jumps in the linearly degenerated field associated to the eigenvalue
vI . In a linearly degenerated field, the jump relations are simply provided
by the Riemann invariants of this field. See [3], [4];

• in the applications, the Baer-Nunziato model is particularly adapted to
granular flows. See [1] and included references.

1The packed model (7) and the convex combination models given in [4] enjoy the same prop-
erties.
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Using the volume fraction equation, the time derivative αk,t can be replaced by
space derivatives

(8)

mk,t + (mkuk)x = σkM,

(mkuk)t + (mku
2
k)x + αkpk,x + (pk − pI)αk,x = σkQ,

(mkEk)t + (mkEkuk)x + αk(pkuk)x + (pkuk − pIvI)αk,x = σkS − σkpIP,
αk,t + vIαk,x = σkP.

The equations can then be written under the form of a first order non-conservative
and non-homogeneous system

(9) Wt + F (W )x +A(W )L(W )x = Σ(W ),

with

(10)

W = (m1,m1u1,m1E1,m2,m2u2,m2E2, α1)T ,

F (W ) =
(
m1u1,m1u

2
1,m1E1u1,m2u2,m2u

2
2,m2E2u2, 0

)T
,

L(W ) = (p1, p1u1, p2, p2u2, α1)T ,

A(W )L(W )x = (0, α1p1,x, α1(p1u1)x + p1(u1 − u2)α1,x,

0, α2p2,x + (p2 − p1)α2,x, α2(p2u2)x + u2(p2 − p1)α2,x, v2α1,x)T ,

Σ(W ) = (M(W ), Q(W ), S(W )− p1P (W ),

−M(W ),−Q(W ),−S(W ) + p1P (W ), P (W ))T .

Let us note that this writing is not unique. We have chosen a formulation
in which the non-conservative terms vanish when the pressures and velocities are
constant, i.e.

(11) p1 = p2 = p0 = Cst and u1 = u2 = u0 = Cst.

This particular representation is useful to design numerical schemes that perfectly
preserve states where the velocity and the pressure are constant (see the definitions
(45), (46)).

2. Entropy dissipation

In this section, we establish an entropy dissipation equation. This equation is
very important because it permits to select the source terms that are compatible
with the second principle of thermodynamics.

For that purpose we first rewrite the system as follows

(12)

mk (uk,t + ukuk,x) + (αkpk)x − p1αk,x = σkQ− σkukM,

mk(ek,t + ukek,x) +
uk
2
[
(mkuk)t + (mku

2
k + αkpk)x + (αkpk)x

]
+

1
2
mkuk (uk,t + ukuk,x) + αkpkuk,x + p1αk,t = σkS − σkekM.

The last equation also reads
(13)
mk(ek,t + ukek,x) +

uk
2

[p1αk,xσkQ+ (αkpk)x]

+
1
2
uk (−(αkpk)x + p1αk,xσkQ− σkukM) + αkpkuk,x + p1αk,t = σkS − σkekM.

and

(14)
mk(ek,t + ukek,x) + αkpkuk,x + p1 (uk − u2)αk,x =

σkS − σkekM − σkukQσk
1
2
u2
kM − σkp1P
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Finally, we obtain

(15)

αk,t + u2αk,x = σkP,

αk(ρk,t + ukρk,x) + ρk(uk − u2)αk,x +mkuk,x = σkM − σkρkP,
mk (uk,t + ukuk,x) + (αkpk)x − p1αk,x = σkQ− σkukM,

mk(ek,t + ukek,x) + αkpkuk,x + p1 (uk − u2)αk,x =

σkS − σkekM − σkukQσk
1
2
u2
kM − σkp1P

Now, we introduce entropies sk for the two phases. The entropy of the phase
k = 1, 2 satisfies the following first order partial differential equation

(16)
Tkdsk = dek −

pk
ρ2
k

dρk −
Rk
mk

dαk

= Tk

(
∂sk
∂ek

)
dek + Tk

(
∂sk
∂ρk

)
dρk + Tk

(
∂sk
∂αk

)
dαk.

The temperature of phase k is denoted by Tk. The granular stress in the phase
k is denoted by Rk. Physically, the term −Rk/mkdαk represents the work of the
granular stress due to a change of volume dαk. For sake of simplicity and in order
to be more realistic, we assume that the ”granular” stress R1 vanishes in the gas
phase, thus R1 = 0. Without ambiguity, we can also denote the granular stress in
the solid phase by R = R2. Generally, the granular stress R depends on (ρ2, e2, α2).
A more precise formulation of the granular stress R is discussed in Section 3.

The chemical potential of phase k is noted µk and is defined by

(17) µk = ek +
pk
ρk
− Tksk

We multiply the last equation in (15) by 1/Tk, the second by −pk/ρk/Tk, the first
by −Rk/Tk and take the sum

(18)

mk(sk,t + uksk,x) +
p1 − pk
Tk

(uk − u2)αk,x =

1
Tk

(
σkP (−Rk + pk − p1)σkM(

u2
k

2
− pk
ρk
− ek)σkQ(−uk)σkS

)
,

(mksk)t + (mkuksk)x =

1
Tk

(
σkP (pk −Rk − p1)σkM(Tksk +

u2
k

2
− pk
ρk
− ek)σkQ(−uk)σkS

)
.

Adding now the two entropy equations leads to the entropy dissipation partial
differential equation that we sum up in the following proposition.

Proposition 1. Consider a smooth solution of the system (3) and two entropy
functions s1 and s2 satisfying (16). Then, the smooth solution satisfies the following
entropy dissipation equation

(19)
(
∑

mksk)t + (
∑

mkuksk)x =
P

T2
(p1 +R− p2) +

M

(
u2

1

2T1
− u2

2

2T2
− µ1

T1
+
µ2

T2

)
+Q

(
u2

T2
− u1

T1

)
+ S

(
1
T1
− 1
T2

)
.

Remark 1. According to the second principle of thermodynamics the right hand
side of (19) has to be non-negative. But each term in the formula (19) has not a
clear physical meaning and the Galilean invariance is not obvious. It is often more
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convenient to rewrite the source term in a different way. For example, we can set

(20)
Q = Q0 + u1M,

S = S0 + u1Q0 +
u2

1

2
M + µ1M.

In this way, the dissipation rate becomes

(21)
P

T2
(p1 +R− p2)+

M

T2
(µ2−µ1−

(u2 − u1)2

2
)+

Q0

T2
(u2−u1)+

S0

T1T2
(T2−T1).

It is > 0 if each term in the sum is > 0. The source S0 can then be interpreted
as the heat flux (it is > 0 when T2 > T1, i.e. when the phase 2 heats the phase 1).
The source Q0 is the drag force. Finally, M is the mass transfer due to chemical
reactions. When u1 = u2, we recover that the chemical reaction tends to create the
phase with the smallest chemical potential.

Remark 2. Generally, the equations (16) satisfied by the entropies sk have not a
unique solution, once the pressure laws are given. For example, if sk is a solution,
−sk is also a solution. A supplementary condition has thus to be given in order to
fix the sign of the entropy dissipation rate. In the case of conservative systems the
entropies are supposed to satisfy some convexity property. For a non-conservative
system, it is not possible to apply the Godunov-Mock theorem and it is difficult to
extend naturally the convexity approach. We propose here only to forbid the change
s→ −s by imposing that the temperature remains > 0. It implies

(22)
1
Tk

=
∂sk
∂ek

> 0.

In this paper, we will concentrate on the pressure relaxation source term. We
will assume the following form, which ensures a positive entropy dissipation

(23) P =
1
τp
α1α2 (p1 +R− p2) , τp > 0,

where τp is the relaxation parameter. An instantaneous relaxation corresponds to
the limit τp = 0.

Remark 3. Let pref be a reference pressure. We can define a characteristic time
for the pressure equilibrium by

(24) tref =
τp
pref

.

The knowledge of this characteristic time is important for a proper modeling.

3. Application to stiffened gas laws: admissible granular stress

3.1. Admissible granular stress. In many works (as in [13], [7] and [12]), the
granular stress is supposed to depend only on the solid volume fraction α2. This
hypothesis is reasonable when the solid phase is incompressible. However, this
choice is not compatible with the existence of an entropy satisfying (16) in the case
of a compressible phase. The choice of the granular stress expression cannot be
arbitrary. That is why in this section, we compute a simple expression of it when
the pressure law of the solid phase is a stiffened gas equation of state.

Let us note

(25) Θ(1/ρ2, e, α2) =
R2(1/ρ2, e, α2)

α2ρ2
.
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We omit now the subscript k = 2 because we concentrate only on the solid phase.
We have to find an entropy s, a temperature T and a function Θ (containing the
granular modeling) such that

(26) Tds = de− p

ρ2
dρ−Θdα.

We note

(27)
τ = 1/ρ,

T = 1/ϕ.

Then, ϕ = ϕ(τ, e, α) is an integrating factor for the form

(28) de+ pdτ −Θdα,

which reads

(29) ds = ϕde+ ϕp(τ, e)dτ − ϕΘdα.

In order to construct a practical and simple model, we suppose that the granular
stress only depends on the density and the volume fraction of the solid phase. This
leads to the choice Θ = Θ(τ, α). The differential form is closed if

(30)

ϕα = −Θϕe,
pϕα = −Θϕτ − ϕΘτ ,

pϕe + peϕ = ϕτ .

The general case corresponds to ϕe 6= 0, ϕα 6= 0 and ϕ 6= 0. We then have
necessarily

(31)
Θτ

Θ
= −pe.

3.2. Practical example. Now we propose some computations when the pressure
law (1) is a stiffened gas EOS

(32) p = ψ(ρ, e) = (γ − 1)ρe− γπ.
The parameter γ must be > 1. The parameter π has the dimension of a pressure
and can be arbitrary. But in practice, for a solid phase, it is positive and large
compared to a characteristic pressure of the flow. In the case of a stiffened gas
equation, we thus find

(33)
Θτ

Θ
= −γ − 1

τ
⇒ Θ(1/ρ, α) = θ(α)ργ−1,

which leads to

(34) R(τ, α) = αθ(α)ργ .

In this paper, we will perform numerical experiments with a very simple partic-
ular choice

(35) R(τ, α) = κργαγ .

The value of κ can be adjusted to experiments. With this choice, the parameter
R0 = κργ22 has the dimension of a pressure. It represents the maximal stress
corresponding to the maximal compaction α = α2 = 1. This model is not so
different from classical approaches (as described for example in [7]): usually, the
granular stress vanishes under some critical solid volume fraction αc (dilute case)
and increases with α when α > αc (packed case). In our approach, the parameter
γ allows to ensure that the granular stress is small when α is small. Actually, the
higher γ is, the faster the granular stress tends to zero when α tends to zero.

In this model, unlike in [7], the solid volume fraction α can approach one. This
is due to the fact that the compressibility of the solid phase is taken into account.
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Of course, if this solid phase is slightly compressible a volume fraction α2 ' 1
would imply very high pressures. Mathematically this situation is not a problem,
but physically it can be questioned. It is also related with the choice (6) for the
interface pressure and velocity. This choice is physically recommended for dilute
flows. When the flow is not dilute, the model, while still mathematically robust,
should probably be improved.

Of course, it would be also possible to consider the most general case where the
granular stress also depends on the internal energy

(36) Θ = Θ(α, τ, e).

However, we will see that the choice (35) is very interesting for the modeling and
the numerics because it ensures that the volume fraction stays within its natural
bounds during the pressure equilibrium resolution.

Is also possible to compute the whole thermodynamic underlying model. The
expressions for the associated entropy and temperature are given in Section 8.

3.3. Summary of the full model. Before presenting the numerical part of our
work, we sum up the model that will be used for the numerics. From now on, we
will suppose that the pressure laws of the two phases are stiffened gas equations of
state. We will also suppose that the granular stress is given by formula (35). These
hypothesis are made because they permit a good balance between simplicity and
generality. Of course our approach can be generalized to other physical laws. We
solve

(37) Wt + F (W )x +A(W )L(W )x = Σ(W ).

The unknowns are (with mk = αkρk, Ek = ek + u2
k/2, k = 1, 2)

(38) W = (m1,m1u1,m1E1,m2,m2u2,m2E2, α1)T .

The ”conservative” flux is given by

(39) F (W ) =
(
m1u1,m1u

2
1,m1E1u1,m2u2,m2u

2
2,m2E2u2, 0

)T
,

and the ”non-conservative” terms are given by

(40)

L(W ) = (p1, p1u1, p2, p2u2, α1)T ,

A(W )L(W )x = (0, α1p1,x, α1(p1u1)x + p1(u1 − u2)α1,x,

0, α2p2,x + (p2 − p1)α2,x, α2(p2u2)x + u2(p2 − p1)α2,x, v2α1,x)T .

The pressures obey stiffened gas equations of state

(41) pk = (γk − 1)ρkek − γkπk, γk > 1, k = 1, 2.

The constants γk and πk for k = 1, 2 are fixed and obtained from physical measure-
ments. The source terms vector is

(42) Σ(W ) = (0, 0,−p1P (W ), 0, 0, p1P (W ), P (W ))T .

The pressure relaxation source term is

(43)
P (W ) =

1
τP
α1α2(p1 +R(ρ2, α2)− p2), τP > 0,

R(ρ2, α2) = κ(α2ρ2)γ2 , κ > 0.

The constants κ and τP are obtained by physical measurements. In Section 6.1, we
will also present a realistic gun simulation. In this case we will propose a different
expression of the source terms Σ(W ).
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4. Finite volume approach

For the numerical implementation, we consider a finite volume discretisation and
a splitting approach. The convection step is solved by a standard Rusanov scheme
[16] already described in many works as [15]. In the second stage, the source terms
are applied. We concentrate on the pressure relaxation source term in the next
section.

For the finite volume scheme, we consider a space step h, a time step ∆t. The
cells are intervals ]xi−1/2, xi+1/2[. For simplicity, we consider a regular mesh xi = ih
(but this of course is not mandatory). The vector W is approximated in each cell
at time tn by

(44) Wn
i 'W (xi, tn).

The numerical scheme for the convective terms is a standard Rusanov scheme
for non-conservative systems, which reads

(45) h(Wn+1,−
i −Wn

i ) + ∆t(Fni+1/2 − F
n
i−1/2) + ∆tA(Wn

i )
Lni+1 − Lni−1

2
= 0.

The conservative numerical flux is given by

(46)
F (WL,WR) =

F (WL) + F (WR)
2

− ζWR −WL

2
,

ζ = max (ρ(B(YL)), ρ(B(YR))) .

where ρ(B) denotes the spectral radius of the matrix B. The convection matrix
B(Y ) in the primitive variables Y (see (88)) is given in (90) in Section 7. Our choice
for the numerical viscosity parameter ζ is classical (see for example [10]). It usually
leads to an entropy dissipative scheme. In exceptional cases, it may be necessary
to compute the numerical viscosity from interface values instead of the cell values
YL and YR.

Our particular choice of the non-conservative terms L ensures that constant
velocity-pressure states will be maintained by the Rusanov scheme. Of course, in
many interesting computations the velocity and pressure are not constant. However,
it has been observed that one obtains better numerical results if the scheme is able
to capture exactly the constant velocity and pressure solutions.

This convection step permits to obtain a value Wn+1,−
i in each cell i. It has now

to be updated in order to take into account the pressure equilibrium source and
obtain Wn+1

i .

5. Relaxation algorithm

In this section, we address now the numerical approximation of the pressure
relaxation source term of the system (37)-(43). As usual, we use a fractional step
method in order to separate the convection step and the pressure equilibrium step.

Thus, we concentrate only on the description of the pressure equilibrium step,
which can be formally written

(47)

αk,t = σkP,

mk,t = uk,t = 0,

(mkek)t + p1αk,t = 0.

In order to simplify the notations, we denote now by a 0 superscript the physical
values in a given cell i at the end of the advection step. These values are computed
from the vector Wn+1,−

i , at the end of the convection step, given by the Rusanov
scheme (45). The updated values at time n+ 1 are noted without any superscript.
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Owing to mass and momentum conservation we have mk = m0
k and uk = u0

k. We
have now to compute (α1, p1, p2) in order to pursue the computation. The system
is

(48)

p2 −R− p1 = τpα2,t,

m1e1 +m2e2 = m0
1e

0
1 +m0

2e
0
2,

(m1e1 −m0
1e

0
1) + p1(α1 − α0

1) = 0.

We recall that the pressures of the two phases obey stiffened gas equations of
state

(49) pk(ρk, ek) = (γk − 1)ρkek − γkπk, γk > 1, k = 1, 2.

It is physically reasonable to suppose that

(50) π2 > π1,

because phase (2) is the solid phase and because in the gas phase (1) π1 ' 0. We
also recall that the granular stress R is given by (35). Because of the stiffened gas
law, we have

(51) mkek = αk
pk + γkπk
γk − 1

.

Thus we have to solve for (α1, p1, p2) the following three-equation system, at each
time step and in each cell

(52)

p2 − καγ22 ρ
γ2
2 − p1 =

τp
α2(1− α2)

α2,t,

α2
p2 + π2

γ2 − 1
− α0

2

p0
2 + π2

γ2 − 1
+ (p1 + π2)(α2 − α0

2) = 0,

α1
p1 + π1

γ1 − 1
− α0

1

p0
1 + π1

γ1 − 1
+ (p1 + π1)(α1 − α0

1) = 0.

We have

(53)

p2 − καγ22 ρ
γ2
2 − p1 =

τp
α2(1− α2)

α2,t,

(α2 + (γ2 − 1)(α2 − α0
2))(p2 + π2)− α0

2(p0
2 + π2)−

(γ2 − 1)(α2ρ
γ2
2 θ(α2) + τα2,t)(α2 − α0

2) = 0,

(α1 + (γ1 − 1)(α1 − α0
1))(p1 + π1)− α0

1(p0
1 + π1) = 0.

We then note

(54)
A1 = α0

1(p0
1 + π1),

A2 = α0
2(p0

2 + π2).

For a stiffened gas law, the sound speed c is given by the formula

(55) c =

√
γ(p+ π)

ρ
.

It implies that the two quantities A1 and A2 are > 0. Of course, we suppose that
the initial volume fraction 0 < α0

2 < 1.
After the elimination of p1 and p2, the system can be rewritten

(56)

G(α2) = (π2 − π1)(α1 + (γ1 − 1)(α1 − α0
1))(α2 + (γ2 − 1)(α2 − α0

2))

+(κα2m
γ2
2 +

τp
(1− α2)

α2,t −A2)(α1 + (γ1 − 1)(α1 − α0
1))

+A1(α2 + (γ2 − 1)(α2 − α0
2)) = 0
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We use an implicit first-order time discretisation of α2,t

(57) α2,t =
α2 − α0

2

∆t
.

(recall that ∆t is the time step in the convection step (45)). The implicit approach
is natural because τp may be arbitrary small and thus the source term (23) may be
stiff.

We first compute G at the left point of the interval [0, 1]

(58)

G(0) = −(π2 − π1)(γ2 − 1)α0
2(1 + (γ1 − 1)(1− α0

1))

−(A2 +
τpα

0
2

∆t
)(1 + (γ1 − 1)(1− α0

1))

−A1(γ2 − 1)α0
2 < 0,

because of the hypothesis (66) and A1, A2 > 0. For the computation at the right
point, we introduce

(59) β1 =
γ1 − 1
γ1

α0
1.

We have

(60) α1 + (γ1 − 1)(α1 − α0
1) > 0⇔ α1 > β1 ⇔ α2 < 1− β1.

We compute

(61)
G(1− β1) = A1(1− β1 + (γ2 − 1)(α0

1 − β1))

=
A1

γ1 − 1
((γ1 − 1)(1− β1) + (γ2 − 1)β1) > 0.

Thus we have existence of a solution α2 to G(α2) = 0 in the interval ]0, 1− β1[.
We have to check that this solution leads to physically relevant pressures p1 and

p2 i.e. that pk + πk > 0. We have

(62) p1 + π1 =
A1

α1 + (γ1 − 1)(α1 − α0
1)
.

This quantity is > 0 if the solution satisfies α2 < 1− β1. Finally we also have

(63) p2 + π2 = p1 + π1 + κmγ2
2 + τp

α2 − α0
2

τα2(1− α2)
+ π2 − π1.

When α2−α0
2 ≥ 0 the previous quantity is obviously > 0. In the case α2−α0

2 < 0,
we use the second equation of (52) and we find

(64) α2
p2 + π2

γ2 − 1
= α0

2

p0
2 + π2

γ2 − 1
− (p1 + π1 + π2 − π1)(α2 − α0

2) > 0.

And the algorithm can continue.

Remark 4. Formula (62) shows that we have to discard any solution that is not
in the interval ]0, 1 − β1[. Lets us notice that in many cases, we can find another
solution to G(α2) = 0 in ]1− β1, 1[.

Remark 5. The previous reasoning can be easily generalized to the case where the
granular stress is of the form

(65) R(ρ2, α2) = ργ22 α2θ(α2),

and the function θ satisfies

(66)

θ continuous on [0, 1],

θ(α2) > 0,

θ(α2) = o(αγ2−2
2 ) when α2 → 0.
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These conditions are fulfilled by the granular stress that we proposed in (35) where

(67) θ(α2) = καγ2−1
2 .

Now, we will prove that the solution α2 is unique in the interval ]0, 1− β1[. For
this, we set

(68) f(α) = κα+
τp

τmγ2
2

α− α0
2

1− α

it is easy to check that

(69) f is convex.

We then have

(70) G′′(α2) = −2γ1γ2(π2−π1)−2γ1m
γ2
2 f
′(α2)+(α1+(γ1−1)(α1−α0

1))mγ2
2 f
′′(α2).

The function f is convex and satisfies f(α) > f(0) for 0 < α < 1. It implies that
f is also increasing. Then the two first terms in (70) are < 0 and the last is > 0.
On the other hand, it is sufficient that G is concave to prove the uniqueness. But

(71)

G′′(α2) 6 −2γ1γ2(π2 − π1)−
2γ1m

γ2
2 f
′(α2) + γ1m

γ2
2 (1− α2)f ′′(α2) 6

2γ1m
γ2
2

[
1
2

(1− α2)f ′′(α2)− f ′(α2)− γ2

mγ2
2

(π2 − π1)
]

A sufficient condition to obtain uniqueness is then

(72)
1
2

(1− α2)f ′′(α2)− f ′(α2)− γ2

mγ2
2

(π2 − π1) 6 0.

The above inequality (72) can also be written

(73) − κ− γ2

mγ2
2

(π2 − π1) 6 0

and it is obviously satisfied, independantly of τp.
We sum up the previous computations in the following proposition, which is

useful for the implementation of the algorithm.

Proposition 2. Let the granular stress be defined by (35). Let

(74)
0 < α0

1 < 1,

p0
k + πk > 0, k = 1, 2,

then, the algebraic system (48), (57) admits a unique solution (α1, p1, p2) that com-
plies with

(75)
0 < α1 < 1,
pk + πk > 0, k = 1, 2.

Moreover we also have

(76) α1 >
γ1 − 1
γ1

α0
1.

Finally, the solution can be computed by the Newton’s method by solving equation
(56) for α2. A safe choice for the initialisation of the Newton’s method is α2 = 0

Proof: the proof is a consequence of the previous computations. The proposed
initialization of the Newton’s method comes from the concavity of G. �
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Remark 6. This uniqueness result can be easily generalized to a granular stress
defined by (65). A sufficient uniqueness condition is still (72) and f convex but the
function f is now defined by

(77) f(α) = α2−γ2θ(α) +
τp

τmγ2
2

α− α0
2

1− α

6. Numerical results

6.1. Academical test cases . First, we consider two one-dimensional test cases in
order to evaluate the influence of the granular stress on the system stability. We take
τp = 0, which corresponds to instantaneous pressure equilibrium. It is known that
generally, the equilibrium system is not hyperbolic (the computations are recalled
in Section 7). The numerical parameters are taken from [2] (and also studied in
[11]). We consider a simple Riemann problem in the interval [−1/2, 1/2]. The two
phases are supposed to satisfy perfect gas equations of state, with γ1 = 1.0924 and
γ2 = 1.0182. The initial condition is made of two constant states jumping at x = 0.
We plot the solution at time t = 0.0008. The CFL number is fixed to 0.9. The
initial data are

(78)

(L) (R)
ρ1 76.45430093 57.34072568
u1 0 0
p1 200× 105 150× 105

ρ2 836.1239718 358.8982226
u2 0 0
p2 200× 105 150× 105

α1 0.25 0.25

We perform our algorithm with a granular stress R = 0. With a mesh of 1, 000
cells we observe that the solution is rather smooth but what seems to be a small

Figure 1. Void fraction, 1, 000 cells, τp = 0, R = 0.
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Figure 2. Velocities u1 and u2, 1,000 cells, τp = 0, R = 0.

oscillation starts to develop in the center of the computational domain. The volume
fraction α1, the velocities and pressures are plotted on Figures 1, 2 and 3.

Figure 3. Pressures, 1,000 cells, τp = 0, R = 0.

The same computation is made with 10, 000 cells. We observe on Figures 4, 5
and 6 that instabilities arise, probably due to the non-hyperbolic behavior of the
model.
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Figure 4. Void fraction, 10,000 cells, τp = 0, R = 0.

Figure 5. Velocities u1 and u2, 10,000 cells, τp = 0, R = 0.

We have also performed a computation on a 100, 000 cells mesh. The oscillations
clearly increase as can be seen on Figure 7 for the volume fraction. Recall that
thanks to the CFL condition, the Rusanov scheme computes positive cell values for
void fractions and the partial masses.

We perform then another computation on the finer mesh with a granular stress
given by (35). For the numerics, we have chosen κ = 500. We observe a very
slight damping of the oscillations on Figures 8 and 9 (to be carefully compared
with Figures 4 and 5). We have also plotted the two pressures on Figure 10 in
order to show the difference of pressures imposed by the granular stress.
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Figure 6. Pressures, 10,000 cells, τp = 0, R = 0.

Figure 7. Void fraction, 100,000 cells, τp = 0, R = 0 (the two
colors only correspond to the two processors used in the MPI com-
putation).

It clearly arises that the magnitude of the granular stress is not sufficient to
recover a hyperbolic regime. This is confirmed on Figure 11 where we compare a
L2 norm of the imaginary parts of the eigenvalues with R = 0 or R > 0. The
computation of the convection matrix of the equilibrium system in the case τp → 0
is given in Section 7. The eigenvalues are evaluated numerically. The quantity that
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has been plotted is

(79) I =

√√√√ 6∑
i=1

Im (λi)
2
.

We observe on Figure 11 that the imaginary part slightly decreases, owing to the
introduction of the granular stress; however, it does not vanish.

Figure 8. Void fraction, 10,000 cells, τp = 0, R = 500mγ2
2 .

Figure 9. Velocities u1 and u2, 10,000 cells, τp = 0, R = 500mγ2
2 .
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Figure 10. Pressures, 10,000 cells, τp = 0, R = 500mγ2
2 .

Figure 11. Imaginary parts, 1,000 cells, τp = 0, R = 500mγ2
2 or

R = 0.

We now evaluate the influence of the positive time scale parameter τp, and on
its ability to stabilize the model. While setting pref = 107, we compare in Figure
12 the pressures obtained with different relaxation coefficients (corresponding with
true time scales τp

pref
= 0, 10−7, 10−6, 10−5 and 10−4). On this rather coarse mesh

of 1,000 cells, we observe that the pressures are very similar for small enough
relaxation time scales. When focusing on a finer mesh of 50,000 cells, the stability
of the approximations increases when the relaxation time scales are larger (Figure
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Figure 12. Pressure p1, 1,000 cells, with 0 ≤ τp ≤ 1000.

13). We also observe on this test case that even with high values of τp, the difference
between both pressures p1 and p2 is indeed rather small.

Finally, we want to compare the stabilization effect of the parameter τP . For
this purpose, we first set τP = 0, which corresponds to an instantaneous relaxation.
We show on Figure 14 the evolution of the pressure plots when the mesh is refined
from 10, 000 cells (”10k cells”) to 200, 000 cells (”200k cells”). We observe a non-
smooth behavior of the pressure graphs. It is in agreement with the fact that we
approximate a non-hyperbolic, two-velocity, one-pressure model. It has also been
observed in [9], [11]. If the relaxation parameter is set to τP = 1, we observe
on Figure 15 a stabilization of the pressure curves, which is confirmed by a grid

Figure 13. Pressure p1, 50, 000 cells, τp = 0, 2, 10, R = 0.
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refinement. With this relaxation parameter and with pref = 107, the corresponding
time scale given by (24) is tref = 10−7. In comparison, the time step ∆t for a mesh
of 100, 000 cells is of the order of 10−9. It means that on the smaller meshes, the
relaxation time scale is actually captured. It seems that the pressure is converging
towards a smooth limit. It would be interesting to perform computations on even
finer meshes but it would last a very long time (our longer computation lasted more
than 60 hours on eight CPU of a 2.0 GHz parallel computer).

6.2. Simplified combustion chamber . We consider now a more realistic case
taken from [14]. We are interested in the modeling of a simplified gun. The gun
is modeled by a one-dimensional tube filled with a solid phase (the powder grains)

Figure 14. Pressure, 10, 000 to 200, 000 cells, τp = 0, R = 0.

Figure 15. Pressure p1, 10, 000 to 100, 000 cells, τp = 1, R = 0.
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and a gas phase (the combustion gases). The breech is on the left and the shot base
at the right boundary. The shot base moves according to Newton’s law because
the bullet is accelerated by the increase of pressure due to the combustion of the
powder. For this test case, we have adapted and simplified the physical parameters
given in [15]. The mass transfer term is defined by the simplified relations

(80)

M = α2ρ2
3ṙ
r

ṙ = 5× 10−3m/s (combustion velocity of the grains)

r = 10−3m (radius of the grains)

The momentum source term is given by

(81)

Q = Mu2 −D
D = Cα1α2ρ2(u1 − u2) |u1 − u2| (drag force)

C =
3
4r

(simplified shape factor)

The energy source terms are

(82)

S1 = −u2D +MQex

S2 = u2D

Qex = 37.3839× 106 J/kg (chemical combustion energy)

The source term vector is now

(83) S(W ) = (M,Q, S1 − p1P, −M,−Q,−S2 + p1P, P )T .

Let us remark that the energy sources do not cancel when summed up. This is only
apparently a violation of the total energy conservation. Actually, we can rewrite
the model in order to have opposite source terms. The rewriting is based on a
translation of the internal energy in the pressure laws.

Remark 7. If we set

(84) ek = e′k − e0
k,

where e′k is the translated internal energy of phase k, and e0
k is a reference energy

for phase k, and if we define the translated total energies

(85) E′k = e′k + e0
k +

u2
k

2
.

the energy balance equations can be rewritten

(86) (mkE
′
k)t + ((mkE

′
k + αkpk)uk)x + pIαk,t = σkS − σkMe0

k.

Now the total translated energy m1E
′
1 + m2E

′
2 is no longer conserved since the σk

terms do not cancel. The term M(e0
2−e0

1) can be identified to the chemical reaction
heat.
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The other parameters of the computations are

(87)

γ1 = 1.4
γ2 = 3

π2 = 2.1333× 109Pa

ρ2 = 1600kg/m3 (initial solid density)

mp = 30 kg (projectile mass)

pr = 108 Pa (resistive pressure)

p0 = 105 Pa (initial pressure)

T0 = 294 K (initial temperature)

ρ0 = 0.8713 kg/m3 (initial gas density)

α2,0 = 0.5709 (initial solid volume fraction)

diam = 132mm (diameter of the gun)

length = 762mm (length of the tube)

mpow = 9.5255kg (powder mass)

κ = 0.03 (granular parameter)

mmol = 21.3g/mol (molar mass of the gas)

The fractional step method now involves a third step following the convection step
and the pressure relaxation step. It is required for integrating the remaining source
terms. Because these remaining source terms are not stiff, they are integrated by a
simple explicit first-order Euler method.

In addition to this third step, we also have to take into account the motion of the
shot base. When the gas pressure p1 at the shot base is greater than the resistive
pressure pr, the acceleration of the projectile is given by

mp
dv

dt
= (p1 − pr)

πdiam2

4
.

The algorithm to move the right boundary is based on an Arbitrary Lagrangian
Eulerian (ALE) approach described in [14]. As the domain enlarges, the number of
computational cells increases.

We compare our new compressible model with the classical Gough model de-
scribed for example in [15].

We obtain the following results for the projectile velocity at the exit time

Gough model Relax. no granular stress Relax. with granular stress
velocity (m/s) 425 414 414
exit time (ms) 2.9 3.07 3.07

On Figure 16, we compare the pressure evolution at the breech and the shot
base of the projectile. We observe a good qualitative agreement between the Gough
model and the relaxation model.

Finally, we plot some quantities in the tube at the final time. The porosity
α1, the velocities and the pressures are given in Figures 17, 18, 19. We also plot
on Figure 20 the density ρ2 of the solid phase at the final time in order to check
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Figure 16. Pressure evolution at the breech and the shot base vs.
time. Comparison between the Gough and the relaxation model.

Figure 17. Porosity α1 at the final time. Relaxation model with
granular stress.

that the variations of the powder density are small when compared with the initial
density ρ2 = 1600 kg/m3.

Conclusion

In this paper, we have adapted the pressure relaxation method described in [17]
and [11] to the case of a non-vanishing granular stress.

Starting from the two-velocity, two-pressure multiphase model of Baer-Nunziato,
we have proposed a relaxation source term in the governing equation of the void
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Figure 18. Velocities at the final time. Relaxation model with
granular stress.

Figure 19. Pressures at the final time. Relaxation model with
granular stress.

fraction that is compatible with the second principle of thermodynamics. In this
study, we have shown that

• the source term increases the entropy of the phase mixture;
• the granular stress cannot have an arbitrary form. It is related to the fact

that the differential form satisfied by the entropy is closed.
When the relaxation time tends to zero, we have then proposed a numerical

method based on the underlying two-pressure model to approximate the single-
pressure model. In the pressure relaxation step, the void fraction is updated in
order to equilibrate the jump of pressures with the granular stress. We have proved
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Figure 20. Density of the solid phase at the final time. Relax-
ation model with granular stress.

existence and uniqueness of the equilibrium void fraction under some hypothesis on
the granular stress. Those hypothesis are satisfied by physically reasonable models.
In particular, it is possible to simulate in a realistic way almost incompressible solid
materials. It is also possible to compute realistic granular stress with our simple
granular law (35).

Eventually, we have proposed some numerical experiments in order to validate
our approach. In an ideal test case, we have checked that when the mesh is refined,
the instability of the one-pressure model is (fortunately) not suppressed. We also
checked that the introduction of the granular stress slightly improves the whole
stability. We finally performed more realistic simulations where we were able to
reproduce correct quantitative features of a simplified gun.

The whole approach is thus very promising and must now be extended to more
sophisticated granular pressure laws, equations of state and geometries.

7. Appendix I: hyperbolicity

7.1. Relaxed system. For the sake of completness, we recall the proof of hyper-
bolicity of the convection part of the equations (3). It is convenient to study it in
the variables

(88) Y = (α1, ρ1, u1, s1, ρ2, u2, s2)T .

In this set of variables the system becomes

(89) Yt +B(Y )Yx = 0,
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with

(90)

ck =
∂pk(ρk, sk)

∂ρk
, k = 1, 2

B(Y ) =



u2
ρ1(u1−u2)

α1
u1 ρ1

c21
ρ1

u1
p1,s1
ρ1

u1

u2 ρ2

p1−p2
m2

c22
ρ2

u2
p2,s2
ρ2

u2


The characteristic polynomial is

(91) P (λ) = (u2 − λ)2(u1 − λ)(u1 − c1 − λ)(u1 + c1 − λ)(u2 − c2 − λ)(u2 + c2 − λ)

We can then state the following proposition

Proposition 3. If |u1 − u2| 6= ck, k = 1, 2 then, the system (3) is hyperbolic (its
eigenvalues are real and it has a full set of eigenvectors). If |u1 − u2| = ck for
k = 1 or 2 then the system is resonant (its eigenvalues are real but B(Y ) is not
diagonalizable).

7.2. Equilibrium system. We also study the hyperbolicity behavior of the equi-
librium system, which correspond to the limit τp = 0. When the granular stress
vanishes, the results are given in several papers. We thus only detail the case R > 0
with a granular stress satisfying (34). The computations given below have been
used to draw Figure 11. We note, for any quantity z,

(92) Dkz = zt + ukzx.

At equilibrium, we can remove the transport equations in αk and replace them by
the pressure relation

(93) p2 = p1 + α2ρ
γ2
2 θ(α2) = p1 + ργ22 g(α2).

We note h the inverse function of g,

(94) ∀α ∈]0, 1[ h(g(α)) = α.

Of course, when the granular stress vanishes, the inverse function of g is not defined
and the computations must be carried out in another way. At equilibrium, we have

(95)

α2 = h

(
p2 − p1

ργ22

)
⇒ dα2 = δ

((
c22 − γ2

p2 − p1

ρ2

)
dρ2 + p2,s2ds2 − c21dρ1 − p1,s1ds1

)

with δ =
h′
(
p2−p1
ρ
γ2
2

)
ργ22

> 0.

Example 1. We can consider

(96) θ(α) = καγ2−1.

We then have

(97) δ =
α

1−1/γ2
2

κγ2ρ
γ2
2

.
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It is natural to introduce

(98) a2
2 =

γ2ρ1

γ1ρ2
c21 + γ2

π2 − π1

ρ2
> 0,

In such a way that we have also

(99) dα2 = δ
(
a2

2dρ2 + p2,s2ds2 − c21dρ1 − p1,s1ds1

)
It gives another expression of the source term P at equilibrium

(100) P = −δ
(
a2

2D2ρ2 + p2,s2D2s2 − c21D2ρ1 − p1,s1D2s1

)
We then rewrite the equilibrium system in the variables

(101) Z = (ρ1, u1, s1, ρ2, u2, s2)T ,

In these variables, the system is

(102) Zt + C(Z)Zx = 0.

For the sake of completeness, we give some details of the computations
(103)
ρ1,t + u1ρ1,x −

ρ1

α1
(u1 − u2)δ

(
a2

2ρ2,x + p2,s2s2,x − c21ρ1,x − p1,s1s1,x

)
+ ρ1u1,x

− ρ1

α1
δ
(
a2

2D2ρ2 + p2,s2D2s2 − c21D2ρ1 − p1,s1D2s1

)
= 0,

ρ2,t + u2ρ2,x +
ρ2

α2
δ
(
a2

2D2ρ2 + p2,s2D2s2 − c21D2ρ1 − p1,s1D2s1

)
+ ρ2u2,x = 0

(104)
ρ1,t + u1ρ1,x −

ρ1

α1
u1δ

(
a2

2ρ2,x + p2,s2s2,x − c21ρ1,x − p1,s1s1,x

)
+ ρ1u1,x

− ρ1

α1
δ
(
a2

2ρ2,t + p2,s2s2,t − c21ρ1,t − p1,s1s1,t

)
= 0,

(105)

u1,t + u1u1,x +
1
ρ1
p1,x = 0,

u2,t + u2u2,x +
1
ρ2
p2,x +

p2 − p1

m2
δ
(
a2

2ρ2,x + p2,s2s2,x − c21ρ1,x − p1,s1s1,x

)
= 0

(106) sk,t + uksk,x = 0

(107)

(1 +
ρ1c

2
1δ

α1
)ρ1,t −

ρ1a
2
2δ

α1
ρ2,t + u1ρ1,x

+
ρ1

α1
δ
(
−a2

2u1ρ2,x + c21u1ρ1,x + (u2 − u1)p2,s2s2,x

)
+ ρ1u1,x = 0

(1 +
ρ2a

2
2δ

α2
)ρ2,t −

ρ2c
2
1δ

α2
ρ1,t + u2ρ2,x

+
ρ2

α2
δ
(
a2

2u2ρ2,x − c21u2ρ1,x − p1,s1(u2 − u1)s1,x

)
+ ρ2u2,x = 0

(108)

(1 +
ρ1c

2
1δ

α1
)ρ1,t −

ρ1a
2
2δ

α1
ρ2,t + (1 +

ρ1c
2
1δ

α1
)u1ρ1,x

+
ρ1

α1
δ
(
−a2

2u1ρ2,x + p2,s2(u2 − u1)s2,x

)
+ ρ1u1,x = 0

(1 +
ρ2a

2
2δ

α2
)ρ2,t −

ρ2c
2
1δ

α2
ρ1,t + (1 +

ρ2a
2
2δ

α2
)u2ρ2,x

+
ρ2

α2
δ
(
−c21u2ρ1,x − p1,s1(u2 − u1)s1,x

)
+ ρ2u2,x = 0
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(109)

u1,t + u1u1,x +
c21
ρ1
ρ1,x +

p1,s1

ρ1
s1,x = 0,

u2,t + u2u2,x +
1
ρ2

(c22 +
p2 − p1

α2
δa2

2)ρ2,x +
p2,s2

ρ2
(1 +

p2 − p1

α2
δ)s2,x

+
p2 − p1

m2
δ
(
−c21ρ1,x − p1,s1s1,x

)
= 0

Finally, setting

(110) ∆ = α1α2 + δ(α1ρ2a
2
2 + α2ρ1c

2
1),

we find
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C
(Z

)
=

         u
1

+
ρ
1
ρ
2
c
2 1
a
2 2
δ
2
(u

1
−
u

2
)

∆
α

1
ρ
1
(α

2
+
ρ
2
a
2 2
δ
)

∆

ρ
1
ρ
2
a
2 2
δ
2
(u

1
−
u

2
)p

1
,s

1
∆

ρ
1
a
2 2
δ
(α

2
+
ρ
2
a
2 2
δ
)(
u

2
−
u

1
)

∆
α

2
ρ
1
ρ
2
a
2 2
δ

∆

ρ
1
δ
(α

2
+
ρ
2
a
2 2
δ
)(
u

2
−
u

1
)p

2
,s

2
∆

c
2 1
ρ
1

u
1

p
1
,s

1
ρ
1

0
0

0
0

0
u

1
0

0
0

ρ
2
c
2 1
δ
(α

1
+
ρ
1
c
2 1
δ
)(
u

1
−
u

2
)

∆
α

1
ρ
1
ρ
2
c
2 1
δ

∆

ρ
2
δ
(α

1
+
ρ
1
c
2 1
δ
)(
u

1
−
u

2
)p

1
,s

1
∆

u
2

+
ρ
1
ρ
2
c
2 1
a
2 2
δ
2
(u

2
−
u

1
)

∆
α

2
ρ
2
(α

1
+
ρ
1
c
2 1
δ
)

∆

ρ
1
ρ
2
c
2 1
δ
2
(u

2
−
u

1
)p

2
,s

2
∆

(p
1
−
p
2
)δ
c
2 1

α
2
ρ
2

0
(p

1
−
p
2
)δ
p
1
,s

1
α

2
ρ
2

δ
(p

2
−
p
1
)+
α

2
c
2 2

α
2
ρ
2

u
2

(α
2
+
δ
(p

2
−
p
1
))
p
2
,s

2
α

2
ρ
2

0
0

0
0

0
u

2
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It is not easy to compute the eigenvalues analytically. It is also difficult to give
a practical sufficient condition on all the parameters in order to prove that the
eigenvalues are all real. In the case δ = 0, corresponding to an infinite granular
stress, the characteristic polynomial is

(111) P (λ) = (u2− λ)(u1− λ)(u1− c1− λ)(u1 + c1− λ)(u2− c2− λ)(u2 + c2− λ)

We recover the same eigenvalues as in (91).
With a small λ, which corresponds to a big δ as can be seen by formula (97), we

observe numerically that the system is elliptic when u1 6= u2. When λ increases, δ
decreases and we recover a hyperbolic behavior.

Numerical application: we take

(112)

γ1 = 1.0924
γ2 = 1.0182
π1 = π2 = 0
α1 = 0.25

p1 = 0.2× 108

λ = 0.01⇒ p2 = 0.20000007050881× 108

u2 = −u1 = 50
ρ1 = 76.45430093
ρ2 = 836.1239718

The eigenvalues are

(113)

−310.79
−50.00
48.96− 9.36i
48.96 + 9.36i
50
212.86

We modify λ to λ = 500, the pressure p2 is now p2 = 0.20352544 × 108. The
eigenvalues become real

(114)

−312.54
−50.000
30.507
50.000
67.438
214.59

8. Appendix II: Associated entropy

It is also possible to compute an entropy associated to the choice (35). For this,
we postulate the following form of the entropy of the solid phase (as in Section 3,
we omit the subscript)

(115) s = K(α)U((e− πτ)τγ−1).

This choice is justified by the fact that when K is constant, then we recover the
general entropy of a stiffened gas. We can verify that our entropy and our stiffened
gas law are compatible. Without the subscripts, the equation (16) reads

(116) T ds = de+ p dτ −Θ dα.
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The temperature is given by

(117) se =
1
T

= K (α) τγ−1 U ′
(
(e − πτ) τγ−1

)
In a similar way, we can deduce a relationship between p and T

(118) sτ =
p

T
= p se.

This relation enables to compute the pressure

(119)

p =
sτ
se

=
K (α)

(
(γ − 1) e τγ−2 − γ π τγ−1

)
U ′
(
(e − πτ) τγ−1

)
K (α) τγ−1 U ′ ((e − πτ) τγ−1)

= (γ − 1)
e

τ
− γ π

and we indeed recover the stiffened gas equation of state.
We try now to find an expression for the function U (x). From (116) we can

write

(120) sα = −Θ
T

and thus

(121) Θ = −sα
se

= −K
′ (α)

K (α)
U
(
(e − πτ) τγ−1

)
U ′ ((e − πτ) τγ−1)

ργ−1

But Θ has also to be of the form (34). It implies that

(122)
K(α) = B exp

(∫ α

0

θ(u)du
)
,

U(x) = −A exp(−Bx).

We choose now the sign of the constants A and B in such way that the tem-
perature is positive and that the function U is concave. It implies that A and B
are > 0. The positivity of T and the concavity of U are required for obtaining real
sound speeds in the pure phases (see [6]).
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